
Automating Open Source Software License Information

Generation in Software Projects

Sergius DYCK, Daniel HAFERKORN, Christian KERTH and André SCHOEBEL

 Fraunhofer IOSB, Karlsruhe, Germany

ABSTRACT

This publication deals with Open Source Software (OSS)

compliance. In a previous publication [1], we presented an

organizational-technical concept for ensuring basic OSS

compliance. Based on this concept, we now address further

aspects that are essential to OSS compliance. Our focus is on

methods for avoiding license infringements by automated

generation of OSS notice lists.

We describe means to manage OSS license (OSSL)

information of directly and indirectly used OSS. We use

methods for establishing a common domain language based

on a Domain-Driven Design (DDD) approach that leads to a

better communication between experts from different fields,

e.g., technical and domain experts, when discussing OSS

compliance and developing our solutions. Furthermore, we

present already existing Maven tools as well as self-

developed Java tools, which make it possible to store the

information that has been gained during the OSS compliance

process in a structured way. With the aid of said tools, this

information can then be used to create the lists of used OSS

suitable for internal audits, external software deployments

and software deliveries automatically to reduce manual effort

and risk of errors.

Keywords: Open Source Software, Open Source

Compliance, License Information Management, Notice

Obligation, Document Generation, Software Engineering,

Maven.

1. INTRODUCTION

Today’s software projects usually make use of various third

party libraries to reduce both considerable engineering effort

as well as development time. Depending on the project, the

software may also include many third party libraries released

under possibly different OSSL. Using OSS without

considering its license conditions can lead to various pitfalls.

In particular, legal licensing conditions must be complied

with when using OSS. Therefore, for each OSS that is newly

introduced in software projects it has to be checked that its

OSSL can be complied with before it can be used. License

infringements are attributable to the organization responsible

for the inclusion of OSS into their projects and may entail

significant consequences in the event of a legal dispute, e.g.,

in terms of monetary cost or reputation. The burden of proof

is seen on the side of said organization. Thus, it is crucial for

organizations developing software to keep the risk of

accidental license infringements as low as possible. This

practice is often associated with the term compliance, or more

specific, Open Source compliance. In this paper, we will use

the term OSS compliance to address OSS specifically.

This paper outlines our work that resulted in an ubiquitous

language, a Maven [2] plugin for automated creation of a list

of used OSS and the drawn conclusions.

1.1 OSS Compliance
As [3] points out, OSS compliance can be furthered by

incorporating “compliance process and policies, checkpoints

and activities as part of existing software development

processes”. This includes activities to monitor what OSS is

being used in which software projects. A basic and direct

approach would be to perform these activities manually.

However, manually tracking all used OSS, the accompanying

OSSL as well as the results of e.g. performed license terms

analysis is very time consuming and error-prone. In [1], we

discussed OSS tools, such as FOSSology or Open Source

License Checker, that can help tracking the details of used

OSS, and presented a process for managing license texts when

introducing new OSS to a software project in such a way that

said texts can be prepared automatically when a software

release build is compiled.

When a software product is delivered to a customer, it is

usually required to include a complete list of all the OSS and

OSSL relevant to the software. Manually creating and

updating this list is also very time consuming and error-prone.

Some OSSL demand that certain conditions are to be met

when providing software that contains OSS licensed under

them. This includes for instance providing a disclaimer along

with the OSS, providing the source code of the OSS or a

special acknowledgement text. Complying with these

conditions without automated assistance can be seen as time

consuming and error-prone as well.

1.2 Hurdles in Practice
Ensuring OSS compliance is not only relevant with regard to

license conditions of directly used OSS, but also covers those

OSS, which directly used OSS depends on. Such

dependencies are called transitive dependencies. One basic

problem here is to find out whether a directly used OSS itself

uses other OSS and what OSS exactly is being used

transitively. Depending on the structure of a software project,

the toolchain used to build the software might already contain

tools to help solving this problem. Direct dependencies and

transitive dependencies may e.g. be visually represented as a

tree with the help of the toolchain. In Maven-based (Java)

projects, such a tree can be computed using a plugin that can

process the dependency information of the project

configuration, e.g., the so-called maven-dependency-plugin.

The applicable OSSL have to be determined for each node in

such a dependency tree. This might prove to be problematic

in some cases. One such case is given when contradicting

information about the license is given, scattered e.g. across

44 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 5 - YEAR 2018 ISSN: 1690-4524

different parts of the OSS documentation. For instance, the

deployable binary of an OSS might contain a reference to a

license ‘A’, but the project website for the OSS lists another

license ‘B’. A lot of investigational effort might be necessary

to resolve such contradictions. For such cases, in [1] we

devised an approach based on a prioritized list of possible

sources to check for license information: the binary of the

OSS, the project website, the source code, the project file (i.e.,

the project configuration file for Maven projects). In some

cases, it might even be impossible to resolve this

contradiction at all, e.g., for OSS that is not actively

maintained anymore. Additionally, if no particular license

information can be found in any of these sources, our

approach prohibits using the OSS at all, as the risk of an

accidental license infringement is considered as being too

high.

Within our own software projects, we identified several

libraries where it turned out to be rather difficult to determine

their actual license in the way described above. E.g., in one

case, not only had the maintainer changed due to the original

maintaining company having been bought by another

company, but also was the OSS not actively maintained

anymore and several of its components were now scattered

across various source code repositories. In addition, the state

of these repositories was not well documented, so the actual

version of the source code in each repository was unclear. For

cases such as this, a substantial degree of analysis might be

required to unravel this issue.

This remainder of this paper is structured as follows. Sec. 2

addresses already existing approaches for open source

compliance. In Sec. 3, we describe our approach using a

ubiquitous domain language and how we intend to automate

the generation of OSS lists. In Sec. 4, we describe how such

an implementation can be realized in practice using the OSS

tools Maven and Nexus [4] Repository. Finally, in Sec. 5, we

give a conclusion and indicate topics for further work.

2. STATE OF THE ART

There are various approaches towards a best practice for

reaching OSS compliance. One example is the guideline that

“Germany's digital association” Bitkom released [5]. It gives

an overview of several aspects of OSS and OSS compliance

with a focus on license management and traceability of

license interpretation. This guideline lacks both the

comprehensive overview and detailed steps; therefore, we

estimate it to be cumbersome to utilize.

On the other hand, [3] describes an end-to-end compliance

process that components containing OSS have to undergo

before receiving approval for distribution, using the term

“compliance due diligence process”. This end-to-end

compliance process consists of ten steps and according to the

document itself, “focuses on practical aspects of creating and

maintaining an open source compliance program”. The first

step addresses the identification of OSS. This can be done by

several methods, e.g., engineering staff informs the OSS

compliance team of the intent to use specific OSS in a specific

product or a product as a whole is audited to establish a

compliance baseline. The second step consists of scanning the

source code to discover matches with known OSS projects by

using automated analysis tools. The main outcome of this step

is a report identifying the origins and licenses of the OSS

source code. Any issues identified during the audit have to be

resolved in the third step by the appropriate engineering team.

In the fourth step, the interactions between the OSS and

proprietary code is analyzed to find out whether certain

licensing obligations extend from the OSS components to the

proprietary product. When all reviews have been completed,

usage of the specific component can be approved (step 5) by

the appropriate entity. After a software component has been

approved for usage in a product, the component is added to

the software inventory (step 6) that tracks OSS. Step 7

describes one of the key obligations of the compliance

process, the documentation obligation. According to [3], that

means that a product using OSS when distributed has to be

accompanied by:

• Information for the end user about how a copy of the

OSS source code can be obtained

• Acknowledgement statements about the used OSS

• All license agreements for the OSS included in the

product

Steps 8, 9 and 10 are dealing with distribution strategy of OSS

source code and proper implementation of the strategy.

The briefly described compliance process [3] is primarily

aimed at enterprises where larger teams and multiple software

components need to be managed. For this reason, the

individual steps are quite strongly formalized. For smaller

teams such as in our own environment, these steps need to be

adapted and refined. In our previous paper [1], we described

how we implemented a similar process after adapting it to the

scope of a scientific research institution with small

development teams. In this paper, we focus on management

of OSSL information and automated generation of OSS

notices.

3. OUR APPROACH

The proposed approach in the following consists of

establishing a common language by defining a domain model

and an automatic process based on the domain model.

3.1 Establishing a Common Language
As we delved into the details of OSS compliance, we found

that there are often misunderstandings between technical and

domain experts, as certain terms have different meanings in

different fields. We observed that experts were addressing the

same aspects using different terms, such as “third party

library”, “open source library” and “dependency”.

Furthermore, in several instances the same term was used

with different meanings by involved experts. For example,

one expert used the term “license” to designate the license text

accompanying a third party library, whereas another expert

used the term to speak about a certain type of license (e.g.,

“Apache software license 2.0” or “GNU Public License 2.0”).

Such ambiguity caused communication and common

documentation to be confusing and/or misleading. To avoid

these linguistic tripping hazards and to decrease their

potential risk of license infringements, it was necessary to

develop a common, ubiquitous language.

We used a Domain-Driven Design (DDD) approach as

described in [6] in order to both collect and structure the

collected or devised information. Starting with a “knowledge

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 5 - YEAR 2018 45

crunching” session with representatives of the development

team, participants having a focus on a legal perspective as

well as participants having a focus on the technical

development expressed their points of view to the other

participants. From this session, the participants were able to

derive common concepts, a common terminology, as well as

the boundaries and connections between their points of view.

These findings were documented and presented to the entire

team, and it was agreed to use them as the common,

ubiquitous language for future work. The domain model that

resulted from this work is described in the following section.

3.2 The Domain Model

The domain model that describes the ubiquitous language

consists of several so-called bounded contexts: the “third

party library” context, the “license information” context and

the “license type” context. Combining these contexts defines

our entire problem scope and gives a consistent description of

the applicable scopes.

 3.2.1 Overview: The main elements of the domain

model are the “third party libraries” element, “license types”

element, “license information” element and the “aggregated

license text” element.

The “third party library” element describes the actual

software binary that is usually accompanied by its source and

documentation when distributed by the original vendor.

The “license type” element describes the type of OSSL, e.g.,

“Apache Software License 2.0”, under which the vendor

provides his library. As a vendor can provide various parts of

the library under diverging license types, a 1:1 mapping

between the “third party library” element and a single “license

type” element in general does not suffice. Instead, there needs

to be a 1:N mapping.

To link the “third party library” element with the “license

type” elements it is provided under, the “license information”

element is used. The “license information” element contains

further information such as traceability rationale, internal

remarks and the references to the original location or source

that indicated the license type.

The aggregated license text is a technically required artifact

and represents the license texts of all the license types under

which a third party library is provided.

license

information

3rd party

library

1 1 license

type

1

aggregated

license text

1

1

Figure 1 – license information overview

 3.2.2 License Type: The license type acts as an

identifier and embodies the requirements imposed by the

vendor when for using a library, as well as the obligations that

the software developers have to comply with when using the

library in a software project.

Examples for obligations include:

• Providing a disclaimer

• Providing the source code of the library

• Withholding the source code of the library

• Performing no modification to the library

 3.2.3 License Information: A variety of

information is kept in the “license information” element. One

part is the linkage between the “third party library” element

and its “license types” element. Other parts are the traceability

rationale that allows other team members to verify the

information in the “license information” element and

“internal remarks” element manually.

license

information

3rd party

library

1 1

traceability

rationale

license

declaration

1 1..n

license

text

license

type

1 1

reference

aggregated

license text

library

designation

1

1

additional

information

internal

remark

0..1

0..1

Figure 2 – license information details

3.3 Design of the Automation Process

Using the agreed-upon domain model and terminology

enabled us to build upon the results described in our previous

publication [1]. Furthermore it allowed us to develop a

process for generating the desired list of used OSS that

involves the previously established repository structure for

storing license texts.

In our environment, we use mainly Java for software

development. Our software development projects are

managed by Maven. Artifacts such as third party

dependencies and OSS license texts are stored in the Nexus

repository. When releasing software, relevant artifacts such

as OSS source code and license texts are pulled from the

Nexus repository and provided together with our products. In

our opinion, the following design should be transferable to

other programming languages that use other artifact

repositories.

With the data model as the basis and the OSS documentation

as the goal, we more precisely specified the additional

information about every used OSS that needs to be stored in

order to generate documentation about the used OSS for

customers as well as for internal audits. As we already store

46 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 5 - YEAR 2018 ISSN: 1690-4524

the license texts in a repository, it became apparent to re-use

the same structure and tools to store this additional

information in the same way. For our software development

environment, this means using a software build repository

that can be accessed by Maven projects. In similar to the

license texts themselves being stored in parallel to the OSS

using the same Maven Group, Artifact and Version (GAV)

description as the OSS and the suffix “license” as a so-called

artifact classifier, we settled on using a separate JSON file

with an additional classifier to hold the additional license

information that we want to handle. Re-using the GAV

information of the OSS allows associating the additional

information, the OSS and the license file.

4. IMPLEMENTATION

Based on the approach described in the previous section we

developed a Maven plugin named osslist-maven-plugin

(OMP). The plugin takes relevant information from the

Maven repository during the software build process and

creates two lists of used OSS software: one for customer

deployment and one for internal usage.

 All the aspects described in section 3 are addressed by within

the OMP. The list for internal usage contains all documented

and stored OSS information about each OSS, whereas the list

intended for the customer contains a filtered view, without

internal notes, such as the source of the license text. The OMP

itself uses the maven-dependency-plugin to resolve the

dependency tree of a project. In order to dismiss internal and

third party dependencies that have not been released under

OSSL, a filter functionality following Maven best practices

has been implemented.

The OMP makes use of the existing Maven project

environment and infrastructure, such as Maven repositories

[7], which we were already using for developing our software.

The OMP was developed in accordance with the Maven

plugin developer guide [8].

4.1 Preconditions

A Maven project is defined by a project object model (POM)

[9]. To make use of the OMP and its functionality in a

software project, the OMP has to be included into the POM

of the project, enabling it to either be called as a separate goal

or integrated into the so-called lifecycle phase of Maven

projects using the execution-tag. The OMP may be

configured in more detail in the POM. In addition, it provides

a default configuration so that it can also be executed without

needing any explicit configuration. The available

configuration options are described below.

4.2 Functionality
In this sub-section, the three main functionalities of the OMP

are described. The first functionality is to resolve the

transitive dependencies of the Maven project in which the

OMP was executed and to collect necessary artifacts of the

retrieved dependencies from the repository. The second

functionality is to check and ensure that certain licensing

constraints given by the OSSL of a direct or a transitive OSS

are being complied with. The third functionality is to create

the described lists of used OSS. In the following, these three

functionalities are explained in more detail.

 4.2.1 Handling license information: Initially the

OMP resolves all the transitive dependencies given by the

POM of the Maven project in question, but ignoring

dependencies with scope ‘test’ and ‘provided’, by using the

maven-dependency-tree library and a scope artifact filter.

Note that the information about a dependency is stored as a

Maven artifact inside a dependency node, which represents

the dependency as a graph. After having created a graph of all

transitive dependencies, a pattern artifact filter is applied for

all dependencies for which no license information is needed,

e.g. internal libraries. This filter hides all dependencies in the

representation of the graph by matching their fully qualified

artifact name with the help of regular expressions.

The patterns of these regular expressions can be configured

via the plugin definition in the POM, between the

ignoreArtifact-tags. Note that dependencies of a hidden

dependency are still visible, which means that the pattern

artifact filter does not filter transitive dependencies. This

allows e.g. filtering dependencies for which no license

information is needed, such as internal libraries.

For each dependency remaining after filtering the graph,

exactly three artifacts are downloaded from the Maven

repositories. These are the OSS dependency used by the

project itself, e.g., the jar, the license text artifact containing

the text of the license and finally the license information

artifact containing additional information about the license.

Maven classifiers [9] are used to distinguish between the

various components of the same artifact information, such as

a binary and a source component. Here, the additional artifact

components are the license text file and the license

information file. The classifiers are ‘license’ for the license

text file and ‘licenseInformation’ for the license information

file.

The JSON format is used with a predefined structure for

specifying license information in a license information file.

The root of the JSON structure is an array of license

specification objects. These license specification objects

specify the name of a license type, the source of a license type

and the type of a license text source. The last three entries are

free text fields. The first field provides additional

information, such as disclaimers and acknowledgements

incurred in the licensing of a dependent artifact. The second

field holds the traceability justification, which contains

descriptions of where information about the license type and

license text was found. The last field is used for internal notes

and can be considered optional.

{

 "licenseInformation": [

 {

 "licenseTypeName": "JDOM License",

 "licenseTypeSource":

"http://www.jdom.org/docs/faq.html#a0030

(accessed 13.12.2017)",

 "licenseTextSource": "META-

INF/LICENSE.txt within binary jar"

 }],

 "additionalInformation": "This

software component uses this Open Source

Software developed by the JDOM Project

(http://www.jdom.org/)",

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 5 - YEAR 2018 47

 "traceabilityRationale": "see

licenseTypeSource and META-

INF/LICENSE.txt",

 "internalInformation": "This is an

example for internal information"

}

Listing 1: Example of a JSON file.

The JSON schema enforces some of the entries. The “license

type” name and source, as well as traceability rationale of an

OSS must be given. If the OMP cannot find these mandatory

entries, then its execution will be aborted.

Note that the OSS and the license information file must be

available in a Maven repository; otherwise the OMP also

aborts its execution.

Some OSSL contain clauses that make it necessary to include

a pre-formulated phrase of acknowledgement. We devised a

routine that checks the license information JSON files

containing certain OSSL types for also containing an

appropriate phrase as it is required e.g. by the “Indiana

University Extreme! Lab Software License 1.1.1” [10]. This

functionality has also been included directly into the OMP for

now. It is planned to move this functionality to a server-side

plugin of the Maven repository.

4.2.2 Checking and ensuring licensing
constraints: In the second stage the OMP checks rules that

apply to license types. If the rules are not satisfied, a message

describing the violation is printed out and the build process is

aborted. Some types of licenses have licensing constraints

such as not handing out the source code.

To achieve enforcing the rules, the OMP retrieves all used

license types based on the license information artifacts of all

used OSS. This list is then checked against an internal set of

rules for violations.

The OMP is extensible with regard to new license types and

their applicable rules.

 4.2.3 Creating list of used OSS: In the last stage,

the OMP creates documents based on the three artifacts

downloaded for each dependency. These documents are a

Comma Separated Value (CSV) file and an Office Open

XML (.xlsx) file, both containing the same information. The

latter is more user friendly as it provides a customized

representation.

The first column holds the Maven group id, the Maven artifact

id and the version of a dependency. The second column

provides an enumerated list of all license types. The third

column specifies the file that contains the license text of the

license types given in the second column. The fourth column

contains the additional information.

Furthermore, there are four optional columns, which are

employed for internal use only and may be enabled with the

enableInternalNotes-tag. These columns cover the internal

note, the traceability rationale and an enumerated list for the

license type source and license text source.

It is worth noting that the OMP should be set in the project

configuration to be executed before the assembly-maven-

plugin. This way the generated license overview can be added

to the deployable release ZIP as part of the execution of the

assembly-maven-plugin.

As a side note, during the development of the OMP, we

encountered an issue arising from incompatibilities between

the used software dependencies. Maven uses the eclipse

aether API [11] for repository tasks since version 3.1.0. As

the OMP also uses the eclipse aether API, it can only be used

with Maven versions 3.1.0 or higher. This issue was resolved

on our side by making the decision to upgrade all

development systems to a common lowest version of Maven.

5. CONCLUSION AND FURTHER WORK

5.1 Conclusion

In the beginning of our work described in this paper, we were

confronted with the manual task of creating documentation of

used OSS for software releases in an otherwise mostly

automated process. Due to our previous work with

automating aspects of OSS compliance, we had a foundation

upon which we were able to develop a management process

for license information and tool-supported automation of the

document creation. This solution provides the following

improvements and benefits.

5.1.1 Better understanding: Before the

implementation of the measures described in this paper, the

communication between team members in dealing with OSS

repeatedly resulted in misunderstandings. These

misunderstandings could be resolved with the help of the

developed domain model. The general understanding in the

team regarding OSS could be improved in this way. In

addition, new employees can now become familiar with the

material more quickly.

5.1.2 Higher efficiency: Previously, every release

of each software product required the manual creation and

maintenance of a list of used OSS. This meant that the entries

of the table had to be checked against the dependency tree.

With up to 100 OSS components used per product, this

required a considerable amount of time, because e.g. by

adding a new OSS to the product, numerous transitive

libraries had to be checked and manually entered into the

table. Checking the OSS and documenting the necessary

information is still done. However, this now has to be done

only once when the OSS is integrated into the software project

instead of every time during the release process. Especially

for patch releases that have to be delivered on short notice,

the new approach brings significant time advantages.

5.1.3 Better reusability: If a specific version of

OSS is checked when adding it to a software project for the

first time and the results are stored in the Maven repository,

they are available to all other projects from then on. Multiple

redundant analysis of the OSS is prevented in this way, which

leads to a uniform basis of information across all our projects.

5.1.4 Better traceability: At the time an OSS is

introduced to a project, finding the license information is

usually not a problem as the OSS is usually current and the

required information is maintained and readily available. The

situation is different with legacy OSS that was integrated in

the past. Understanding licensing entries for an OSS that are

somewhat older can prove to be extremely difficult, in rare

48 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 5 - YEAR 2018 ISSN: 1690-4524

cases even impossible. Introducing the mandatory field

"traceability rationale" used for internal use and the optional

field "internal information“ no longer causes these problems

and provide helpful information for audits.

5.1.5 Less error-prone: The previous manual

creation and maintenance of the OSS lists did not prevent

mistakes, e.g. an OSS that was no longer used had been

overlooked and was not deleted from the OSS list, or it could

be overlooked that the version of an already used and listed

OSS has changed. These errors can no longer occur using the

described approach, since OMP handles the information

about the OSS based on the project configuration. It also

informs the developer about any missing OSS information

and aborts the build process. Furthermore, it detects

violations of rules defined for license types.

5.2 Further Work

The existing solution is in active use by developers and fulfills

our immediate needs. In the future, we want to develop

additional processes and tools to automate the OSS

compliance process more and we also want to improve the

usability for the developers dealing with OSS and the

associated OSSL information.

5.2.1 Improve OSS compliance automation: The

following points have been planned to be addressed in the

future in order to reach a more robust OSS compliance:

• We want to introduce the usage of tools for

analyzing the source code of OSS, so that embedded

and shaded transitive OSS that has not been

declared can be detected.

• It is planned to use a “bill of material difference

tool” (BOM diff tool). Given the BOM for a product

version 1.1 and the BOM for the previous version,

e.g. 1.0, the tool computes the delta and present new

OSS added or retired in version 1.0. [12]

• The OSS Compliance process that we currently use

for OSS libraries shall be adapted to be used for

other free resources such as XML schemas or icon

and theme files as well.

5.2.2 Improve User Experience: We want to assist

the development team more in following the OSS compliance

process. To achieve this, we envision an OSS Compliance

Manager (OSSCM) tool that could contain the following

functionalities:

• Currently both the files that contain the license texts

and the JSON files need to be created with a text

editor and uploaded to the Maven repository by

hand. If there is an error found in one of these files,

the file has to be downloaded, deleted in the Maven

repository, corrected and uploaded again to the

Maven repository. This is also has to be done on all

local Maven repositories, e.g. on developer systems.

The OSSCM could simplify these activities by

providing a GUI to the user for creating and editing

the license texts and license information, including

synchronization with the Maven repository.

• A module of the OSSCM could display an overview

of used OSS of a software development project,

focusing on missing license texts, license

information and source code.

6. REFERENCES

[1] S. Dyck, D. Haferkorn, J. Sander, An organizational-

technical concept to deal with open source software

license terms, Proceedings of the 20th World Multi-

Conference on Systemics, Cybernetics and Informatics,

WMSCI 2016, July 5 - 8, 2016, Orlando, Florida, USA,

http://publica.

fraunhofer.de/dokumente/N-417588.html, (date

accessed: December 1, 2017)

[2] Apache Maven, https://maven.apache.org/, (date

accessed: February 13, 2018)

[3] I. Haddad, PhD, Open Source Compliance in the

Enterprise, The Linux Foundation, 2016,

http://www.ibrahimatlinux.

com/uploads/6/3/9/7/6397792/open_source_compliance_

in_the_enterprise_2016.pdf (date accessed February 6,

2018)

[4] Sonartype Nexus, https://www.sonatype.com/nexus-

repository-sonatype, (date accessed February 6, 2018)

[5] Open-Source-Software 2.0. Leitfaden, Bitkom e. V,

https://www.bitkom.org/noindex/Publikationen/2016/Lei

tfaden/Open-Source-Software-20/FirstSpirit-

1498131485664160229-OSS-Open-Source-Software.pdf

(date accessed February 6, 2018)

[6] E. J. Evans, Domain-Driven Design: Tackling

Complexity in the Heart of Software, Pearson

Professional, 2003

[7] Apache Maven – Introduction to Repositories,

https://maven.apache.org/guides/introduction/

introduction-to-repositories.html (date accessed February

6, 2018)

[8] Apache Maven – Plugin Developers Centre,

https://maven.apache.org/plugin-developers/index.html

(date accessed: February 6, 2018)

[9] Apache Maven – POM Reference,

https://maven.apache.org/pom.html (date accessed:

February 6, 2018)

[10] Oracle® VM – Licensing Information User Manual for

Oracle VM Manager Release 3.4,

https://docs.oracle.com/cd/E90714_01/E64079/html/vml

ic-license-indiana.html (date accessed: February 6, 2018)

[11] Using Aether in Maven Plugins,

https://wiki.eclipse.org/Aether/Using_Aether_in_Maven

_Plugins (date accessed: February 6, 2018)

[12] The Linux Foundation, Using Open Source Code,

 https://www.linuxfoundation.org/using-open-source-

code/ (date accessed: February 6, 2018)

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 5 - YEAR 2018 49

	SA117XZ18.pdf

