

Social Volunteer Computing

Adam MCMAHON and Victor MILENKOVIC

 Department of Computer Science, University of Miami

Coral Gables, FL, 33146, USA

ABSTRACT

While both volunteer computing and social networks have

proved successful, the merging of these two models is a new

field: Social Volunteer Computing. A Social Volunteer

Computing system utilizes the relationships within a social

network to determine how computational resources flow

towards tasks that need to be completed, and the results of

these computations are added back into the social network as

content. Such a system will provide scientists and artists a new

facility to obtain computational resources and disseminate their

work. RenderWeb 2.0, a prototype Social Volunteer

Computing system, is introduced that allows animations

created in Blender to be distributed and rendered within

Facebook.

Keywords: Social Networks, Volunteer Computing, Graphics

INTRODUCTION

While both volunteer computing and social networks have

already proved to be successful, the merging of these two

models is a new field. We call this new field Social Volunteer

Computing (SVC).

This paper is divided into two major sections. In the first

section, we outline the proposed benefits of the SVC model. In

the second section, we apply this model to rendering and

introduce RenderWeb 2.0, which is our prototype rendering

system that is integrated into Facebook.

This paper represents an initial step into the field of SVC. We

will present the model, introduce a prototype, and discuss

future directions. As SVC communities begin to emerge, our

future work will focus on applying the SVC model towards

new artistic and scientific projects, along with testing the

proposed benefits of SVC model against other computational

and social systems.

1. SOCIAL VOLUNTEER COMPUTING

Before we discuss the proposed benefits of Social Volunteer

Computing, we will first briefly review traditional volunteer

computing.

1.1 Volunteer Computing

The term volunteer computing was coined in 1996 by Luis

Saramenta, who defines it as a form of distributed computing

that allows “high-performance parallel computing networks to

be formed easily, quickly, and inexpensively by enabling

ordinary Internet users to share their computers’ idle processing

power without needing expert help” [1].

One of the first successes of volunteer computing occurred

when a combined effort of 700 volunteer computers discovered

the 35th Mersenne prime number [2]. The most popular

volunteer computing system, SETI@home, is an attempt to

search the skies for intelligent life [3]. SETI@home is now

part of the larger BOINC project, which is a framework that

joins together multiple research projects and allows volunteers

to select among those projects [4]. BOINC currently supports

over 30 scientific research projects and has approximately

300,000 active volunteers. In short, volunteer computing is a

viable option for harnessing computational power for the

sciences and arts.

Within a volunteer computing system, there are four roles that

interact with each other:

a) Volunteers – volunteer computer's unused cycles.

b) Submitters – submit tasks to be computed.

c) Developers – develop the code that is executed on the

volunteers' computers

d) Facilitators – create the framework that connects

developers, submitters, and volunteers.

Using BOINC as an example, the facilitators are those who

provide the BOINC framework. The developers then take that

framework and apply it to a particular domain (e.g. protein

folding). The submitters, who are typically part of the same

research project as the developers, formulate meaningful tasks

that need to be computed. Finally, the volunteers download the

project’s modules and provide their own computational

resources.

1.2 Progress Thru Processors

In 2009, Intel announced a new project in conjunction with

BOINC called Progress Thru Processors (PTP), which has the

goal to join BOINC with Facebook [5]. PTP uses Facebook as

a portal to download the BOINC software and uses Facebook

to display volunteer statistics within in a Facebook application.

Though PTP uses Facebook in a variety of ways, it does not

truly integrate social networks with volunteer computing. First,

PTP does not actually perform computations directly within

Facebook, but instead requires the volunteer to have BOINC

separately installed as a desktop application. Second, the

relationships within the social network do not direct the

volunteers’ resources, but the developers control the queue.

Third, the results of the computation are not available to the

social community but are only available to the developers and

submitters of the projects.

While PTP demonstrates an important step towards merging

volunteer computing and social networks, the integration is

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 4 - YEAR 201134 ISSN: 1690-4524

primarily cosmetic: displaying user statistics and providing

links to manually download the BOINC framework.

1.3 Overview of Social Volunteer Computing

Social Volunteer Computing (SVC) is a proposed new form of

volunteer computing that is integrated within a social network

and brings together volunteers, submitters, developers and

facilitators. Unlike previous models, SVC begins to blur the

lines between volunteers and submitters, such that any

individual or party can enter into these two roles. Moreover,

the relationships between the roles of volunteers and submitters

are analogous to friends belonging to a group within a social

network. Within the context of a social network application, a

SVC system utilizes these relationships to determine how

computational resources flow towards tasks that need to be

completed. We call this Socially-Driven Computation. The

result of this computation, which we call Socially-Computed

Content, is added back into the social network. This content

can be tagged and shared with other members of a social

network.

1.4 Non-Social Vs. Social Volunteer Computing

To make the above definition more clear, we will compare a

3D rendering system that uses traditional volunteer computing

to one that utilizes SVC.

In a traditional volunteer computing system, a group which

wants an animation to be rendered first needs to recruit

volunteers. The volunteers then download the project’s

application and donate their computer time. In this model,

there is a clear distinction between the submitters (those who

want the animation rendered) and the volunteers [6].

Moreover, there is little room for organic growth of

computation or content, because the control flows down to the

volunteers from the facilitators, submitters, and developers.

Finally, the volunteers are blind volunteers. They do not

control their own queue or choose which projects to render.

Now, let us view the same example from the perspective of a

SVC system. In such a system, participants join a Facebook

application that is connected to a SVC system. By joining the

Facebook application, participants become part of the

community and can act as volunteers and/or submitters. As

volunteers, they can direct their computational resources

towards particular scientists/artists by becoming their friends.

As submitters, they can upload their own projects to be

rendered by the community. After the rendering is complete,

the animation becomes socially-computed content. The entire

process is seamlessly woven within the social network and

participants do not need to manually download or install any

applications. Moreover, there is no gatekeeper who controls

the flow of computation, but computational tasks are naturally

allocated among the relationships that exist within the social

network.

1.5 The Proposed Benefits of a SVC System

We propose that there are four benefits to a SVC system over

non-social volunteer computing systems. This section outlines

these proposed benefits:

1) Social Network Integration – The user experience of a SVC

system is completely integrated within a social network. In this

sense, users can upload tasks and volunteer their own computer

from within the social network. Moreover, this integration

provides new methods (such as wall posts or status feeds) of

informing users of tasks that need computational resources.

2) Socially-Driven Computation – In a SVC system, the task

queue is not maintained by the developers, but it is determined

by the relationships within the social network. Thus, the more

friends a submitter has, the more computational resources will

flow towards his or her project.

3) Socially-Computed Content – The results of the social

computations are added back into the system as new content.

This content has a new type of value that has not yet been

experienced in social networks and could have far reaching

ramifications on how communities learn and share knowledge.

By sharing the computational results within a social network,

participants not only become more invested but also facilitate

new discoveries.

4) New Value Added to Social Networks – SVC does not

merely use social networks as an infrastructure, but SVC adds

new value to social networks by contributing new types of

content and relationships. For example, allocation of

computational resources through the relationship of “friend”

gives a new dimension to the role of a friend, which has

become a devalued commodity within a social network.

2. RENDER WEB 2.0

In order to test the above ideas, we integrated a volunteer

rendering system within a social network. Because rendering

is computationally intensive, important for scientific

visualization, and a popular hobby among many artists,

rendering lends itself towards an interdisciplinary SVC

prototype system. The Facebook application of our SVC

rendering system can be tested at the following url:

http://apps.facebook.com/renderweb.

2.1 Introduction to RenderWeb 2.0

In previous work, we demonstrated that distributed Java applets

can efficiently render high quality animations across the

Internet in a volunteer computing system we called RenderWeb

(http://www.renderweb.org) [7]. RenderWeb used the Java

Sunflow renderer [8] within an applet to render tasks

downloaded from a Java servlet. In a final experiment, we

harnessed 172 heterogeneous computers across the Internet to

render an animation approximately 100 times faster than one

lab computer

RenderWeb 2.0 retains a similar architecture for client/server

communication and distribution logic: an applet embedded

within a web page downloads a project from a Java servlet,

renders the image, and uploads the image back to the servlet.

Apache Tomcat is used as the application server in conjunction

with MySQL. While its architecture is very similar to the

previous version, there are two major changes in RenderWeb

2.0

In a first change, RenderWeb 2.0 no longer uses the Sunflow

renderer but instead uses the open-source Blender renderer [9].

Within a trusted signed applet, the applet downloads the native

Blender and executes it within separate process, as detailed in

Section 2.2. With this change, artists and scientists can now

use a production quality animation program in conjunction with

volunteer computing. Blender was selected as our rendering

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 4 - YEAR 2011 35ISSN: 1690-4524

platform for several reasons: it is open-source, has a small

download footprint, and is one of the most widely used

animation programs with over 200,000 downloads per release

[10]. Though Blender is an appropriate renderer, there is no

reason, aside from licensing issues, that commercial animation

programs could not also be integrated into RenderWeb. In the

future, we hope that commercial vendors will realize the

potential of RenderWeb and will construct a licensing

mechanism to allow their renders to be utilized.

In a second change, RenderWeb is now a Social Volunteer

Computing system that is integrated into Facebook and utilizes

relationships to drive the flow of computation. Integration with

Facebook was accomplished using the Facebook client API,

which allows a web application to display within Facebook and

allows the application to query Facebook user data. In Section

2.3, we will discuss the benefits of integrating RenderWeb into

Facebook.

Figure 1: Overview of RenderWeb 2.0

Figure 1 depicts an overview of the RenderWeb 2.0 system and

the general work flow: (A) Users upload blender projects to

the RenderWeb server via a Facebook application. (B) The

RenderWeb server communicates with the Facebook platform

to authenticate the user and obtain user data, such as a user's

friend list. (C) The computation is distributed among the

community and rendered using Java applets that are embedded

within the Facebook application. After rendering each frame,

the applet uploads each rendered frame back to the server.

2.2 The Rendering Client

Because RenderWeb 2.0's rendering client uses a similar

architecture to our previous version. we refer to our previous

publication for details regarding the implementation, the

scalability, and the experiential results of the RenderWeb

architecture [7]. Yet, one significant change is that RenderWeb

2.0 now allows users to upload and render native Blender

projects, as opposed to previously using Sunflow projects.

To accomplish this, a trusted signed applet performs the

following steps:

a) The user is prompted with a screen informing the

user that the applet's code is signed and verified. If

the user accepts, the applet will have the permission

to run the native Blender code. By using signed

trusted code, we have followed the same security

mechanism as BOINC.

b) The applet downloads the appropriate native code for

the user's operating system (the user's operating

system is obtained through the user- agent HTTP

header).

c) The applet downloads a Blender task from the server

through HTTP GET.

d) The applet performs a check sum on all downloaded

native code and projects. The checksum takes a few

milliseconds, but is an important security step to

make sure that all code and files have maintained

integrity.

e) A JNI call is made to render the task in a separate

process.

f) When the rendering is complete, the resulting image

is displayed within the applet

g) The image is compressed and sent to the server over

HTTP POST.

h) Step C is repeated.

2.3 The SVC Model Applied to RenderWeb 2.0

This section applies the four proposed benefits of the SVC

model (outlined in section 1.5) to RenderWeb 2.0.

1) Social Network Integration: Unlike non-social volunteer

computing systems, RenderWeb 2.0 can be accessed directly as

a Facebook application (apps.facebook.com/renderweb).

Moreover, unlike Progress thru Processors, there is no need for

the user to manually download and install a separate

application. Instead, the user experience is entirely contained

within Facebook. The following images outline the process of

uploading and managing a Blender project (Figure 2) and

volunteering a computer to render (Figure 3). Social network

integration also allows wall and status updates to notify friends

of projects that need to be rendered (see Figure 4).

Figure 2: Blender projects managed within Facebook.

Figure 3: Screen shot of rendering an animation within

Facebook. Users volunteer by clicking the “volunteer” link.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 4 - YEAR 201136 ISSN: 1690-4524

Figure 4: Status updates inform friends of projects that need

rendering.

2) Socially-Driven Computation: In RenderWeb 2.0, the

relationships within Facebook drive the flow of computational

resources. That is to say, the priority of volunteers' resources

will be allocated towards friends who have projects that need to

be rendered. Within RenderWeb 2.0, there are three relational

levels that drive computation:

a) Self: RenderWeb 2.0 gives a higher priority towards

allocating to a user his/her own projects. That is to

say, when a user volunteers a computer, the system

first checks to see if that user has a project that needs

to be rendered. If so, the system allocates a user's

own project to be rendered on his/her computer.

b) Friend: If the user does not have a project in the

queue, RenderWeb 2.0 then checks to see if any of

the user's friends has a project in the queue. If so, the

friend's project will be allocated to be rendered on the

user's computer.

c) Community: If neither the user nor a friend of the

user has a project in the queue, then RenderWeb 2.0

will allocate a random project from community.

3) Socially-Computed Content: After an animation is rendered,

the video is placed as content back into the social network for

the entire RenderWeb community to view, tag and comment

on. In a sense, the entire community owns the animation,

because the community provided computation resources

towards creating the animation. Yet, like all content within a

social network, the original creator of the animation can

remove the animation from RenderWeb. Figure 5 depicts a

screen shot that shows recently rendered animations that have

been added as Social-Computed Content.

Figure 5: Rendered animations are added back into the

Facebook as Socially Computed Content

4) New Value Added to Social Networks: Within RenderWeb

2.0, not only is volunteer computing benefited by the social

network, but the social network is benefited from the SVC

model and given new value. First, a friend within Facebook

(which has often become a devalued commodity) now has the

value of contributing computational power towards rendering

and sharing computational resources. Second, the many

Facebook groups centered around Blender will now have

ability to easily browse each other's animations that were

rendered across the social network. Third, through a

community effort of sharing computation, the community will

have a new value of ownership of this new type of content.

3. RENDER WEB 2.0 - IN THE ARTS AND SCIENCES

Though it is a new platform, RenderWeb 2.0 is already being

utilized to render scientific data. For example, Figure 6 depicts

a raytraced animation of a 3d configuration space. In robotics,

a configuration space represents the permitted translations and

rotations that will allow a robot to safely navigate a room [11].

Figure 6: Configuration Space rendered in RenderWeb 2.0

In another example, RenderWeb 2.0 is being used to visualize

geological data that was obtained after the recent Haiti

earthquake (Figure 7). This visualization may assist

researchers in determining sections of Haiti that will be

susceptible to future earthquakes.

Figure 7: Haiti earthquake data visualized in RenderWeb 2.0

Starting this year, RenderWeb 2.0 will be utilized as an

educational component in computer graphics courses at the

University of Miami. By utilizing RenderWeb, students will

have the opportunity to share computational resources and

content within a Facebook community. We believe this social

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 4 - YEAR 2011 37ISSN: 1690-4524

dimension will enhance their collaboration and their sharing of

knowledge. During these courses, we will begin to study how

a SVC system affects users' experience of sharing resources

and content through social networks.

4. CONCUSIONS

We have introduced the Social Volunteer Computing model, a

field which combines volunteer computing and social

networks. This model introduces new forms of computation

and content to social networks. We have also proposed that

there are four benefits of SVC that improve volunteer

computing: Social Network Integration, Socially-Driven

Computation, Socially-Computed Content, and New Value to

Social Networks.

We have also introduced RenderWeb 2.0, which is a prototype

SVC system that is integrated into Facebook and uses social

relationships to drive the priority of task allocation. Moreover,

we discussed how RenderWeb 2.0 is starting to be utilized by

the scientific community for visualization, and we discussed

our plan to use RenderWeb 2.0 as an educational component

within graphics courses.

Our future work will touch upon three major areas. First, we

will continue to reach out towards artistic and scientific

communities to integrate SVC with existing and emerging

projects. Second, we will develop measures to test the

proposed benefits of the SVC model against other

computational and social systems. Third, we will explore how

the roles of developer and facilitator can be integrated into the

SVC model. With this integration, scientists will be able to

seamlessly enter into the role of developer by uploading

custom code that will be distributed among the relationships in

a social network.

Of course, allowing developers to submit custom code opens a

security risk that must be addressed. We are currently exploring

how technology, such as the Google Native Client [12], will

allow distributed native code to be securely executed within a

web page of a social network. By expanding to include all four

roles (volunteer, submitter, developer, and facilitator),

volunteer computing will truly become social. It will allow

new groups and projects to emerge overnight without the

intervention of a gatekeeper that controls the flow of

computation or the priority of projects. For example, in such a

system, there could be many Facebook groups corresponding to

numerous projects, and volunteers can contribute their

resources by simply joining such a community. This would

allow users not only to join a group interested in finding a cure

to breast cancer but also to volunteer their computer towards

that cause as an effect of joining that community.

In summary, the relationships and constructs within social

networks will continue to provide a rich and innovative

platform for sharing computational recourses.

5. ACKNOWLEDGEMENT

This work supported by NSF grant CCF-0904707.

6. REFERENCES

[1] L. Sarmenta. “Volunteer Computing”, Ph. D. diss.,

Massachusetts Institute of Technology, 2001.

[2] I. Peterson. “Another Record Prime.” 1996.

http://www.maa.org/mathland/mathland_12_16.html

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D.

Werthimer. “SETI@home: An Experiment in Public-Resource

Computing.” Communications of the ACM, 45(11), November

2002, 56-61.

[4] D.P. Anderson. “BOINC: A System for Public-Resource

Computing and Storage.” 5th IEEE/ACM International

Workshop on Grid Computing, pp. 365-372, Nov. 8 2004,

Pittsburgh, PA.

[5] Intel News. “Intel Helps Convert Unused PC Processor

Power into an Instrument to Fight Disease and Study Climate

Chang.” 2009. http://www.intel.com/

pressroom/archive/releases/20090803corp.htm

[6] Nov, O., Anderson, D. and Arazy, O. (2010). Volunteer

Computing: a Model of the Factors Determining Contribution

to Community-Based Scientific Research. Proceedings of the

19th International World Wide Web Conference (2010).

[7] A. McMahon, V. Milenkovic, “Rendering Animations with

Distributed Applets.” Proceedings of the International

Conference on Computer Graphics and Virtual Reality, 2009.

[8] Sunflow web page - http://sunflow.sourceforge.net

[9] Blender web page - http://www.blender.org

[10] Blender Manual - http://wiki.blender.org/index.php/

Doc:Manual/Introduction

[11] S. Trac. “Robust Explicit Construction of 3d

Configuration Spaces Using Controlled Linear Perturbation”,

Ph. D. diss., University of Miami, 2008.

www.cs.miami.edu/students/strac/PhDThesis/thesis.pdf

[12] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T.

Ormandy, S. Okasaka, N. Narula, and N. Fullagar, “Native

Client: a Sandbox for Portable, Untrusted x86 Native Code,”

IEEE Symposium on Security and Privacy, 2009.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 4 - YEAR 201138 ISSN: 1690-4524

	QN188DK

