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ABSTRACT 
 

In this paper, we compare the solutions for the Navier-Stokes 
equations with moderate and very high Reynolds numbers 
obtained using a Fixed Point Iterative Method with those 
obtained using COMSOL Multiphysics. Despite the advantages 
of COMSOL, we want to show that our results, using a Fixed 
Point Iterative method agree as much as possible, with those 
obtained with COMSOL. Results for viscous incompressible 
flows in 2D are presented, using the Stream Function-vorticity 
formulation of the Navier-Stokes equations. The Fixed point 
Iterative Method uses Finite Differences and a uniform mesh; 
COMSOL uses the Finite Element Method and the formulation 
in primitive variables and the mesh is refined in some places; 
streamline and crosswind diffusion are also used. Results are 
reported, in the case of the lid-driven cavity problem for 
Reynolds numbers in the range of 5000 ≤ Re ≤ 100000.  
As the Reynolds number increases, the time and the step mesh 
have to be refined, both for time and space in order to capture 
the fast dynamics of the flow and numerically, because of 
stability reasons. The advantages of our code are: it is 
“transparent” and easily modifiable, so, it can be used for solving 
other problems. We are looking forward to parallelize it. 

 
Keywords: Stream function- vorticity formulation, primitive 
variables formulation, Reynolds number, Fixed Point Iterative 
Process, COMSOL Multiphysics, parallelization. 
 
 

1. INTRODUCTION 
 
The fixed-point iterative method described in this work has 
already been used for solving the Navier-Stokes equations and 
the Boussinesq system under different formulations [2], [3], 
[11], [4], [5], [6]. With this iterative method, the idea was to 
work with a symmetric and positive definite matrix.  
The scheme worked very well, as shown in [2], [3], [4], [5] [6], 
[11] but the processing time was, in general, very large, 
especially for high Reynolds numbers. 

To show our scheme works well for moderate and high Reynolds 
numbers, we report results for the lid-driven cavity problem and 
Reynolds numbers in the range of 5000 ≤ Re ≤100000. 
As the Reynolds number increases, the mesh has to be refined 
and a smaller time step has to be used, to capture the fast 
dynamics of the flow and, numerically, because of stability 
reasons, as mentioned in [11]. 
In [12], they give some transient solutions at Re=100000 in the 
lid-driven cavity problem and give a numerical confirmation of 
the presence of an attractor starting with two very different initial 
data. They are using a Finite Difference Method and the 
primitive variables formulation. They used very fine grids (2048 
x 2048) for arriving to Re=100000. As they said, there are very 
few computations for such a high Reynolds number in the 
literature, since it is difficult to represent correctly the flow in 
the boundary layer. In [13], some results give a view of the 
solution in the transient starting form rest. In [16], they explore 
the possibility of implicit Large Eddy Simulation (LES) using 
the laminar interface of COMSOL Multiphysics. They examine 
the lid-driven cavity flow Reynolds numbers up to 1000000. 
In [14], various turbulence models were used to simulate internal 
turbulent flow with lid-driven cubic box. They arrive to 
Re=100000 using a uniform mesh of 2500 x 2500. 
In [15], computer simulation results of steady incompressible 
flows in a 2-D square lid-driven cavity up to Re=65000 are 
presented. Quadratic Upstream Interpolation for convective 
Kinematics (QUICK) is used for the approximation of the 
convective term. 
The idea in this work is mainly to compare our results, when 
using a Fixed Point Iterative Method codified in FORTRAN by 
ourselves, with those obtained using a very robust commercial 
software, COMSOL Multiphysics. 

 
2. INTRODUCTION 

 
Let Ω ⊂ ܴே  (ܰ = 2, 3) be the region of a viscous, 
incompressible, non-stationary flow and Γ its boundary. 
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൜ݑ௧ − ∇ଶݑ + +݌∇ ݑ) ∙ ∇) = ݂               (ܽ)
∇ ∙ ݑ = 0                                                    (ܾ)                                (1) 

 
These are the Navier-Stokes equations in primitive variables, 
and this system must be provided with appropriate initial and 
boundary conditions. 
The initial conditions are given by: 
 
,ݔ)ݑ 0) =  Ω,                                                             (2) ݊݅  (ݔ)଴ݑ
 
and the boundary conditions by: 
 
ݑ =  .Γ     (3) ݊݋ ݃
 
Restricting equations (1a-b) to a two dimensional region Ω, 
taking the curl in both sides of the equation (1a) and taking into 
account that: 
 
ଵݑ = డట

డ௬
, ଶݑ = − డట

డ௫
  ,    (4) 

 
followed by (1b), with ߰  the Stream function and  ݑଵ  ଶ, the twoݑ,
components of the velocity, we arrive to the Stream function- 
vorticity formulation of the Navier- Stokes equations.  
The following system of equations is then obtained: 
 

൜ ∇
ଶ߰                         = −߱,                  (ܽ)   

߱௧ − ∇ଶ ߱ + ݑ ∙ ∇߱ = ஐ݂ ,                   (ܾ)     
                             (5) 

 
where ߱ is the vorticity and ߱ = డ௨మ

డ௫
− డ௨భ

డ௬
. 

This system represents the Navier-Stokes equations in the 
Stream function-vorticity formulation. The incompressibility 
condition (1b), by (3) is automatically satisfied and the pressure 
does not appear any more.  
This system represents the Navier-Stokes equations in the 
Stream function-vorticity formulation. The incompressibility 
condition (1b), by (3) is automatically satisfied and the pressure 
does not appear any more. 
 

3. Fixed Point Iterative Method 
 

For the time derivative, the following second order 
approximation is used: 
 

߱௧(ݔ, (݊ + (ݐ∆(1 ≈
3߱௡ାଵ − 4߱௡ +߱௡ିଵ

ݐ∆2 , 
 
where ݊ ≥ 1 , ݔ ∈ Ω y ∆ݐ > 0 is the time step size. 
Then, at each time level, the following non-linear system has to 
be solved: 
 

ቊ
∇ଶ߰ = −߱   ߰|Γ = ߰௕௖ ,                         (ܽ)
߱௧ − ∇ଶ߱ + ݑ ∙ ∇߱ = ఠ݂, ߱|Γ = ߱௕௖ , (ܾ) , 

 
where ߙ = ଷ

ଶ∆௧
 and ఠ݂ = ସఠ೙ିఠ೙షభ

ଶ∆௧
 

For solving this system of equations, two strategies were used in 
this work: first, we used a fixed-point iterative method described 
in [1]. Denoting: 
 

ܴఠ(߱,߰) = ߱ߙ − ଵ
ோ௘
∇ଶ + ݑ ∙ ∇߱− ఠ݂, in Ω, 

 
our system is equivalent to: 

൜ ∇
ଶ߰ = −߱,   ߰|Γ = ߰௕௖          (ܽ)

ܴ(߱,߰) = 0,    ߱|Γ = ߱௕௖       (ܾ) 

 
Then, at each time level, the following iterative process [1] is 
used: 
 
Given ߱଴ and ߰଴ solve until convergence in ߱ and ߰ 
 

⎩
⎪
⎨

⎪
⎧ ∇ଶ߰௠ାଵ = −߱௠                                                                      ݅݊ Ω
߰௠ାଵ = ߰௕௖ Γ ݎ݁ݒ݋                                                                           
߰௠ାଵ = ߱௠ − ܫߙ)ఠߩ − ߳∇ଶ)ିଵܴఠ(߱௠,߰௠ାଵ)              ݅݊ Ω
߰௠ାଵ = ߱௕௖

௠ାଵ                                                               ݅݊ Γ,ߩఠ > 0

 

 
and then take (߱௡ାଵ ,߰௡ାଵ) = (߱௠ାଵ,߰௠ାଵ). 
 

4. Numerical Stability in COMSOL Multiphysics. 
 

Equation (1a) is unstable when using the Galerkin Finite 
Element Method. Stabilized Finite Element Methods are then 
necessary in order to obtain physical solutions. There are three 
types of stabilization methods available in COMSOL for the 
Navier-Stokes equations: streamline diffusion, crosswind 
diffusion and isotropic diffusion (see Reference Guide 
COMSOL Multiphysics 4.3a [17]). Below we discuss streamline 
and crosswind diffusion. 
 
4.1 Streamline Diffusion 
 
It is necessary when convection is the dominating part of the 
flow and it is supported by COMSOL Multiphysics. It is active 
by default when convection is dominating. The unstabilized 
incompressible Navier-Stokes equations are subject to the 
Babuska-Brezzi conditions, the basic functions for pressure must 
be of lower order than those for velocity. If they are stabilized 
by Galerkin Least Squares (GLS), it is possible to use equal-
order interpolation. 
 
4.2 Crosswind Diffusion 
 
Crosswind diffusion, when applied to the Navier-Stokes 
equations becomes a shock-capturing operator. Incompressible 
flows do not contain shock waves, but crosswind diffusion is still 
useful for introducing extra diffusion in sharp boundary layers 
and shear layers that otherwise would require a very dense mesh 
to resolve. 
The tuning parameter, ܥ௞ controls the amount of crosswind 
diffusion introduced in the model. The recommended range for 
low Mach number flows and incompressible flows is 0 < ௞ܥ <
௞ܥ)  1.0 = 0 means no diffusion at all). The value must not 
depend on space or time. We use the default value ܥ௞ (ܥ௞ = 1). 
 

5.  Numerical Experiments 
 
With respect to the lid-driven cavity problem, and using the 
Stream function-vorticity formulation, Ω = [0,1] × [0,1] the 
top wall is moving with a velocity given by (0, 1) and (0, 0) for 
the other three walls, the velocity is given by (0, 0), ߰ is over 
determined at the boundary ቀడట

డ௡
 at the boundary is also known) 

and there is no boundary condition for ߱. In our case, we have 
followed the alternative proposed by Goyon [9], ߰ = 0 is chosen 
over Γ. A translation of the boundary condition in terms of the 
velocity (primitive variable) has to be used. By a Taylor series 
expansion of equation (3), we obtained: 
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,ݕ,0)߱  (ݐ = − ଵ
ଶ௛ೣమ

[8߰(ℎ௫,ݕ, −(ݐ ߰(2ℎ௫,ݕ,  ,[(ݐ

,ݕ,ߙ)߱ (ݐ = −
1

2ℎ௫ଶ
[8߰(ܽ − ℎ௫ ,ݕ, −(ݐ ߰(ܽ − 2ℎ௫,ݕ,  ,[(ݐ

,ݔ)߱ 0, (ݐ = −
1

2ℎ௬ଶ
ൣ8߰൫ݔ,ℎ௬ , ൯ݐ − ߰൫ݔ, 2ℎ௬ ,  ,൯൧ݐ

,ݔ)߱ ܾ, (ݐ = −
1

2ℎ௬ଶ
ൣ8߰൫ݔ, ܾ − ℎ௬ , ൯ݐ − ߰൫ݔ, ܾ − 2ℎ௬ ,  ,൯൧ݐ

 
where ℎ௫ ,ℎ௬ denote the spatial step size in the directions of x, y 
respectively. In Figure 1 we show results for ܴ݁ = 7500. We 
show the isovorticity contours obtained using the Fixed Point 
Iterative Method, with ℎ = ℎ௫ = ℎ௬=1/128 and the results 
obtained with COMSOL Multiphysics. The steady state is 
shown. In the following figures we only shows results for 
௙௜௡௔௟ݐ = 5 due to the computational cost needed to arrive to a 
greater time. Moreover for the Reynolds Numbers shown there 
is no steady state. In Figure 2 and Figure 3 we show the 
isovorticity contours for ܴ݁ = 25000 with ℎ = ℎ௫ = ℎ௬ = ଵ

଻ଶ଼
  

for  ௙ܶ௜௡௔௟ = 5 , with both methods. In Figure 4 we show the 
isovorticity contours for  ܴ ݁ = 50000 with ℎ = ℎ௫ = ℎ௬ = ଵ

ଵ଴ଶସ
 

for ௙ܶ௜௡௔௟ = 5, using also both methods. In Figure 5 we show the 
isovorticity contours for ܴ݁ = 100000 with ℎ = ℎ௫ = ℎ௬ܥ =
ଵ

ଵଶ଼଴
 for ௙ܶ௜௡௔௟ = 5, using both methods. Results with COMSOL 

Multiphysics are shown in the Figures 2 to 5 and were calculated 
without stabilization and using stabilization (streamline and 
crosswind diffusion). The mesh used in COMSOL Multiphysics 
was an extremely fine mesh; it has 162225 domain elements and 
600 contour elements. 
We must say that for the Fixed Point Iterative Method, mesh 
independence studies have been made, for example in Nicolás et 
al [10], in order to verify the convergence of the method. 
 

 
(a) 

 

 
 

(b) 
Figure 1: Isovorticity contours for Re = 7500, ℎ௫ = ℎ௬ = 1/256 
with the F. P. I.M. (Finite Point Iterative Method) (a), and with 

COMSOL and an extremely fine mesh (b) 
 

 

 
 

Figure 2: Isovorticity contours for Re = 25000, ℎ௫ = ℎ௬ = 
1/728 with the F. P. I.M. 

 
 

 
(a) 

 
(b) 

Figure 3: Isovorticity contours for Re = 25000, ℎ௫ = ℎ௬ = 
1/728 with COMSOL and an extremely fine mesh without 

stabilization (a), and with streamline diffusion and crosswind 
diffusion (b).  

 
 

 

 
 

(a) 

 

 
(c) 

 

 
(b) 

Figure 4: Isovorticity contours for Re = 50000, ℎ௫ = ℎ௬ = 
1/1024 with the F. P. I.M. (a) and with COMSOL and an 
extremely fine mesh without stabilization (b) and with 

streamline diffusion and crosswind diffusion (c). 
 

 
 

 
(a) 

 

 
(c) 

 
(b) 

Figure 5: Isovorticity contours for Re = 100000, ℎ௫ = ℎ௬ = 
1/1280 with the F. P. I.M. (a) and with COMSOL and an 
extremely fine mesh without stabilization (b) and with 

streamline diffusion and crosswind diffusion (c). 
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6.  Conclusions 
 
For the lid-driven cavity problem, results agree very well with 
those reported in the literature [2], [3], [4], [6], [7], [8], and [10]. 
As can be seen in Figure 1, oscillations occurred, given the high 
Reynolds numbers used, in such a way that it is necessary to use 
smaller values of h [11], numerically because of stability of the 
method, and physically, in order to capture the fast dynamics of 
the flow. 
For high Reynolds numbers and small values of h, the 
computational work takes even days, in the case of the Fixed 
Point Iterative method, so reducing computing time becomes 
very important.  
We must recognize that a disadvantage of the Fixed Point 
Iterative Method is time. Computations for high Reynolds 
numbers take a lot of time and we have still not been able to 
parallelize the code, since it is not an easy task. COMSOL 
Multiphysics uses Primitive Variables Formulation and we are 
using the Stream Function-vorticity Formulation. In this latter 
case, the incompressibility condition is automatically satisfied 
and it does not include the pressure explicitly.  
Results with both methods agree very well up to ܴ݁ = 10000. 
For Reynolds greater than ܴ݁ = 10000, we observe some 
differences due to the meshes used. In our case we are able to 
handle such fine meshes (up 1024 x 1024), and COMSOL 
Multiphysics is not able to handle them. Moreover COMSOL 
Multiphysics does not use uniform meshes.  
Nevertheless, the results with the Fixed Point Iterative Method 
shows better structure on turbulent vortices. In this case, with 
COMSOL Multiphysics, you have to include a stabilization 
method such as streamline and crosswind diffusion. 
Even though turbulence is a tri-dimensional phenomenon, two 
dimensional flows at high Reynolds numbers give some clues of 
transition to real turbulence. Some examples of turbulent flows 
are the boundary layers in the atmosphere, the ocean currents, 
the wake of a reactor, boundary layers around plane wings, the 
trail of ships, cars, airplanes, submarines, the flow on a river, etc. 
In COMSOL Multiphysics, you cannot add some code by 
yourself, and our code is, let us say “transparent” and that is an 
advantage of our code, which we are looking forward to 
parallelize. 
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