

Abstract — The optical flow of high interest points in images of an
uncalibrated scene is used to recover the camera orientation of an
eye-in-hand robotic manipulator. The system is completely
automated, iteratively performing a sequence of rotations and
translations until the camera frame is aligned with the
manipulator’s world frame. The manipulator must be able to
translate and rotate its end-effector with respect to its world frame.
The system is implemented and being tested on a Stäubli RX60
manipulator using an off-the-shelf Logitech USB camera.

Keywords — Camera Calibration, Eye-in-hand manipulator,
Robotics, Computer Vision.

I. INTRODUCTION
Visual input sensors are incorporated into robotic
automation tasks to enhance an application’s flexibility,
precision, and/or functionality. Key features are extracted
from input image sequences and used to guide the
manipulator’s end-effector to a desired pose where a specific
automation task is then accomplished. Some typical
automation tasks include picking/placing, spot welding,
spray painting, drilling holes, and product assembly. [1] is
an excellent article that describes several vision-based object
handling industrial applications currently in use.

There has been much work in the area of closed-loop
visually guided robotics ([2]-[7] are just a few of the papers
in the literature that present good overviews of visually
guided robotics research with the focus on closed loop
systems, or visual servoing). However, many current
industrial applications employ also calibrated systems – [8]-
[10].

In a visual servoing system, visual feedback is used to
minimize the image plane error of the manipulator’s actual
and desired positions. The vision system looks at the current
pose of the manipulator and estimates how its joints should
be moved so that the manipulator draws closer to the desired
pose. Typical tasks like tracking and positioning are
performed by reducing the image distance error between a
set of current and desired image features in the image plane.

In a calibrated system, the camera and robot kinematics
are calibrated relative to a fixed 3D frame. The classical
approach is to move the end-effector and observe/perceive
the movement of the eye: or AX =XB, where A is the robot
end-effector motion 2

1
t

t T , B the induced camera motion

2
1

c
c T ,and X is the hand-eye transformation c

tT to be
determined.

In this paper we present an approach that overcomes two
traditional problems that calibrated systems face: having to
manually re-calibrate over time, and relying on a calibrated
input scene.

Over time the precision of the robot/camera coordinate
system calibration degrades due to movement, vibrations and
other forces [11], and so the system must be periodically re-
calibrated. This is a potentially cumbersome task if a human
operator is responsible for performing this constant re-
calibration procedure. The approach presented here
automatically recovers the orientation of the camera frame
with respect to (w.r.t) the robot world frame. The algorithms
are designed for a monocular eye-in-hand system where the
robot controller is capable of rotating and translating the tool
frame w.r.t. the world frame. Since this method is
completely automated, there is no need for a human operator
to re-calibrate the system. The re-calibration procedure could
be run periodically and automatically by the system to ensure
that precise calibration is maintained.

A calibrated input image is usually required in order to
recover camera orientation. For example, [12] uses a
bimodal thresholding algorithm [13] and the movements of a
single blob on a solid colored background to recover camera
orientation, [13] uses several circles on a cube shaped
surface, and [14] uses the traditional checkerboard pattern.
The approach in this paper brings enhanced flexibility to the
input scene by using the optical flow of high interest points
in an uncalibrated scene to recover camera orientation.
Although a precisely calibrated image is not required, there
are some restrictions placed on the input scene which are
outlined in the next section.

In a nutshell, the approach employs three iterative
processes, each of which can be described as follows. An
image is captured, the end-effector is translated in a specific
direction, and a second image is then captured. The
correspondences of high interest points (corner points) from
the first image is found in the second image. Based on the
actual movements of the points and the known desired
movements, the end-effector is incrementally rotated about a
specific axis. This process is repeated until the actual
movement equals the desired movement.

The remainder of this paper is organized as follows. In the
following section we list assumptions about the robot’s work

Robotic Eye-in-hand Calibration in an Uncalibrated Environment

Sebastian van Delden and Frank Hardy
Division of Mathematics and Computer Science

University of South Carolina Upstate
Spartanburg, SC 29303

{svandelden, flhardy}@uscupstate.edu

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 6 67ISSN: 1690-4524

cell environment and also describe the initializations that are
required for the algorithms to function properly. The control
and vision algorithms are presented in sections III and IV,
respectively. In section V, we present some experimental
results and section VI offers some concluding remarks and
future work.

II. INITIAL SETUP
In order for the algorithms in the following sections to
properly converge, the following assumptions and
initializations are required:

 Although a precisely calibrated image is not required,

there cannot be moving objects in the scene and there
must be high interest points (we used corner points)
somewhere in the input scene. For example, an input
scene of a solid color wall, floor or table will not contain
high interest points. Figure 1 depicts an example input
scene that is used in our implementation. The camera is
looking at an un-calibrated scene of randomly placed
shapes and objects.

 The manipulator must be able to translate and rotate its
tool frame {T} w.r.t. its world frame {W}. As the
location of the tool flange changes in time, the
transformation (W

TT) between points in {T} and {W} is
automatically maintained internally by the robot
controller.

 The camera must be mounted to the end effector. The
pose of the camera frame {C} is not known w.r.t. {T} or
{W}.

 A rough alignment of the {C} w.r.t. {W} must be initially
determined. The closest axis XW, YW, and ZW in {W}
(within 45o or -45o) must be mapped to XC, YC, and ZC in
{C}. For example, +XC is within 45o or -45o to –YW, +YC
is within 45o or -45o to –XW, and +ZC is within 45o or -
45o to –ZW. This could be done manually, but section II.A
describes an algorithm that automates this initialization
process.

Fig. 1. An example configuration of the robot and camera. The camera is
looking at an uncalibrated scene of random shapes and objects.

A Initial Rough Alignment

An initial rough alignment of the robot world {W} and
camera frame {C} axes must be determined so that an
approximate correlation between movements in the robot
world frame and the interest points can be established.
Figure 2 depicts an initial rough alignment that was used in
one of our experiments.

Fig 2. An example initial alignment of camera and robot frames. The unknown
angle differences are recovered by the algorithms in the following sections.

The initial axis correlations are recovered by moving the
end-effector (and thus the camera) along each of the robot’s
world axes and observing the greatest interest point change
in the camera coordinate system. For example, in Figure 2, a
translation of the end-effector in +YW resulted in maximum
interest point movement along +XC, which would imply that
+YW is most aligned with –XC.

The initial alignment is determined as follows:

- Translate some distance in +XW., +YW., and +ZW.

o The distance is arbitrary, but the high interest
points should not move out of the FOV of the
camera.

- Compute high interest point correspondence movement
in XC and YC after each translation.

o Each translations results in XC and YC high
interest point movements (six values in total).

- The top two high interest point movements in XC and YC
indicate the alignment of two of the robot axes, and the
third alignment can then be automatically determined.

We will refer to this initial alignment later by means of a
MAPPING() function, where, for example, MAPPING(XC)
corresponds to the robot world axis that is most closely
aligned with the camera’s X axis.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 668 ISSN: 1690-4524

III. MANIPULATOR CONTROL ALGORITHMS
The vision algorithms communicate with the manipulator

control algorithms by sending a three tuple of information
that indicates what type of incremental movement should be
made by the end-effector: ({rotation, translation}, {XW, YW,
ZW axis, {positive or negative decimal number}). The
positive or negative decimal number indicates the direction
of the translation or rotation, and also how many mm or
degrees should be moved. Only incremental movements are
made until the camera and robot world frames are aligned,
avoiding the need to determine a mm per pixel relationship
which would be work cell specific.

The algorithm is summarized below in a V+ type syntax
which is used by Stäubli RX series manipulators.

WHILE (NOT ALIGNED) DO

(TYPE,AXIS,VALUE) THREE TUPLE

CUR_POS CURRENT END-EFFECTOR POSITION

(CUR_X,CUR_Y,CUR_Z,
CUR_YAW,CUR_PITCH,CUR_ROLL) DECOMPOSE(CUR_POS)

IF (TYPE == TRANSLATE) THEN
 IF (AXIS == X) THEN
 MOVE TRANS(VALUE,0,0,0,0,0):CUR_POS
 END
 ELSE IF (AXIS == Y) THEN
 MOVE TRANS(0,VALUE,0,0,0,0):CUR_POS
 END
 ELSE (IF AXIS == Z) THEN
 MOVE TRANS(0,0,VALUE,0,0,0):CUR_POS
 END
END

IF (TYPE == ROTATE) THEN
 IF (AXIS == X) THEN
 MOVE TRANS(CUR_X,CUR_Y,CUR_Z):RX(VALUE):

TRANS(0,0,0,CUR_YAW,CUR_PITCH,CUR_ROLL)
 END
 IF (AXIS == Y) THEN
 MOVE TRANS(CUR_X,CUR_Y,CUR_Z):RY(VALUE):

 TRANS(0,0,0,CUR_YAW,CUR_PITCH,CUR_ROLL)
 END
 IF (AXIS == Z) THEN
 MOVE TRANS(CUR_X,CUR_Y,CUR_Z):RZ(VALUE):

 TRANS(0,0,0,CUR_YAW,CUR_PITCH,CUR_ROLL)
 END
END

END

The control algorithm receives the three tuple of
information and makes the movement relative to the current
location of its end-effector. Each time a movement is made,
the location of the end-effector must be updated.
Communication and movement must be synchronized so that
the robot completes its current motion before the vision
algorithms compute the next motion.

The DECOMPOSE function recovers the X, Y, Z, Yaw,

Pitch, and Roll values of CUR_POS, the current location of
the end-effector. The TRANS(X, Y, Z, Yaw, Pitch, Roll)
function returns a transformation created from its
parameters. The RX(p), RY(p),and RZ(p) functions returns
pure rotation transformations of p degrees around the world
X, Y, and Z axes, respectively. A colon denotes
transformation matrix multiplication.

Notice for the rotations portion of the algorithm, that a
pure translation transformation is first created from the end-
effector’s X, Y, and Z values. The yaw, pitch and roll values
of this transformation are equal to the world frame. This
transformation is then multiplied by a pure rotation
transformation around the desired world axis. Finally, the
result is multiplied by a pure rotation transformation created
from the original Yaw, Pitch and Roll from CUR_POS. This
ordering is essential for rotating the end-effector around
{W} and not {T}. Using the X, Y, and Z components from
CUR_POS ensures that the rotation is made from a point
close to the camera which will prevent a large end-effector
movement that would move most high interest points
identified in the first image out of the camera’s FOV.

IV. VISION ALGORITHMS

A High Interest Points and Correspondences

We implemented a traditional approach to detecting high
interest points, the Moravec operator [16]. This operator
detects corner points as high interest points by observing the
intensity variation in every direction - horizontal, vertical,
left diagonal and right diagonal. The variance is calculated
over a nxn search window where n is a positive odd integer.
The sums of squares of differences of pixels adjacent to each
other in each of the four directions is calculated and the
minimum value is returned.

The non-maximal suppression technique that we used to
identify local maxima is to choose high interest points as
those image locations with normalized values above 0.9.
Figure 3 shows a test image in which high interest points
have been identified using this process. The image features
an uncalibrated, oddly shaped object that would deliver good
high interest points.

We used a 7x7 matching window in our experiments since
the Moravec operator is more sensitive to noisy data in very
small windows. Also, because the Moravec operator is
sensitive to noise, we first smooth the input images using a
median filter. A median filter replaces the center pixel of the
window with the median value in the window and is
implemented using a quicksort approach which usually finds
the median value without having to sort all values in the
window [13].

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 6 69ISSN: 1690-4524

Fig 3. An example test image where the Moravec operator has identified high
interest corner points.

Each high interest point in the first image is searched for in
the second image which has also been smoothed. The
location of the best match of each interest point is
determined by using the sum of squared differences. Figure 4
shows a second test image in which the camera has moved
and the correspondences and movements of the interest
points are overlaid.

Fig 4. A second example test image in which the camera has moved and the
correspondences and movements of the interest points are drawn on top it.

Because of lens distortion issues and the possibility of
interest points moving out of the field of view of the camera,
we do not consider high interest points close to outer edges
of the image (outer 20% of pixels).

B Orientation Recovery

We use a sequence of three iterative processes to recover the
camera’s orientation. In each process:

 An image is taken
 The camera is translated along one of the robot’s

world axes
 A second image is taken
 High interest points are found in the first image and

their correspondences found in the second image.

 Based on the actual movement of the interest points,
small rotations around the robot world axes are made
until the actual movements equal the desired
movements.

The below ordering of the translations and rotations is not
necessarily required as long as a sequence of three Euler
angle rotations is used to recover the three angles.
 Desired interest point movement is very intuitive. If the
camera and robot axes are perfectly aligned, then:

 A translation along MAPPING (XC) would result in
perfect horizontal interest point movements in the
image.

 A translation along MAPPING (YC) would result in
perfect vertical interest point movements in the
image.

 A translation along MAPPING (ZC) would result in
interest point movements whose corresponding lines
extend through the center of the image.

In our system, the sequence of three iterative steps is
arranged as follows:

- First, translate back and forth along MAPPING(XC),

note the movement of the interest points, and then
incrementally rotate around MAPPING(ZC) until the
difference of the row values of the correspondences is
minimized.

o This aligns XC to the plane created by
MAPPING(XC) and MAPPING(ZC) axes.

- Second, translate back and forth along MAPPING(YC)
direction, note the movement of the interest points, and
then incrementally rotate around MAPPING(XC) until
the difference in the column values of the
correspondences is minimized.

o This aligns YC perfectly with MAPPING(YC).
- Third, translate back and forth along MAPPING(ZC),

note the movement of the blob, and then incrementally
rotate around MAPPING(YC) until the difference
between the line that extends through the
correspondences and the center of the image is
minimized.

o This results in all three camera axes being
aligned with their corresponding world axes.

The distance to be translated in each step is an arbitrary
length in millimeters that must be small enough to prevent
the high interest points around the center of the image to
move outside of the camera’s FOV. The incremental rotation
value should be small. In our experiments it was set at 1o,

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 670 ISSN: 1690-4524

but using a much smaller rotational amount would not have
an adverse affect of system. A positive or negative rotation is
made if the location of the actual column/row
correspondence value is greater than or less than the desired
value, respectively.

V. EXPERIMENTAL RESULTS
The system has been implemented on a Stäubli RX60 robotic
manipulator which is controlled by a CS7B controller
running the V+ operating system and programming
language. The vision algorithms are written in Java and use
the Java Media Framework (JMF) API to communicate with
an off-the-shelf Logitech USB camera. We have been
choosing random starting configurations and then executing
the algorithms. Initial results show that the algorithms
converge for the test cases as long as the scene contained
high interest points whose correspondences were correctly
found in the image pairs. The rotation algorithms iteratively
recover the unknown angles in a linear fashion, so
convergence speed of the algorithm is linear and varied
based on the size of the angles. A typical example execution
of the first alignment step is carefully outlined below. The
second and third steps are similar and will not be further
presented here.
 Figure 5 shows an example input scene taken initially
before the orientation recovery algorithms are executed.
Notice that the uncalibrated scene contains several arbitrary
objects lying in random. This is the second image taken after
the robot has translated in MAPPING(XC). The movement of
the strongest high interest points (normalized value > 0.9)
from the previous image are overlaid on this image.

Fig. 5 Example initial input scene of random objects with the movements of
strong high interest points overlaid.

From this image, it is obvious that MAPPING(XC) is not
aligned with XC, so a small rotation is made around
MAPPING(XZ) and the process is repeated until the high

interest points make a perfectly horizontal movement.
 Figure 6 show the same scene after at the eleventh
iteration of this process. This screen shot was chosen because
a completely incorrect correspondence of a high interest
point was calculated which resulted in an incorrect rotational
value. The algorithm converges as long as correspondences
for the high interest points are correctly determine for the
majority of input image pairs. An occasional incorrect match
as shown in Figure 6 can sometimes result in a rotational
value opposite to the desired rotational value (which
happened in iteration eleven), reducing convergence speed of
the algorithm. If the majority of correspondences are
incorrect, the algorithm will not converge.

Fig. 6 Example screenshot at the eleventh iteration of the algorithm which
contains an incorrect interest point correspondence.

Finally, Figure 7 shows movement of the interest points after
23 iterations. The algorithm has converged and movement of
high interest points are perfectly horizontal which indicates
XC is aligned with the plane created by MAPPING(XC) and
MAPPING(XZ).

Fig. 7 Example screenshot at the twenty third iteration of the algorithm which
shows perfect horizontal movement of the interest points which causes the
algorithm to terminate.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 6 71ISSN: 1690-4524

Figure 8 plots the row error of the correspondences during
the execution of the algorithm. The somewhat jagged nature
of the plot is expected due to slightly incorrect
correspondence matches. At iterations 11 and 13, incorrect
correspondences causes the error distance to flip signs which
delayed the convergence of the algorithm.

 Fig. 8 Plot of row error distances from interest point correspondences.

A 19o angle offset between MAPPING(XC) and XC was
correctly recovered by the algorithm after 23 iterations. The
algorithm converges linearly, but needed an additional four
iterations: two incorrect rotations were made which then
required an additional two correct rotations to compensate
for these erroneous movements.

VI. CONCLUSIONS AND FUTURE WORK
The optical flow of high interest points in an uncalibrated
input scene can be used to iteratively recover the camera
orientation of an eye-in-hand robotic manipulator. The
algorithms could be periodically executed by the manipulator
to maintain precise calibration over time.

To recover translation offsets of the camera’s coordinate
system, we are implementing the depth extraction algorithms
in [15] and will also try to improve on the accuracy of that
work. We are also implementing various corner point
detection approaches [18] to determine which technique
yields the best results for our application.

ACKNOWLEDGMENT
The Stäubli Corporation generously donated six RX60
manipulators and a RS20 manipulator to our institution, and
also provided the Stäubli Robotics Studio software package
to us which was used to create the 3D figures in this paper.
We would like to express our sincere thanks to the Stäubli
Corporation for their continued support of undergraduate
research at our institution.

REFERENCES
[1] P. Sanz, A. Requena, J. Inesta, and A. Del Pobil. “Grasping the not-so-

obvious: vision-based object handling for industrial applications,” in
IEEE Robotics & Automation Magazine, vol. 12(3), pp. 44-52, 2005.

[2] D. Kragic. “Visual servoing for manipulation: robustness and integration
issues,” Ph.D. Thesis, Computational Vision and Active Perception
Laboratory (CVAP), Royal Institute of Technology, Stockholm, Sweden,
2001.

[3] D. Kragic and H. Christensen. “Robust visual servoing,” The
International Journal of Robotics Research, vol. 22(10-11), pp. 923-
939, 2003.

[4] K. Hashimoto. “A review on vision-based control of robot manipulators,”
in Advanced Robotics, vol. 17(10), pp. 969-991, 2003.

[5] J. A. Piepmeier, and H. Lipkin. “Uncalibrated Eye-in-Hand Visual
Servoing,” in the International Journal of Robotics Research, vol.
22(10-11), pp. 805-819, 2003.

[6] S. Hutchinson, G. Hager and P. Corke. “A tutorial on visual servo
control,” in IEEE Transaction on Robotics and Automation, vol. 12(5),
pp. 651-670, 1996.

[7] P. Corke. “Visual control of robot manipulators – a review,” in Visual
Servoing, vol. 7 of Robotics and Automated Systems, pp. 1-31, World
Scientific, 1993.

[8] K. H. Strobl and G. Hirzinger. “Optimal hand-eye calibration,” in Proc.
of the IEEE/RSJ International Conference of Intelligent Robots and
Systems, Bejing China, 2006.

[9] H. Malm and A. Heyden. “Extensions of plane-based calibration to the
case of translational motion in robot vision sensing,” IEEE Transaction
on Robotics, vol. 22(2), 2006

[10] S. Remy, M. Dhome, J. M. Lavest, and N. Daucher. “Hand-eye
calibration,” in Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Grenoble, France, pp. 1057-1065, 1997.

[11] M. Salinger, “Point-and-click camera-space manipulation, mobile
camera-space manipulation, and some fundamental issues regarding the
control of robots using vision,” Ph.D. Dissertation. University of Notre
Dame, 1999.

[12] S. van Delden, R. Farr, and S. Hensley. “An Automated Camera
Orientation Recovery Algorithm for an Eye-in-Hand Robotic
Manipulator,” in Proc. of the 5th IEEE International Conference on
Robotics and Sensor Environments, Ottawa, Canada, pp. 1-6, 2007.

[13] L. G. Shapiro and G. C. Stockman. “Computer vision,” Prentice Hall,
2001.

[14] J. Heikkilä, “Geometric Camera Calibration Using Circular Control
Points”, in the IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22(10), pp. 1066-1077, 2000.

[15] R. Tsai, “A Versatile Camera Calibration Technique for a High-Accuracy
3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and
Lenses,” in the IEEE Journal of Robotics and Automation, vol. RA-3(4),
1987.

[16] H. Moravec. “Visual mapping by a robot rover,” In Proc. of the 6th
International Joint Conference on Artificial Intelligence, pp. 598-600,
1979.

[17] D. Perrin, C. Smith, and N. Papanikolopoulos. “Depth extraction for
contours by monocular eye-in-hand systems,” in Proc. of the 8th IEEE
Mediterranean Conference on Control and Automation, Rio, Greece,
2000.

[18] C. Schmid, R. Mohr, and C. Bauckhage. “Evaluation of Interest Point
Detectors,” in the International Journal of Computer Vision, Springer
Netherlands, vol. 37(2), pp. 151-172, 2000.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 672 ISSN: 1690-4524

	QS175IL

