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ABSTRACT 

 
This research studies five characteristics of water quality 

using techniques of Statistical Quality Control as applied to 

actual 2014 data collected for a water treatment plant located 

in United States. An overview of some of the results 

obtained using Minitab 17 are presented as well as 

conclusions and future directions of the research. 
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1. INTRODUCTION 

 

This paper discusses the attributes of water quality as 

determined by the five following characteristics of 

Ammonia Nitrogen (NH3-N), pH, Total Suspended Solids 

(TSS) and Carbonaceous Biochemical Oxygen Demand 

(CBOD) or Biochemical Oxygen Demand (BOD) and 

Temperature as applied to 2014 actual data from a water 

treatment plant in the United States that asked to be not 

identified. A survey of the application of statistical 

techniques for discrete data are applied and a selection of the 

visualization plots generated using Minitab 17 are presented 

in each of the following sections for each of the 5 selected 

variables of water quality as indicated above. 

 

 

2. BACKGROUND 

 

Related work on the subject of this paper has appeared in 

book on modelling of wastewater treatment systems by 

Olsson & Newell (1999), multivariate statistical evaluation 

of spatial and seasonal variations of surface water quality by 

Pejman et al. (2009), and others such as Aguado & Rosen 

(2008), Aguado et al. (2006), Ahmad & Reynolds (1999), 

Al-Lahham et al. (2003), Berthoues et al. (1989), Boger 

(1992) for neural network applications, Charef et al. (2000), 

Lee et al. (2008), Reba et al. (2013), Rosen et al. (2001), 

Shen et al. (2009), Shrestha & Kazama (2007), Siqua et al. 

(2000), Yin et al. (2005), Yoo et al., (2003). 

 

3. ANALYSIS OF WATER QUALITY VARIABLES 

 

3.1 Carbonaceous Biochemical Oxygen Demand 

(CBOD) 

Carbonaceous Biochemical Oxygen Demand (CBOD) is the 

rate at which organisms use the oxygen in water or 

wastewater to while stabilizing decomposable organic 

matter under aerobic conditions. In decomposition, organic 

matter services as food for the bacteria and energy results 

from its oxidation. Figure 1 is a Time Series plot that 

contains data set for the entire year of 2014 which is divided 

quarterly. The CBOD values are ranging between 2.0 and 

less than 6.0. The CBOD values are ranging between 3.0 and 

less than 15 which is acceptable for the CBOD effluent. This 
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Time series plot shows a sequence of data points from the 

month of January till December for 2014 year. The CBOD 

value should be less than 15 mg/l (ppm). 

 

 
Figure 1: Quarterly Time Series of CBOD 

 

Figure 2 is a histogram that shows most of the data points 

fall into the range of 2.0 to 3.0 which means basically the 

quality process of 2014 was operated well.  

 

Figure 3 is probability plot for the data for months of 

January, April, May, July, September, October, and 

November that appear slightly departing from the straight 

line. Generally, the points on this plot form a nearly linear 

pattern which indicates that the normal distribution is a good 

model for this data set of 2014. 

 

 
Figure 2: Quarterly Histograms of CBOD 

 

 
Figure 3: Quarterly Probability Plots of CBOD 

 
Figure 4: X-Bar Charts of CBOD 

 

Figure 4 above is an X-Bar chart that shows that The CBOD 

values are ranging within the upper control limit of 4.35 and 

the lower control limit of 0.79.Figure 5 shows residual plots 

of CBOD and indicate that when temperature is between 14 

and 24 and flow is below 9, the data is stable under 2.5. 

 

 
Figure 5: Residual Plots Summary of CBOD 

 

3.2 Total Suspended Solids (TSS) 

Total Suspended Solids Include a wide variety of material, 

such as silt, decaying plant and animal matter, and industrial 

wastes, can be organic or inorganic, can be dissolved and 

suspended, and high concentrations of suspended solids can 

cause many problems for stream health and aquatic life. 

 

 
Figure 6: Quarterly Histograms of TSS 
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Figure 6 is a histogram and shows that the last quarter 

recorded the highest frequency among all the quarters which 

was around 20. While the third quarter showed almost zero 

frequency at the end of the period. The first quarter 

represents a bi-model and while the second and final quarters 

represents a single spike model. The third quarter shows us 

a spike with maximum frequency close to another spike. And 

also the TSS data is centered on a peak of 4.8 mg/l, 6mg/l, 

4mg/l, and 4mg/l in the first, second, third and final quarters 

respectively. Which is well below the 20 mg/l monthly 

average TSS limit. This could indicate that TSS is not as 

susceptible to seasonal fluctuations. 

 

 
Figure 7: Run Chart of Suspended Solids (TSS) 

 

Figure 7 is a runs chart that displays process performance of 

the TSS over time. Upward and downward trends, cycles, 

and large aberrations may be spotted and investigated. In a 

run chart, events, shown on the y axis, are graphed against a 

time period on the x axis. In the above figure, an average line 

(dark dotted line), representing the average of all the y values 

were recorded, which can easily be added to a run chart to 

clarify movement of the data away from the average. An 

average line runs parallel to the x axis. The light colored dots 

are all the sample values taken quarterly for the entire year. 

And some outliers can be easily seen in the second and final 

quarters. 

 

3.3 Temperature 

Figure 8 shows time series plots of the variable Temperature.  

This show an increase in the temperature values from the 

middle of the second quarter and the recordings were high. 

These high recordings continued for next 6months after the 

second quarter. It is only in the middle of last quarter that the 

readings started to come down. The highest reading recorded 

was in the third quarter which is 28, and the lowest was in 

the first week of first quarter which is 8. 

 
Figure 8: Time Series of Temperature Quarterly 

 

Figure 9 shows the variable of temperature versus the 

variable of CBOD and attempts to determine if there is a 

correlation between ambient temperatures and the values of 

the CBOD leaving the plant. Although there were few points 

to look at, there does appear to be a correlation. When the 

temperatures are colder, the CBOD is increased. This 

corresponds with the high readings in the year. Likewise, 

when the temperatures are warmer, the CBOD levels are 

lower. This should indicate to personnel of water treatment 

plant that CBOD should be more closely monitored in winter 

months. They may explore taking more readings during 

those winter months in order to have more values to bring 

their monthly averages below the regulatory limit or explore 

solutions to taking additional measures to lower the CBOD 

during these months. 

 

 
Figure 9: Times Series of CBOB & Temperature 

 

3.4 Ammonia Nitrogen (NH3-N) 

The ammonia nitrogen at east plant is analyzed three times 

per week and is sampled as a 6-hour composite that is flow 

weighted. The monthly average limit for nitrogen in water is 

4mg/l(ppm). Ammonia nitrogen (N) is present in variable 

concentrations in many surface and ground water supplies. 

A product of microbiological activity, ammonia when found 

in natural water is regarded as indicative of sanitary 

pollution. 

 

The moving average control chart for effluent ammonia 

(mg/l) is shown in Figure 10.  This moving average analysis 

represents the quarterly averages for the year period. Similar 

to the X-bar R chart, the upper control limit generated 

through the moving average analysis and how this limit 

compares to the permitted effluent limit is of primary 
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concern.  Only two data points are above the upper control 

limit, however, these results are well below the permitted 

monthly average limit for ammonia of 4 mg/l.  With these 

factors in mind, it cannot be said that the process is out of 

control based on the moving average results.   

 

However, the moving average results do indicate an upward 

shift in the process that warrants further evaluation of the 

operational processes and plant loadings. Ammonia is 

rapidly oxidized by certain bacteria, in natural water 

systems, to nitrite and nitrate--a process that requires the 

presence of dissolved oxygen. Ammonia, being a source of 

nitrogen is also a nutrient for algae and other forms of plant 

life and thus contribute to overloading of natural systems and 

cause pollution. 

 

 
Figure 10: Moving Averages of Ammonia 

 

Xbar-R chart as shown in Figure 11 plots the sample mean 

and sample range along with the control limits, if the sample 

mean is taken into consideration there are six points which 

are above the upper control limit and in sample range chart 

there are seven points which are above the upper control 

limit the process is out of control at those samples. 

 

 
Figure 11: XBar-R Chart of Ammonia Nitrogen 

 

3.5 pH Variable 

The pH of natural waters is between 6.5 and 8.5. A 

measurement that is below 6 (acidic) or above 8.5 (alkaline) 

can disrupt aquatic life. Unlike the other variables analyzed 

pH has a maximum and minimum limit. A Time series plot 

shown in Figure 12 is a sequence of data points which is 

shown quarterly for 2014 year. The pH value for water 

(H2O) is 7.0. If the waste water plant manages to drag the 

pH value of waste water somewhere close to 7.0 then they 

have done a good job. As this plot suggests that the pH 

values for the month of May, July, October and December 

2014 is very close to 7.0. These values were measured at 

successive times spaced at uniform time intervals every 

Tuesday, Wednesday and Thursdays. 

 

 
Figure 12: Time Series of pH 

 

The plotted graph of Figure 12 shows the Time Series Plot 

that is depicts the data quarterly for the year 2014. In 

January-March and October – December, there are irregular 

variations on the value of pH when compared to the months 

of April-June and July-September. 

 

Figure 13 shows a moving average chart for pH values that 

helps analysts track the pH value movements of water for the 

waste water treatment plant. It shows average daily 

settlement readings for 2014 year, and shows a few out-of-

control values for samples at approximately 5, 20 and 150 to 

153. 

 

 
Figure 13: Moving Averages of pH 

 

4. CONCLUSIONS 

 

This paper has presented some applications of statistical 

quality control (SQC) as presented in text Montgomery 

(2013) to actual 2014 data as provided by a utility company 

that asked to remain anonymous in name to determine if in 

compliance to the State’s Department of Environmental 

Quality standards. The statistical analysis using Minitab 17 

provided evidence of where the discrepancies were located 

and problem areas that needed to be addressed for 

subsequent years. This research also provided insight into 

which SQC tools were most useful in determining the visual 

discrepancies using Minitab 17. The future directions of the 
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research include the additional Minitab plots and analysis of 

the data such as Individual Value plots, lognormal 

probability plots, XBar-S charts, Pareto charts, and box 

plots. 
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