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ABSTRACT

The Cimmino algorithm is an iterative projection
method for finding almost common points of measur-
able families of closed convex sets in a Hilbert space. It
produces weak approximations of solutions for Fred-
holm equations of the first kind provided that solu-
tions exist. We obtain an existence criterion for so-
lutions of a linear moment of problem considered as
Fredholm equation of the first kind and show that if
this problems has a solution, then the Cimmino algo-
rithm generate norm approximations of such solutions.

Keywords: almost common point, Cimmino type al-
gorithm, Fredholm equation of the first kind, discrete
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tor, Gram matrix.

1. PROBLEM STATEMENT AND MAIN
RESULTS

Let X be a separable real or complex Hilbert space
with inner product 〈·, ·〉 and norm ‖·‖. Let (Ω,A, µ)
be a complete probability space and let {Cω}ω∈Ω

be a family of nonempty closed convex subsets of
the Hilbert space X such that the point-to-set map-
ping ω → Cω is measurable. We say that the fam-
ily {Cω}ω∈Ω is square-integrable if it has a square-
integrable selector, that is, if there exists a measurable
function ξ : Ω → X such that ‖ξ(·)‖2 is integrable and
ξ(ω) ∈ Cω for µ-almost all ω ∈ Ω. In this case, for
each x ∈ X, the function ω → ‖Pωx‖2 , where Pω

denotes the metric projection onto the set Cω, is inte-
grable (see [5, Chapter 2]).

Consider the operator P : X → X given by

Px =
∫

Ω

(Pωx)dµ(ω), (1)

Definition 1 The sequence
{
xk

}
k∈N ⊂ X such that

x0 ∈ X and xk+1 = Pxk, ∀k ∈ N (2)

is called an orbit of the operator P.

Roughly speaking, the investigation o fthe conver-
hence of the iterations (2) is thew implementation of
wel-known Cimmino algorithm [1], [2], [6], [7]

Let the function g : X → [0,∞) be given by

g(x) =
∫

Ω

‖Pωx− x‖2 dµ(ω) (3)

The function g is well-defined and finite everywhere.

Definition 2 The set

C := {x ∈ X : x ∈ Cω, µ-a.e.} . (4)

is called the set of µ-almost common points of the sets
Cω.

Clearly, this set is convex and closed.
Let {Cω}ω∈Ω be a square-integrable family of

nonempty, closed, convex subsets of X.
The following theorems and corollaries have been

proven in [4].

Theorem 3 (A) The next five conditions are equiva-
lent:

(i) The set Arg min g of (global) minimizers of the
function g is nonempty;

(ii) The set Fix P of fixed points of P is nonempty;
(iii) All orbits

{
xk

}
k∈N of P converge weakly to

points in Arg min g;
(iv) All orbits

{
xk

}
k∈N of P are bounded;

(v) The operator P has a bounded orbit
{
xk

}
k∈N .

(B) If
{
xk

}
k∈N is a bounded orbit of P , then the weak

limit z = w-limk→∞ xk exists and the following con-
ditions are satisfied:

(vii) The sequence
{
g(xk)

}
k∈N converges to g(z) =

minx∈X g(x);
(viii) If minx∈X g(x) = 0, then z ∈ C,i.e. the set

C is nonempty.
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(C) If the set C of µ-almost common points of Cω is
nonempty, then the conditions above are also equiva-
lent to the following one:

(vi) All the orbits
{
xk

}
k∈N of P converge weakly to

points in C.

(D) If Arg min g (= Fix P ) has nonempty interior,
then the any orbit

{
xk

}
k∈N of P converges strongly

to a point in Arg min g. In particular, if C has
nonempty interior, then any orbit

{
xk

}
k∈N of P con-

verges strongly to a point in C.

Suppose that the functions K : Ω → X and b : Ω →
R (or C) are measurable, K(ω) 6= 0 for µ-almost all
ω ∈ Ω, and that the function ω → |b(ω)| / ‖K(ω)‖ is
µ-square integrable, that is, the next integral exists
and ∫

Ω

|b(ω)|2
‖K(ω)‖2 dµ(ω) < ∞.

Consider the Fredholm equation of the first kind in
the form

〈K (ω) , x〉 = b (ω) a.e.on ω ∈ Ω. (5)

Obviously the set of solutions for equation (5) is the
set of µ-almost common points of the sets Cω,defined
by

Cω = {x ∈ X : 〈K (ω) , x〉 = b (ω)} .

Corollary 4 The following statements are true:
(i) The point-to-set mapping ω → Cω is measurable

and has a µ-square integrable selector;
(ii) The operator P : X → X given by

Px = x +
∫

Ω

b(ω)− 〈K(ω), x〉
‖K(ω)‖2 K(ω)dµ(ω), (6)

as well as the function

g(x) =
∫

Ω

|b(ω)− 〈K(ω), x〉|2
‖K(ω)‖2 dµ(ω), (7)

are well-defined;
(iii) The equation (5) has solution if and only if

there exists a bounded orbit
{
xk

}
k∈N of the operator

P defined by (6) such that

lim
k→∞

g(xk) = 0. (8)

(iv) If the equation (5) has solution, then any orbit{
xk

}
k∈N of P converges weakly to a solution of (5).

(v) If the function g is coercive (in the sense that
lim‖x‖→∞ g(x) = +∞), then all orbits of P converge
weakly to fixed points of P.

(vi) If g is coercive and there exists an orbit{
xk

}
k∈N of P such that (8) holds, then (5) has solu-

tions and any orbit of P converges weakly to a solution
of (5).

Corollary 4 shows that by establishing criteria for
the coercivity of g we will obtain sufficient conditions
for the weak convergence of the orbits of P. To this
end, we consider the linear, bounded, self-adjoint, pos-
itive semi-definite operator M : X → X given by

Mx =
∫

Ω

〈x,K(ω)〉
‖K(ω)‖2 K(ω)dµ (ω) . (9)

Note that the function M is well-defined because
∫

Ω

∥∥∥∥∥
〈x,K(ω)〉
‖K(ω)‖2 K(ω)

∥∥∥∥∥ dµ (ω) ≤ ‖x‖ , ∀x ∈ X.

We denote by σM the spectrum of M (see [11, p. 371]).
This is a closed set of real numbers (see, for instance,
[11, Theorems 9.2.1, 9.2.2, 9.2.3 and 10.4.2]) contained
in the closed interval [α(M), β(M)] with

α(M) = inf
‖x‖=1

〈Mx, x〉 and β(M) = sup
‖x‖=1

〈Mx, x〉 ,
(10)

having the properties that α(M), β(M) ∈ σM and

‖M‖ = β(M) = sup
‖x‖=1

〈Mx, x〉 . (11)

Since M is positive semi-definite, it follows from (10)
that α(M) ≥ 0. Therefore, if M has an eigenvalue
λ 6= 0, then we also have 0 < λ ≤ β(M) = ‖M‖
showing that M is not identically zero.

Theorem 5 If the linear operator M has α(M) > 0,
then the function g defined by (7) is coercive. More-
over, in these circumstances, if

{
xk

}
k∈N is an orbit of

the operator P defined by (6), then
{
xk

}
k∈N is weakly

convergent, its weak limit z := w-limk→∞ xk is a fixed
point of P and a minimizer of g, limk→∞ g(xk) =
g(z), and one and only one of the following statements
is true:

(i) limk→∞ g(xk) = 0 in which case problem (5)
has solutions and all orbits of P converge strongly to
solutions of (5);

(ii) limk→∞ g(xk) 6= 0 in which case problem (5)
has not solution.

2. DISCRETE LINEAR MOMENT
PROBLEM

In this section we consider the set Ω := N. The set
N is a complete probability space in which all subsets
of N are measurable with the probabilistic measure
defined by

µ(A) =
∑

j∈A

µj , (12)

where the sequence {µj}k∈N is such that
∑∞

j=0 µj = 1.
Discrete linear moment problems (DLMP for short)

is formulated as follows:
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Definition 6 Let {Kj}j∈N ⊂ X\{0} and let {bj}j∈N
be a scalar sequence. Find x ∈ X such that

〈Kj , x〉 = bj , ∀j ∈ N. (13)

It easily to see, that the problem (13) is a partic-
ular version of the Fredholm equation (5) with the
functions K(j) = Kj and b(j) = bj for which all the
conditions of Theorem 5 are satisfied. In this case we
have

Px = x +
∞∑

j=0

(bj − 〈Kj , x〉)Kj
µj

‖Kj‖2
, (14)

g(x) =
∞∑

j=0

|bj − 〈Kj , x〉|2 µj

‖Kj‖2
, (15)

and

Mx =
∞∑

j=0

〈x,Kj〉Kj
µj

‖Kj‖2
, (16)

where all the series are convergent.
Denote by Gn the Gram matrix of the first n + 1

vectors √µj
Kj

‖Kj‖ , j = 0, 1, ..., n [8]. This matrix is
positive Hermitian and, thus, it is real-valued and has
real non-negative eigenvalues only (cf. [11, p. 469])
Denote by λn the minimal eigenvalue of the matrix
Gn. It is well-known that

λn := inf
{
w̄GnwT : w ∈ Cn+1, w̄ · wT = 1

}
, (17)

so λn ≥ 0, n = 1, 2, ...,and the sequence {λn}n∈N is
nonincreasing, hence there exists λ∗ := lim

n→∞
λn ≥ 0.

Theorem 7 If

∞∑

j=0

|bj |2 µj

‖Kj‖2
< +∞ (18)

and
lim

j→∞
λj > 0, (19)

then the DLMP has a solution and any orbit
{
xk

}
k∈N

of P converges strongly to a solution of (13).

In accordance with Corollary 4 the implementation
of the Cimmino algorithm to the discrete linear mo-
ment problems requires precise computation of the it-
erates xk given by

xk+1 = xk +
∞∑

j=0

(
bj −

〈
Kj , x

k
〉)

Kj
µj

‖Kj‖2
, (20)

and this is rather difficult.. However it is shown that,
if conditions 18 and 19 hold, then the Cimmino algo-
rithm applied to the DLMP produces strong approxi-
mations of solutions to the DLMP by computing finite
partial sums of the series 20.

It is obvious that if the sequences
{
|bj |2

}
j∈N

and
{
‖Kj‖2

}
j∈N

are summable one can denote

µk :=
‖Kk‖2
∞∑

j=0

‖Kj‖2
. (21)

Hence the following corollary holds.

Corollary 8 Let
∞∑

j=1

‖Kj‖2 < ∞.If

∞∑

j=0

|bj |2 < +∞ (22)

and
lim

j→∞
λj > 0,

then the DLMP has a solution and any orbit
{
xk

}
k∈N

of P converges strongly to a solution of (13).

Theorem 7 indicates a method of solving the DLMP
by computing a large number of iterates xk of an arbi-
trary orbit of P. An intrinsic difficulty of this method
is that it requires precise computation of the iterates
xk given by the rule

xk+1 = xk +
∞∑

j=0

µj

bj −
〈
Kj , x

k
〉

‖Kj‖2
Kj , (23)

Obviously, effectively computing the infinite sum oc-
curring in (23) is rather difficult. This leads to the
question whether Theorem 7 remains true if one re-
places the iterates xk given by (23) by ”inexact” iter-
ates yk of the form

yk+1 = yk +
n(k)∑

j=0

µj

bj −
〈
Kj , y

k
〉

‖Kj‖2
Kj , (24)

where, for each k ∈ N, the nonnegative integer n(k) is
sufficiently large. The following result shows that this
is indeed the case when the sequence

{
|bj |
Kj

}
j∈N

has a

known positive upper bound.

Corollary 9 Let conditions of Theorem 7 hold, and
let γ be a positive upper bound of the sequence
{|bj | / ‖Kj‖}j∈N . If, for a summable sequence {εj}j∈N
of positive real numbers, and for each k ∈ N, the num-
ber n(k) is chosen such that

1−
n(k)∑

j=0

µj ≤ εk

γ + ‖yk‖ , (25)

then any sequence
{
yk

}
k∈N given by (24) converges

strongly to a solution of the discrete linear moment
problem (13).
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3. CONCLUSION AND APPLICATIONS

Conditions for the existence of solution for linear
moment problem have been established and the it-
erative algorithm approximating a solution has been
constracted.The moment problem considered in this
paper has been generated by various problems of ge-
ometry, physics, mechanics [16]. One of important ap-
plications of linear moment problem in mathematics
are the interpolation theory and the theory of Dirichle
series [9],[12], optimal control theory [3], [10], control-
lability and observability theory for distributed sys-
tems [13], [14], [15].
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