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ABSTRACT 
 
After over 30-year deployment, IPv4 addresses are running 
short on supply with the growth of the Internet so dynamic. A 
new technology will take its place, IPv6, an evolution from 
IPv4 that includes virtually unlimited address space. However, 
it will take time to totally transit from IPv4 to IPv6. IPv6 will 
coexist with IPv4 for a period of time and then eventually 
replace IPv4. 
 
This paper studied network traffic that included information of 
both IPv4 and IPv6. The traffic was collected from 600 US 
government websites that were all reported to have Domain 
Name Services (DNS) and Web services accessible over IPv4 
and IPv6. Cloud based, Internet distributed monitoring agents 
were deployed in eight geographic locations to collect data. 
Both feature selection algorithms, filter and wrapper, were 
applied to the dataset and the classification accuracy was then 
studied. The results showed that feature selection algorithms 
effectively reduced the complexity of the classification model. 
The results also confirmed that the reduced feature set 
contributed a superior classification performance over full 
feature set.  
 
Keywords: Feature selection, machine learning, classification, 
IPv4 and IPv6  

 
1. INTRODUCTION 

 
Currently there are two versions of the Internet Protocol (IP): 
IPv4 and IPv6. The version number refers to the version 
identification field in the IP header. IPv4 was designed as an 
experimental protocol as part of the Advanced Research 
Projects Agency Network (ARPANET) long before the Internet 
was commercialized. Over time as the Internet has grown in 
size and complexity, the inherent technological and security 
limitations of IPv4 have made it anachronistic and unsuitable 
for today's Internet requirements. 
 
The chief technological limitation of IPv4 is the number of 
unique IP addresses that it is capable of supporting. With a 32-
bit address field, IPv4 is only capable of supporting 4.3 billion 
unique addresses. Four of the five Regional Internet Registries 
(RIRs) have already exhausted their pools of IPv4 addresses, 
meaning that they can no longer accommodate requests from 
service providers or enterprise organizations for more IPv4 
addresses. 

 
In 1993, the Internet Engineering Task Force (IETF) began 
working on a successor to IPv4 and in 1995 standardized IPv6. 
The engineers of IPv6 took the opportunity to add new features 
and functionality based on the lessons of 30 years of 
experiences with IPv4. The address fields in IPv6 are increased 
to 128 bits which will support many more addresses than IPv4 
and makes the addressing space much more scalable. The vast 
size of the IPv6 address space allows organizations to develop 
an addressing plan that is hierarchical and allows for flexibility 
and growth. Aggregation is simplified because there no need to 
conserve address space as is done with IPv4 Variable-Length 
Subnet Masking (VLSM). Additionally, the size and scalability 
of the multicast addressing space is greatly improved and a 
simpler mechanism for auto-configuration of addresses through 
Stateless Address Auto Configuration (SLAAC) is added. 
 
In the paper, we analyzed a network traffic that included both 
IPv4 and IPv6 information. The network traffic was collected 
from forty-eight agents distributed in eight cities across three 
continents. The dataset included a significant amount of traffic 
records with a number of various features such as ping time and 
connection time. Having reduced the size of the dataset by 
using with the use of feature selection algorithms, a 
comparative study of decision tree based classifier was then 
studied in order to find the most informative features.  

 
This paper is organized as follows: Section 2 demonstrated the 
experimental methodology. Section 3 presented the discussion 
of the experiment results. Finally, we concluded our work in 
the last section. 
 

2. EXPERIMENTAL METHODOLOGY 
 
A list of Federal Executive Agency Internet Domains was 
obtained from the 2016 listing of domains published by the 
General Services Administration (GSA) as .gov Domains 
dataset [1]. At the time of study, the dataset contained 1,315 
domains which were downloaded as a .csv file.  
 
Using a custom script, each of the 1,315 USGA domains was 
evaluated for the presence of a DNS AAAA record by sending 
an AAAA record query to Google’s DNS resolver at 8.8.8.8. 
Of the 1,315 USGA domains, 600 domains (45.62%) returned 
AAAA records. Each of the 600 sites that returned a AAAA 
record was then polled at 15-minute intervals for a period of 30 
days, from 48 network monitoring ITSonar [2] agents deployed 
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in 8 geographically distributed locations. The 48 ITSonar 
agents were deployed in Virtual Machines (VMs) hosted by 
Digital Ocean [3]. The number and location of the virtual 
machines are shown in Table 1. 
 

Table 1. Agents by Geographic Location 

Location Continent Number of 
Agents 

Singapore (sgp)  Asia 6 
Toronto (tor) North America 6 

Frankfurt (fra) Europe 6 
New York City (nyc) North America 6 
San Francisco (sfo) North America 6 
Amsterdam (ams) Europe 6 
Bangalore (bgl) Asia 6 

London (lon) Europe 6 
 
Each VM hosted by Digital Ocean ran on CentOS 7.3 with 1 
CPU, 512MB of memory, 20GB of storage on a Solid-State 
Drive (SSD), 1TB of transfer data, and enabled for both IPv4 
and IPv6. Each of the 6 agents at each geographic location 
were configured to gather IPv4 and IPv6 network data of 100 
USGA web services domains so that data from all 600 USGA 
is collected from each geographic location.  
 

IPv4 and IPv6 data is gathered from each agent for each USGA 
domain, which include: PING time, TCP/IP connect time (3-
way handshake), DNS query time, HTTP download time for all 
elements of the domain web site, Traceroute path, and 
Autonomous System (AS) path. 
 
The data set used for analysis consisted of data collected from 
July 31, 2017 to August 30, 2017. It included 4,800 network 
traffic connections and each was composed of 30 features. 
Table 2 illustrates the first three network traffic connections in 
the dataset and the features are shown in Table 3.  
 
The type of feature is either discrete or continuous, i.e., the 
former is a qualitative scale and the latter is quantitative.  

• Qualitative scales: The values were simply labels 
without any order involved. For example, the value 
of feature Service_URL is the website where the 
agents visited. The value of feature Test_Type was 
one of the symbolic set {HTTP, HTTP-PING}.  

• Quantitative scales: The data was characterized by 
numeric values. IPv4_Connect_Time_Min_ms was an 
example which represented the time elapsed while 
the agent connected to a target website when using 
IPv4 protocol.  

 
Table 2. The first three network traffic connections  

Connection Data 
1 www.highperformancebuildings.gov,http://www.highperformancebuildings.gov,ecu-cet-sgp-01-

02,100,100,1,8913,788.3,2,7454,382.16,0,7188.06,48.82,230.63,12033.44,431.38,0,16928.96,2531.33,0,18581.85,410
7.33,-1,-1,-1,-1,-1,-1,HTTP 

2 www.highperformancebuildings.gov,http://www.highperformancebuildings.gov,ecu-cet-tor-01-
02,100,100,0,5027,142.84,0,2157,87.2,0,38.64,0.09,24.67,1726.81,75.91,144.18,11546.91,439.96,309.06,6767.55,741
.98,-1,-1,-1,-1,-1,-1,HTTP 

3 www.highperformancebuildings.gov,http://www.highperformancebuildings.gov,ecu-cet-fra-01-
02,100,100,7,15016,749.99,8,8471,287.8,0,3916.75,5.67,87.11,15098.73,219.16,0,15866.33,1509.66,0,17365.19,1989
.5,-1,-1,-1,-1,-1,-1,HTTP 

 
Table 3. Features of the network traffic connections 

Feature Data type 
Service_Name and Service_URL Discrete 

Agent_Name Discrete 
IPv4_Uptime_Percentage and IPv6_Uptime_Percentage Continuous 

IPv4_DNS_Time_Min_ms, IPv4_DNS_Time_Max_ms, and IPv4_DNS_Time_Average_ms Continuous 
IPv6_DNS_Time_Min_ms, IPv6_DNS_Time_Max_ms, and IPv6_DNS_Time_Average_ms Continuous 

IPv4_Connect_Time_Min_ms, IPv4_Connect_Time_Max_ms, and IPv4_Connect_Time_Average_ms Continuous 
IPv6_Connect_Time_Min_ms, IPv6_Connect_Time_Max_ms, and  IPv6_Connect_Time_Average_ms Continuous 

IPv4_Load_Time_Min_ms, IPv4_Load_Time_Max_ms, and IPv4_Load_Time_Average_ms Continuous 
IPv6_Load_Time_Min_ms, IPv6_Load_Time_Max_ms, and IPv6_Load_Time_Average_ms Continuous 
IPv4_Ping_Time_Min_ms, IPv4_Ping_Time_Max_ms, and IPv4_Ping_Time_Average_ms Continuous 
IPv6_Ping_Time_Min_ms, IPv6_Ping_Time_Max_ms, and IPv6_Ping_Time_Average_ms Continuous 

Test_Type Discrete 
 
The entire work in this research included two stages of 
experiment: one was feature selection and the other was 
classification. Generally, the algorithms of feature selection are 
divided into two main categories, filter and wrapper, as defined 
in the work of John et al. [4]. Filter method operated without 
engaging in any information of induction algorithm. The prior 
knowledge, features, should have strong correlation with the 
target class, or should un-correlate to each other, and the filter 
method selects the best subset of features. Correlation based 

Feature Selection (CFS) [5] and Fast Correlation-Based Filter 
(FCBF) [6] were two examples of filter-based feature selection 
method.  
 
On the other hand, wrapper method employed a predetermined 
induction algorithm to find a subset of features with the highest 
evaluation by searching through the space of feature subsets 
and evaluating quality of selected features. The process of 
feature selection acted like “wrapped around” an induction 
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algorithm. Machine learning algorithms such as ID3 [7] and 
C4.5 [8] were commonly used as the induction algorithm. 
 
During the first stage, we applied both filter and wrapper 
feature selection algorithms to reduce the number of features in 
the dataset. Having acquired the reduced data set, the data was 
then fed into classifier in the second stage.  
 

3. EXPERIMENTAL RESULTS 
 
Weka [9] was employed in the research, which has been 
popularly adopted in the research of data mining and machine 
learning. In the first stage of the experiment, Agent_Name was 
selected as the target class; uptime percentage, DNS query and 
answer, TCP/IP connection, website reachable and download 
time, and test type were selected as features and each was 
normalized from 0 to 1. InfoGainAttributeEval with Ranker 
search method was chosen as the filter feature selection 
algorithm. It was a statistical measure to find a ranked list of 
the most predictive features by measuring the information gain 
with respect to the class. 
 
For the wrapper feature selection, WrapperSubsetEval was 
selected that used J48 as a “wrapped around” induction 
algorithm and GreedyStepwise as the search method to find the 
most predictive features to class. The left of Table 4 shows the 
eight most discriminative features based on the values of 
information gain entropy in decreasing order after filter search. 
The right of Table 4 shows the optimal feature subset that was 
most relevant to the class after wrapper search. There were five 
features shown on both and they have been marked with an 
underline. 
 

Table 4. Selected features  

Filter: InfoGain/ Ranker Wrapper: J48/GreedyStepwise 
IPv6_Ping_Time_Min_ms 

IPv6_Ping_Time_Average_ms 
IPv6_DNS_Time_Min_ms 

IPv6_Connect_Time_Min_ms 
IPv4_DNS_Time_Min_ms 
IPv4_Ping_Time_Min_ms 
IPv4_DNS_Time_Max_ms 

IPv4_Ping_Time_Average_ms 

IPv6_Ping_Time_Min_ms 
IPv6_Ping_Time_Average_ms 

IPv6_DNS_Time_Min_ms 
IPv6_Connect_Time_Min_ms 

IPv4_DNS_Time_Min_ms 
IPv4_Connect_Time_Max_ms 

IPv4_Connect_Time_Average_ms 
Test_Type 

 
Having acquired the reduced data sets through the feature 
selection process, both full data set including 27 features and 
reduced data sets including 8 features were then fed into 

classifier in the second stage. Weka has implemented a number 
of classification algorithms. In the paper we used J48 as the 
classifier to categorize the network traffic connections to one of 
eight Agent_Name. The J48 algorithm implemented in Weka 
for building decision trees is based on C4.5. It is able to build 
decision trees from a set of training data using the concept 
of information entropy. By applying 10-fold cross-validation 
evaluation on each data set, standard measurements of 
classification accuracies are reported. Confusion matrix is 
shown in Table 5 and the denotations of True Positive (TP), 
True Negative (TN), False Positive (FP), and False Negative 
(FN) are defined. Table 6 summarizes the classification results. 
The highest TPR, the highest PR, and the lowest FPR were 
marked bold. The lowest TPR, the lowest PR, and the highest 
FPR were marked bold. 
 

Table 5. Confusion matrix 
  Actual Result 
  Positives Negatives 

Pr
ed

ic
te

d 
R

es
ul

t 

Po
si

tiv
es

 

TP 
True 

Positive 

FP 
False 

Positive 

N
eg

at
iv

es
 

FN 
False 

Negative 

TN 
True 

Negative 

 
• True Positive (TP): Number of network traffic connections 

predicted positive that are actually positive  
• False Positive (FP): Number of network traffic 

connections predicted positive that are actually negative  
• False Negative (FN): Number of network traffic 

connections predicted negative that are actually positive  
• True Negatives (TN): Number of network traffic 

connections predicted negative that are actually negative 
 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                    (1) 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
                                                                    (2) 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃                                                                       (3) 

 
Table 6. Classification results 

 TPR FPR PR 
Location Full Filter Wrapper Full Filter Wrapper Full Filter Wrapper 

sgp 0.897 0.908 0.892 0.011 0.01 0.014 0.918 0.925 0.899 
tor 0.848 0.852 0.845 0.029 0.021 0.021 0.805 0.850 0.852 
fra 0.86 0.868 0.885 0.021 0.014 0.019 0.851 0.898 0.872 
nyc 0.84 0.867 0.857 0.019 0.021 0.023 0.866 0.857 0.841 
sfo 0.765 0.79 0.788 0.035 0.022 0.022 0.760 0.839 0.834 
ams 0.88 0.883 0.875 0.018 0.026 0.025 0.874 0.829 0.832 
bgl 0.892 0.932 0.935 0.014 0.009 0.011 0.899 0.936 0.926 
lon 0.795 0.842 0.783 0.027 0.028 0.028 0.807 0.812 0.802 

Average 0.847 0.868 0.858 0.022 0.019 0.020 0.848 0.868 0.857 
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The agents deployed in San Francisco (sfo) had the worst 
classification performances of TPR, FPR, and PR and 
Singapore (sgp) had the best overall classification accuracy 
among the eight cities. For both reduced datasets, after using 
filter and wrapper feature selection algorithms, the agents 
deployed in Bangalore had the best classification results, which 
had the highest TPR and PR and the lowest FPR. On the 
contrary, London had the worst classification performance 
except the TPR. As for the overall classification performance, 
both filter and wrapper feature selection algorithms showed 
higher accuracies in comparison with the outcomes that used 
full feature dataset.  
 
When studying the decision tree structure, both classification 
models after filter and wrapper feature selection algorithms had 
the same topmost root node (IPv6_Connect_Time_Min_ms) 
and the same two child nodes (IPv4_DNS_Time_Min_ms and 
IPv6_DNS_Time_Min_ms) in the following branches, as shown 
in Figure 1. The root node of the model using full dataset was 
different, which was IPv6_Connect_Time_Max_ms and the 
node in the following layer was IPv4_DNS_Time_Min_ms, as 
shown in Figure 2. 
 

 
 

Figure 1. The decision tree (top two layers) of classification 
models using reduced datasets after filter and wrapper feature 

selection algorithms 
 

 
 

Figure 2. The decision tree (top two layers) of classification 
model using full feature dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. CONCLUSIONS 
 
Feature selection methods were used to identify and remove 
irrelevant and redundant attributes from data that do not 
contribute to the accuracy of a predictive model. The utilization 
of both filter and wrapper feature selection algorithms proved 
to reduce the complexity of the model from 27 features to 8 
features. The experimental results demonstrated that select 8 
informative features contributed a superior classification 
performance over 27 features. The results also showed that 
IPv6_Connect_Time was the most important feature in the task 
of classification because it was the root node of the decision 
tree regardless using the reduced dataset or the full dataset. In 
the future, different feature selection and machine learning 
techniques will be applied for improving classification 
accuracy. 
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