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ABSTRACT

In this paper, we present a framework that gives the user a tool at hand to
explore large data sets from built infrastructure.
In a first step we describe the integration of fully detailed product models of
constructions delivering the geometric and auxiliary information we build
up our data exploration from.
The main part of this paper follows by presenting the application of a hierar-
chical data structure, an octree, that is capable of holding building informa-
tion for a whole region or even a country and the development of complexity
reduction algorithms that allow the visualisation of those data. To exploit
the full performance of modern hardware platforms, the application of par-
allelisation techniques is inevitable and we present the implementation of
these techniques to the data processing steps performed in the framework.
After introducing the framework, we show possible applications to vari-
ous disciplines such as environmental and civil engineering, architecture,
or disaster management.
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1. INTRODUCTION

Nowadays, within civil and environmental engineering built infrastructure
data becomes more and more important for planning and maintaining pur-
poses [7,10]. Therefore, the data must be available on all scales from entire
buildings down to single entities such as walls, heating / cooling devices
or even screws and sockets as well as any available auxiliary information.
Obviously this entails a huge data advent, especially when considering a
whole city or region, thus, sophisticated techniques are inevitable to pro-
cess the data in real time as needed for interactive applications.
In this paper, we describe a hierarchical approach to access and process
huge infrastructure data sets in real time stored to (distributed) databases
using the Industry Foundation Classes (IFC) [9]. The objective is to give
the user a tool at hand which lets him freely navigate through the data in
order to gain insight and explore details. Therefore, a scale-dependent fil-
tering is necessary to provide the appropriate presentation (region → city
→ building → floor → room → window → ...) and to hide unwanted
details. Since the IFC provides the data in the highest level of detail, hier-
archical structures such as octrees are advantageous to restrict the access to
the relevant data only and, thus, to prevent unnecessary computations.
In our approach, we use a dynamic two-layer octree structure to handle
memory and bandwidth limitations. The first layer is being pre-computed to
store the assembly of the infrastructure objects on the global scale while the
second layer is being computed on-the-fly giving fully detailed information
of single infrastructure objects. In order to guarantee the processing of the
data in real time, pre-fetching of the relevant information from the database
is applied to reduce latency. Nevertheless, due to the interactive user be-
havior this is a highly dynamical process, hence predictions are necessary
for pre-fetching proper data. Those predictions are based on a proximity
analysis coupled with heuristics (for possible user movements) to select the
most probable alternatives for fetching and processing data in parallel to
cover the user’s next step.
To fulfill also interactive visualisation requirements, level-of-detail consid-
erations depending on the relative position of objects and the user have to
be applied to the different infrastructure entities during run time. Due to

the usage of the IFC any geometric and auxiliary information can be easily
displayed at the highest level. On coarser levels, the visualisation of (large)
objects such as bridges is performed by displaying textured boundary boxes
for instance or just lines on even coarser levels.
This paper is organised as follows: In section 2 we introduce the format
used for storing construction and built infrastructure models, section 3 is the
main part of this paper as it presents the developed data structure, section
4 introduces the steps of complexity reduction by applying levels of detail
and algorithms for enhancing visualisation. Section 5 introduces the design
of parallelisation techniques and in section 6 some first results of our work
are shown. Our paper closes with the conclusions and the outlook given in
section 7.

2. EXCHANGE FORMAT FOR CONSTRUCTIONS AND BUILT
INFRASTRUCTURE

In this section, we focus on the format for accessing Built-Infrastructure-
Models (BIM) – i. e. product models that store relevant information exceed-
ing the geometric representation of constructions and built infrastructure. It
turned out that Industry-Foundation-Classes fulfill our demands and there-
fore have been selected and integrated.
In the process of selecting a file format for constructions and built infras-
tructure three criteria where mandatory for a format to be suitable. First
the format has to be capable of storing information about constructions in
fully detail. As we will show in section 4, the generation of different levels
of detail is a crucial task for our project and will be put into practice by a
step-wise coarsening of fully detailed representations. Second the format
not only has to provide geometric information but auxiliary information as
well. These auxiliary information have to provide a certain ordering of the
data in a way that for example for a building all its parts such as windows,
doors, walls, or the roof can be identified. Furthermore it has to be mapped
which parts of the geometric representation belong to which element, for
instance a door, of the building and vice-versa. Additionally for every el-
ement miscellaneous information such as the IP address of a network port
or the type of glass a window is manufactured of have to be stored and be
editable to the user. Third the format to be chosen has to be an industry
standard to ensure sufficient exchange with existing file formats and make
this framework open to most of existing data of constructions and built in-
frastructure.
All three criteria should be self explaining but we want to point out the im-
portance of the second criterion, the demand for storing auxiliary informa-
tion. This gives us the possibility to provide information to the user beyond
the scope of tools such as Google Earth. To explore a whole city and being
able to get into every detail of a construction or built infrastructure opens
the door to various imaginable user scenarios from civil and environmental
engineering [1–3, 6], to architecture [4] or disaster management [13], just
to name a few.
Als already mentioned it turned out that Industry-Foundation-Classes [9]
are completely suitable for our purposes, although there are known difficul-
ties about IFC. IFC don’t provide information such as the exact intersection
of walls, but since this does not affect our application it can be neglected.
Furthermore the IFCs are maintained by a large community and due to this
position on the market of BIM formats, there are several tools and APIs
for accessing IFC files. We decided to use the IFCEngine [12] to extract
geometric and auxiliary information from IFC files during loading to the
framework. Geometric information are received in form of a Vertex, Edge,
Face stream and auxiliary information as a mapping between elements such
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as doors or walls and their geometric description. Further auxiliary infor-
mation is mapped as strings to single elements. In a first step of preprocess-
ing basic information such as the bounding boxes of the constructions are
computed for the buildup of the hier-archical data-structure as described in
section 3.

3. APPLICATION OF A HIERARCHICAL DATA-STRUCTURE

In this section, we discuss the main part of our work, namely the data struc-
ture of the framework, which is crucial for fulfilling the demands of the
project. Since it is our goal to create a framework which lets the user freely
and seamlessly navigate through large sets of construction and built infras-
tructure data, the development of the data-structure is a central point. On the
one hand, we have to make sure that this data-structure is capable of holding
construction data of a whole region without exceeding memory limitations,
on the other hand, the access to those information has to be efficient such
that our claim for seamless data access is fulfilled. We figured out that
following a hierarchical approach and implementing an octree structure is
well suited for our purposes due to multiple reasons. The octree is based on
spatial decomposition of a given domain, it divides the domain along every
axis in two equal parts resulting in eight sons (octants), each of these oc-
tants will be recursively subdivided until it lies complete inside (black node)
or outside (white node) the given object or the maximum depth of the tree
is reached (grey-leaf node). Therefore it even adds spatial ordering to the
distinct data of constructions and built infrastructure originating from IFC
and enables us to determine spatial relations as described in the following
sections.

Figure 1: Application of a quadtree, the 2D version of an octree, to
the section of a circular geometry.

There exist well known and efficient algorithms to provide location aware-
ness between objects stored in an octree, which is essential for the integra-
tion to our framework. Due to its spatial decomposition the octree natively
features different levels of detail by varying the depth of the tree.
We designed the data structure to hold a precomputed first-layer octree and
a set of dynamically generated second-layer octrees in memory.

First Layer Octree
The first layer octree is generated based on the bounding-boxes of all IFC
objects. This octree is static and kept in memory during run-time, since it is
the central point of our framework. The octree holds the complete assembly
of constructions but is "small" enough to be kept in memory. All decisions
on which objects to load, when to load them or discard them are made by
evaluating this first-layer octree. In this octree we hold storage information
for the single BIM models, which we use to estimate parameters such as
latency before the loading process. We use this to load these IFC data from
different (distributed) databases at the right time.
When building up the first-layer octree we follow natively the recursive
definition of spatial decomposition of the octree. In the first step one root
octant is created covering the whole domain and containing references to
the storage information and the bounding box of every single IFC object,
then the whole domain is equally subdivided along the three axes and the
eight son-octants are created. This recursive process is repeated for each
octant until the maximum depth of the tree is reached or further refining
would lead to the distribution of a single bounding box to multiple octants.

Figure 2: Data access to single IFC models is organised by querying
the first layer octree.

With respect to the storage information at the time being we only take
files of storage-type localy-stored into account but this will be expanded to
network-stored files and is open to integrate further distributed repositories.
To guarantee processing in real time we integrated pre-fetching of data to
ensure seamless data-delivery. Pre-fetching is the process of loading data
that are not yet requested for visualisation or processing in general but are
already loaded in order to reduce latencies when they are requested. This is
a highly dynamical process due to interactive user behavior and we have to
define criteria for data to be requested by the user most likely and therefore
pre-fetch them in advance. To fulfill this request we define the pre-fetching
distance pi, which describes the upper bound of the distance of an object
to the user where it is prepared for visualisation. At a distance below pi

an object will be pre-fetched from the data storage, the appropriate level
of detail is applied and its representation is cached. This will be further
discussed in section 4.
Depending on the parameters of a scenario such as size of the BIM data and
the underlying hardware, these values pi have to be adjusted. In order to
extend the efficiency of pre-fetching, we design the integration of heuristics
for the analysis of user behaviour to our framework. Right now we are not
taking the history of user-movements into account, instead decisions about
pre-fetching are made solely based on the distance between the user and
an object, whereas an probabilistic analysis of user behavior could lower
the miss rate of objects that are not yet pre-fetched at the time they are
requested.
As it is useful for the structure of this paper, aspects concerning the integra-
tion of parallelisation techniques are shifted to section 5.

Second Layer Octree
The second-layer octree stores a single construction or built infrastructure
extracted from an IFC file at full detail and is computed on-the-fly for a
construction or built infrastructure as soon as the distance between the con-
struction and the user falls below pi. Building up the second-layer octree is
completely analogous to the buildup of the first-layer octree following the
recursive process of spatial decomposition as described in the beginning of
this section, since every triangle originating from the extraction of IFC ob-
jects can be associated with its bounding box which brings us back to the
setting of the generation of the first-layer octree.
Since a building easily can consist of a huge number of triangles, further
algorithms for reducing the amount of prmitives to be rendered are applied
as shown in section 4. As described before each second-level octree holds
all information about a single construction, therefore we can transfer our
setting to a bride set of applications such as graph-theory and the compu-
tation of possible user movement graphs within the building to determine
evacuation scenarios or solve shortest path problems [8], just to name a few.

4. LEVELS OF DETAIL (LOD) AND VISUALISATION
TECHNIQUES

In this section, we describe the application of levels of detail (LoD) to sin-
gle construction entities such as buildings, bridges, or streets. Depending
on the distance of an object to the user different levels of detail are applied
as the representation of a bridge, e. g., can be sufficient by displaying its
bounding box at a high distance and varies to a representation with all de-
tails for a exploration at a very close distance. The application of LoDs is
one necessary task for interactive visualisation, since it reduces the amount
of objects to be rendered without an observable or at least acceptable loss
of information and rendering all objects in fully detail would exceed the
performance of any graphics hardware when it comes to certain ranges.
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Figure 3: Second-layer octree covering a single building.

LoDs are applied to entities during run time and depend only on the distance
between the user and the entity. We designed four LoDs and for every level
i = 0..3 we define di as the distance of the level to become valid. Below
this distance of a construction to the user the level of detail i becomes the
level to be applied.
In level i = 0 information is delivered at full detail. Every aspect of an
entity such as a window or even a screw is displayed or provided, this refers
to the geometric representation as well as to auxiliary information. Since
we integrated IFC as data storage format, this can be provided directly.
In level i = 1 we introduce a first level of approximation. At this level,
single entities such as windows or doors are represented via their bounding-
boxes. This can be applied, since from a certain distance the representation
of the edging of a window for instance can’t be distinguished from the ap-
proximation with its bounding box. This can be done easily by exploiting
one of the strengths of IFC as described in [9] as follows. IFC doesn’t only
provide the geometric representation of a building and all its parts in full
detail but also stores the mapping between geometry and function. This
implies we directly query IFC to get the sets of windows, walls, or doors
(with their exact geometric representation) of a building and then draw the
bounding boxes for every single object.
In level i = 2 a construction is represented by a textured bounding box. At
the time of reading an IFC file to our framework, the bounding box of the
construction is computed and stored, such that a texture provided with the
IFC file can be mapped onto the given bounding box. One of the future tasks
in the project can be to automatically generate the texture of a construction
by evaluating the IFC directly when the file is loaded into the framework.
In level i = 3 the bounding box of the whole construction is used and
sufficient for approximating the construction or built infrastructure. Entities
such as bridges, pipelines, or streets are represented by a single line.

Figure 4: Extracted doors as an example for step-wise coarsening
along different levels of detail.

After the application of levels of detail, the amount of objects to be rendered
can be reduced further by applying algorithms that remove objects that are
invisible to the user. For a deeper look into detail we refer the reader to [5].
In a first step we limit the set of objects to be considered to those lying in
the visible area of the user. This property can be evaluated efficiently by
iterating through the nodes of the octree (see section 3). Hence objects are
excluded that are lying behind the user or objects that would be projected
to points outside the clipping area.

The next algorithm applied is back face-culling for solids, which we can
rely on since all geometric objects retrieved from IFC are solids. Back face-
culling removes all faces of a solid which are invisible to the user since they
are located at the backside of a solid.
After these steps the Z-buffer algorithm is applied to the remaining objects
in order to remove faces that are hidden by other faces.

5. INTEGRATION OF PARALLELISATION TECHNIQUES

In this section, we describe the integration of parallelisation techniques,
which are crucial for fulfilling our demands of seamless data delivery. Since
all reasonable hardware platforms these days are multi-core systems the
distribution of the workload over several processes has to be implemented
in order to exploit the full performance of the underlying hardware.
Our application is intended to be run on a multi-sided CAVE, a fully
immersive visualisation environment providing stereo-enabled viewing on
multiple projection planes. The underlying rendering hardware is imple-
mented as a multi-core shared-memory system and therefore we decided to
use OpenMP [11] for parallelising computations. OpenMP is a memory-
coupled interface providing a set of compiler directives and functions deliv-
ered within a runtime library for parallelising applications by distributing
portions of the code to be executed in different threads.
We integrate parallelisation to our framework using a function-parallelism
approach to separate the visualisation from the data processing and enable
the parallel processing of large data-sets. About the distribution of threads
we designed the system to use one visualisation thread, as we are using
OpenGL which doesn’t support the direct parallel rendering of primitives
nor it would lead to an enhancement of performance. Considering a total
amount of N threads or processor-cores to be available, the rest, i. e. N−1,
of them are spent for data-processing.
Decoupling the visualisation and data-processing ensures the seamless de-
livery of information even if information needed is not processed yet when
for example switching an object from a coarser to a finer level of detail, the
coarser level is displayed until the finer level of detail is processed. This
prevents the system from insufficient frame rates. As soon as the data is
processed at the finer level of detail it is displayed in the next iteration of
visualisation.
To synchronise the single processes we designed a data structure to which
the data-processing threads write the data prepared for displaying and from
which the visualisation thread reads the data and renders it.
The data structure for the distribution of the data-processing is designed
as a first-in-first-out (FIFO) queue whereas the accesses to the queue is
synchronised using a critical section. When the user changes the position
or the viewing angle, these new parameters are written to the queue such
that the data-processing threads can update the geometric representation
to be rendered by the visualisation thread. As soon as the change of the
viewing angle or the position of the user is entered to the queue, the next
free data-processing thread pops the information about the change of the
viewing parameters from the queue, checks for the IFC objects that have
to be added for visualisation, removed from visualisation or whose levels
of detail have to be changed and writes those tasks individually back to the
queue whereas those tasks are ordered ascending in the distance of the IFC
object to the user such that closer objects are updated first. The tasks of
changing the representation of a single IFC object are then executed by the
data-processing threads.
For the application of a data-parallel approach, the synchronisation and or-
ganisation of different threads executing an equal set of instructions to a
decomposition of the data has to be taken into account. Due to its structure
the octree directly delivers a decomposition of the data to distribute them to
the single threads. When a task for fulfilling the processing of an IFC object
is received by the next free data thread, it decomposes the domain for the
task into chunks of size c and enters the tasks for the data-processing back
to the FIFO queue. Those tasks will then be finally processed sequentially
by the data-processing threads. Using this decomposition the generation of
the first-layer and second-layer octrees described in section 3 can be data-
parallelised over the generation of the octants, analogously the second-layer
octree can be parallelised when applying geometry reduction algorithms de-
scribed in section 4.
The data structure for the storage of the geometric representation of the IFC
objects is implemented as a set of triples, containing the identification of the
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IFC object, the actual level of detail and a pointer to the geometric represen-
tation whereas the access to this set is synchronised using a critical section.
If an IFC object is to be removed from visualisation, first the entry from
the set is removed and then the memory allocation holding the geometric
representation is freed. If an IFC object is to be added to the visualisation,
first the geometric representation is stored and then the pointer to the repre-
sentation is added to the set. If the level of detail for an IFC object is to be
changed, the representation for the new level of detail is generated. After-
ward the pointer to the geometric representation and the value indicating the
actual level of detail is updated and the memory allocated for the geometric
representation of the former level of detail is freed.
Using this data structure we can ensure a seamless visualisation with suffi-
cient frame rates.
At the time being we focuse on running our framework on a four-core Intel-
based hardware and distribute those 4 threads to work with one visualisation
thread and three data-processing threads.
The structure of the given parallelisation concept is given in the following
figure.

Figure 5: Parallelisation diagram following a function-parallel ap-
proach for the separation of the visualisation thread from the data-
processing threads and a data-parallel approach for the distribution
of decomposed data over multiple data-processing threads.

6. RESULTS

In order to show the benefits of our approach, a prototypical implementation
was done. First results, still obtained with the sequential algorithm, are
already very promising and reveal the potential of the final fully parallelised
code.
To set up a benchmark, for our framework a scenario that covers a highly
detailed textured height map 1 of the country side area close to Vorarlberg
in Austria with a resolution of 2048 x 2048 pixels for the texture and a res-
olution of 512 x 512 pixels for the height map was defined. The first-layer
octree is computed up to a maximum height of eight levels, whereas the
second-layer octree is computed up to a maximum height of four levels. As
IFC models we use different models of a complexity varying from 53,000
to 159,000 vertices.
The given results have been achieved on an Intel Q9550 Architecture with
4GB main memory and an NVIDIA Quadro FX 570 GPU installed.
As we are interested in the development of a framework that gives the user a
tool at hand for seamless data exploration, we focus on the resulting frame
rate achieved by the framework. For an exploration of the terrain where
most of the parts of the building are not lying in the focus of the user we
achieve a frame rate of approximately 60fps, during the exploration of a
building and its details, the frame rate drops down to 20-30fps as the data-
accessing and -processing is a highly dynamically process, nevertheless still
high enough for an interactive application.

1provided by the Chair for Geoinformation Systems at Technische Uni-
versität München

Figure 6: The applied terrain loaded with IFC objects arranged with
the octree.

Figure 7: Exploring details of a building.

7. CONCLUSIONS AND OUTLOOK

In this paper, we presented an approach for a framework to give the user a
tool at hand which combines the handling of vast amounts of construction
and built infrastructure data with the seamless delivery of information and
provision of immersive data exploration. This gives the user the possibility
to gain insight about information ranging from the scale of global overview
to highly specific information of single construction entities on the level of
screws. All this information delivery had to be kept in the balance between
a high grade of detail and a perceptible flow of information.
This framework uses mostly well known techniques of information process-
ing and combines them in a new way of handling data of constructions and
built infrastructure beyond today established frameworks.
Future work will comprise the integrating of heuristics for pre-fetching and
the calibration of data-parallelisation. Hence, this framework gives the pos-
sibility of evaluating queries of the type "Which building within 20 miles
from my position has an air condition system installed for a room of more
than 1000sf usable space?", which are not possible with nowadays systems.
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