
Database Access – Application-Driven versus Data-Driven1

William R. Simpson

 Institute for Defense Analyses, 4850 Mark Center Dr.
Alexandria, Virginia 22311

1 The publication of this paper does not indicate endorsement by the Department of Defense or IDA,
 nor should the contents be construed as reflecting the official position of these organizations.

ABSTRACT

A multitude of commercial applications rely on Database
Management Systems (DBMS) that provide organized
collection of data; for example, modelling the availability of
airline flights and seating in a way that supports reservation
and sales of air transportation. DBMSs are specially designed
software applications that interact with other applications and
users to capture and analyze data. A general-purpose DBMS
is a software system designed to allow the definition,
creation, querying, update, and administration of databases.
For the purposes of this paper, we assume that the database is
front-ended by web services for database access and query.
This paper discusses the current approach to database access
and privilege by web services. The paper then discusses the
high-assurance paradigm called Enterprise Level Security.
We the discuss changes that are required by a high-assurance
end-to-end approach. The latter rely on a well-formed
security paradigm for the enterprise.

Keywords: Database Access, DBMS, Access Control, IT
Security, Integrity.

1. INTRODUCTION

Database security deals with all aspects of protecting the
database content, its users, and its owners. It covers
protection from intentional and unintentional unauthorized
database activities by authorized privilege limited entities and
unauthorized entities (e.g., a person or a computer program).

Database access control deals with controlling who (a person
or a computer program) is allowed to access what information
in the database and what privilege is provided. The
information may comprise specific database objects (e.g.,
record types, specific records, data structures), certain
computations over certain objects (e.g., query types, or
specific queries), or use of specific access paths to the former
(e.g., using specific indexes or other data structures to access
information). [1-9]

This may be managed directly on an individual basis, or by
the assignment of individuals and privileges to roles that are
then granted entitlements.

Data security prevents unauthorized users from viewing or
updating the database. For example, an employee database
can contain all the data about an individual employee, but one
group of users may be authorized to view only payroll data,
while others are allowed access to only work history and
medical data.

Data security in general deals with protecting specific data,
from corruption, destruction, or removal.

Our basic security model requires that all functionality be
realized by web services. This precludes database grazing, in
which the requester can peruse most of the database at once.
This is to be preceded by public key infrastructure (PKI)-
based mutual authentication and a transport layer security
(TLS) pipeline followed by a security assertion markup
language (SAML) token for access and privilege (as
described in section 2). The database is organized by columns

and each identity or role has permission that allow Create,
Read, Update, or Delete (CRUD) functions. This paper
presents the database issues in several parts.

Part 1 is this introduction.

Part 2 presents the high-assurance background on Enterprise

Level Security (ELS). It includes a number of the basic
concepts.

Part 3 presents the overall considerations for database

operations at the enterprise level.

Part 4 intoduces the Enterprise Resource Planning (ERP) a

form of database operations software that is centered
around business applications.

Part 5 reviews the processes for security-hardening databases

in general and specifically the ERP, including:
a. Encryption of data at rest.
b. Encryption of data in transit.
c. Claims, Access and Privilege.
d. Application Least Privilege and two paradigms for

database operations (application-driven and data-
driven).

e. Partisal homomorphic encryption operations.

Part 6 presents a summary.

2. ENTERPRISE LEVEL SECURITY

ELS is a high-assurance environment. For ELS, we are
primarily concerned with four security principles.

• Know the Players – this is done by enforcing bi-lateral
end-to-end authentication.

Figure 1 Bi-lateral Authentication

In ELS, the identity certificate is an X.509 PKI certificate
[10]. PKI certificates are verified and validated. Ownership is
verified by a holder-of-key check.

• Maintaining Confidentiality – this entails end-to-end

unbroken encryption.

ELS establishes end-to-end TLS [11] encryption (never give
away private keys that belong uniquely to the certificate
holder). Message authentication codes are enforced (but they
are only valid when the encryption remains unbroken to the
end point).

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 4 - YEAR 2015 51

Figure 2 End-to-End Encryption

• Enforce Access Control – this is done by an authorization

credential.

Figure 3 Claims-Based Authorization

In ELS the certificate is the Security Assertion Markup
Language (SAML) [12]. SAMLs are signed, and the
signatures are verified and validated. The credentials of the
signers are verified and validated.

• Maintain Integrity – know that you received exactly what

was sent – know that content has not been modified.

Figure 4 MAC and Other Integrity Measures

In ELS this is implemented by End-to-End TLS encryption
with message authentication codes (MAC). Packages (like
SAML tokens) are signed, and signatures are verified and
validated [13].

3. OVERALL DATABASE CONSIDERATIONS

Both SQL and XML database systems were designed for
precise processing of data sets. Formal rules define how
operations are conducted, and well-defined outputs are
produced for any given input state. This works well for
traditional data models, where the requester wants the correct
results for a given query at that particular time. However,
these database systems only scale to certain sizes, based on
their inherent architectural structures. For example,
parallelism is difficult to provide while maintaining all the
guarantees of SQL or XML databases. This makes it difficult
to process very large data sets with reasonable performance.

Due to the important role database systems serve in the
enterprise, they are protected from failures. This includes
redundancy of hardware and software instances. The data
itself is stored on multiple different hardware instances.
These are part of different logical and software database
system instances. The hardware redundancy protects against
disk failures. The logical redundancy protects against

software bugs or failures. Another type of redundancy related
to physical redundancy is geographic distribution. Since some
failures, such as electricity or natural disasters, are regional,
there is at least one instance of the data being stored in a
different region. This could be, for example, different military
bases in in the eastern and western United States, or in North
America and Europe.

The important concept is to meet Continuity of Operations
(COOP) requirements for continuous operations in the event
of failure of the main operational system. In addition to
redundancy, extra copies are generated, maintained,
synchronized, and available in standby mode so that the
switch can be made automatically to promote the backup to
the live operational system. The backup is updated by
transaction with the primary instance to ensure consistency.
When the primary data is destroyed or corrupted, some
method of determining which transactions—if any—are
rolled back when invoking backup data is provided. There
might be a time lag between the primary and backup data
sources. Ideally, the transaction would involve the backup
copies so that when a transaction is complete it is also backed
up; but if performance limits this capability, a method to
maintain consistency when promoting the backup to primary
is provided.

Serializability is a property of a database such that there is a
valid sequence of events that could have resulted in the
database state for all externally visible states of the database.
In particular, intermediate internal states involved in
transactions are not accessible to external entities. This
ensures that actions are taken in the correct order. In some
cases, the database manager reorders requests for
performance or other reasons. However, this can result in
inconsistencies. For example, if one application queries the
value of two cells and another application increments their
values, the query of the first cell might get the updated value
while the second cell gets the old value, which could violate
assumptions about the underlying content. Different
guarantees on serializability are possible in database systems.
Stricter guarantees limit optimizations, and looser guarantees
allow more optimization.

Triggers are actions taken within a database system based on
changes that take place to its data. These are useful for
maintaining internal consistency. Instead of writing complex
applications to scan the data after each operation to check
consistency and take appropriate actions, triggers can be used
to automatically do this whenever a change is made to a
database.

Indexes allow faster querying. They provide a different way
to organize data, one that allows queries to be processed
faster than if searching an entire table. Instead of using a
search that looks through the table entries to find values that
match a query, the index is used to directly point to the rows
in the table that have that value. One implementation involves
a binary tree to search for the value in logarithmic time
instead of linear time.

Data cubes and data grids are a way to use a database to store
aggregate information across multiple categories. For
example, if a database keeps track of sales, with attributes for
location, date, and type, a data cube would include
automatically generated entries that sum across all locations,
all dates, all types, any combination of two categories, and a
grand total across all data. This makes aggregating queries
fast, since it involves a single lookup instead of aggregating
across large numbers of entries. Other variations of cubes
allow different dimensionality (e.g., two-dimensional) or
aggregation functions (e.g., average or max), but the same
concepts apply.

52 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 4 - YEAR 2015 ISSN: 1690-4524

Checkpointing is a method of periodically saving the
database state. The challenge is to do this in a consistent way
while updates and queries are being run on the database.
Saving the entire state of a database is a time-consuming
activity, so shutting down other activity while this is done is
not an acceptable solution for performance reasons. The goal
of checkpointing is to save the current state in such a way that
as far as all requesters can tell the state was saved at a given
point in time.

Logging captures the time and nature of all requests. When
combined with checkpointing, logging allows reconstruction
of a “broken” database. The last checkpointed version can be
loaded, and then the history in the log files can be repeated
starting at the time of the checkpoint. This requires
checkpointing information to be included in the log files.

Databases can allow or deny actions to different users based
on authorization rules. In ELS systems, services are the front
end of all databases, so these rules are not needed for
individual web browser requesters. However, for an exposure
service that reads only from a database, it would be beneficial
to allow read-only permission for that service, so database
authorization rules are important for ELS systems even
though the database authorization is not strictly part of the
ELS security model.

Although the underlying data structures are not always made
available at the database service layer of abstraction, certain
common patterns should be made available or used, such as
B-Trees and hash tables. A B-Tree provides a balanced tree
structure to optimize query performance, and a hash table
provides a constant time lookup for arbitrary data sets.

Recent news reports are replete with instances of database
compromises, theft of data, and other incursions. To
understand the vulnerabilities, we should first examine how
database applications are currently organized.

4. ENTERPRISE RESOURCE PLANNING

Access to a database is normally organized along the lines of
a business software solution. Enterprise resource planning
(ERP) is business management software—typically a suite of
integrated applications—that a company can use to collect,
store, manage, and interpret data from many business
activities, including product planning, cost, manufacturing,
service delivery marketing, and sales. The form is complex
and involves self-sufficiency on everything from security to
external interfaces. The basic form is shown in the Figure 5.

The complexities associated with ERP are due, in part, to
control of security and other aspects. However, since the ERP
does not use web service approaches (end-to-end approaches
with distributed authentication, and authorization), they must
be treated as legacy and untrusted from the high-assurance
standpoint.

ERP as a Legacy System
There are two aspects of interfacing with a legacy system.
The first is control of the attributes associated with an
identity, and the second is the sanitization and checking of
communications and data that an untrusted system provides.
Figure 6 shows a somewhat simplified version of the ERP
with the security interfaces in place. In the figure, external
interfaces have been removed since they will not be
discussed.

Figure 5 ERP Overall Organization

Figure 6 ERP as a Legacy System

ERP Attribute System Synchronization
Large-scale legacy systems (such as the ERP) maintain their
own attributes for users and establish roles and privileges
based upon those attributes. Current updating may or may not
happen based upon manual input. Notifications of changes
within the enterprise are not uniform (and often not in a form
easily used by legacy system administrators), and updating
may or may not occur. This leads to an unacceptable delay in
adjusting to changes within the enterprise. Attribute
synchronization between the legacy system and the Enterprise
Attribute System (EAS) may be undertaken to allow a more
automated adjustment to the tempo of operations. This
requires a synchronization system and changes to the legacy
system for compatibility in definitions of roles, etc.

The synchronization system described above must meet the
following considerations:

• Not all EAS entities will be in legacy databases;
however, all legacy identities should be in the EAS.

• Each Identity in a legacy database has roles and
privileges based upon attributes.

• Each identity in the legacy has enterprise-level
attributes.

• Maps must be established between the EAS attributes
and the legacy roles and privileges.

• Local naming may differ from that for Enterprise
Distinguished Name (DN), but it can be mapped to the
enterprise identity.

• Some EAS attributes currently map to legacy roles and
privileges.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 4 - YEAR 2015 53

• The enterprise must add and maintain other attributes in
the EAS that are needed to establish legacy roles and
privileges.

• For Identities that occur in both, EAS contains attributes
(for each identity) that can map to legacy roles and
privileges.

• EAS will be maintained and reflect the current attributes
of all its active entities, including those attributes added
for legacy mappings.

• The legacy (Access Manager Interface) will import
(periodically or on demand) changes to attributes of
identities in its stores as reflected by changes in EAS
identity attributes.

• The legacy will remap its roles and privileges based
upon updated attributes.

• The legacy roles and privileges will be synchronized and
current with EAS attributes after each update mapping.

ERP Border System

Figure 7 Legacy Border System Functionality

The extent to which the border system must translate/mediate
communications depends on the Non-ELS system. The
border system is in the ELS enclave unless the particular
Non-ELS enclave opts to provide some of the functionality in
its environment, which is preferable because PKI enabled
Non-ELS enclaves should synchronize access and privilege
attributes with the EAS to simplify the process. However, the
main assumption is that Non-ELS systems do not change.
Access and privilege resides with the Non-ELS enclave
Identity and Access Management (IDAM). For Figure 7, the
communications flows are:

0. Standard ELS flows for browser SAML request to STS,
with call to EAS for claims. Browser window info
includes the STS name, Application Name, Border
service name, and content object name.

1. The browser calls Border System Service (BSS) using
standard ELS Authentication and Authorization.

2. The trusted application within BSS creates a NEW
trusted application for a specific user call, NEW trusted
application calls Non-ELS identity system with its own
credentials [if the identity system is DN-enabled and
PKI-enabled or else has an account with the identity
system and an authentication credential recognized by
the trust system] with request for local identity and

authentication credentials based on DN of the original
requester.

3. The trusted application fork/execs untrusted application
and passes local identity authentication credential and
application name/content object name to untrusted
application via local IP.

4. The untrusted application establishes a connection to
non-ELS Application using local ID and authentication
credentials.

5. The untrusted application sends a request to non-ELS
Application of content object name.

6. The non-ELS Application sends a request to identity
system with local ID of Untrusted Application for
authorization credentials.

7. The non-ELS Application determines access, retrieves
content from store, and sends response(s) to untrusted
Application.

8. The untrusted application passes a response to the
trusted application (at session close, the untrusted
application terminates) special handling, including
sanitization—offline.

9. The new trusted application sends the content to the
browser (on session close the NEW trusted application
terminates and clears state). Note that these can also be
threads of a single process.

5. HARDENING ERP DATABASE SYSTEMS

ERPs contain a number of applications (for specific
functionality), and a back-end that will provide attributes
related to identities. These applications are normally identity-
based and often username/password-enabled. The sources of
attributes may contain local stores that need to be maintained
for the specific database, and of course, all of the interfaces
need to be secured. To discuss the hardening of the ERP, we
have further simplified the diagram, as shown in Figure 8.

Figure 8 The Simplified Organization of an ERP

Hardening will occur in five stages, discussed below:
1. Encryption of data at rest;
2. Encryption of data in transit;
3. Claims-based identity, access, and privilege;
4. Hardening the Application for Accessing Databases
5. Applying homomorphic encryption processes to the

database.

Hardening Stage One – Encryption of Data at Rest
Figure 9 shows the basic idea. All data within the database is
encrypted as it sits in storage. This stops any threats that are
present from benefitting from picking up the entire stored

54 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 4 - YEAR 2015 ISSN: 1690-4524

database and exporting it. Many database systems already do
this. It should be automatic and built into the storage system.

Figure 9 Encryption of Data at Rest

Hardening Stage Two – Encryption of Data in Transit
Although this may seem obvious, many of the
implementations have not encrypted all of the links. Links
within the spaces considered to be the ERP are often
considered trusted, but as we have seen again and again, such
spaces may contain threats, at least for a while. The preferred
process for enterprise-level security is TLA-based bi-lateral
authentication.

Figure 10 Encryption of Data in Transit

Hardening Stage Three – Claims Identity, Access, and
Privilege
This stage is more difficult, but much more rewarding. Figure
11 below shows that a number of interfaces are completely
eliminated and their vulnerabilities are no longer a problem.
Many of these old software interfaces went outside of the
ERP system. The claims-based system will be assumed from
this point forward. The hardening does not stop here,
however, and the fourth stage is discussed in the next few
sections.

Figure 11 Implementation of Claims-based Identity,

Access, and Privilege

Hardening Stage Four – Least Privilege for Application
We will proceed from the position that the databases are
claims-driven as opposed to account-driven. Most database
systems maintain accounts for users. These accounts have
privileges and status for each individual, are expensive to
maintain, and are error-prone. With ELS we have two basic
credentials, the PKI for identity and SAML for access and
privilege. The basic security model indicates that all
functionality is realized by web services. This precludes
database grazing, which is a situation in which the requester
can peruse most of the database at once. This is to be
preceded by PKI-based mutual authentication and a TLS
pipeline and followed by a SAML token for access and
privilege. However, that still leaves two paradigms for
database operations (application-driven and data-driven). To
illustrate the difference, the following section contains a
notional example whereby a financial database is accessed by
an individual who has the credentials of a Financial Analyst.

Role-Based Access
The enterprise financial database (EFD) has many predefined
roles. These are determined by the data owner, and placed in
the format of an Access Control requirement (ACR) for
storage in the enterprise service registry. The roles may be
arbitrarily complex since the claims engine will compute
whether or not they are satisfied and provide any variables or
restrictions requested. A few are defined below:

1. Financial analyst is determined by position, training, and

job identifier.
Financial Analyst =>
a. manager and above, AND
b. job identifier=xxx12, AND
c. training=[basic finance (within last 5 years) AND

financial Analysis (within last 5 years)] OR [BS,
accounting or finance (within last 10 years)] OR waiver.
RESTRICT

a. sub area q unless supervisor is corporate director or
above.

b. data restricted to current location code. AND
c. cannot update any project over $5M UNLESS a waiver

is issued for the individual AND
d. Additional restrictions may be included.

2. Financial Supervisor is determined by position, training,
and job identifier.
Financial Supervisor =>
a. manager and above, AND
b. job identifier=xxx14, AND
c. training=[basic finance (within last 5 years) AND

Financial Analysis (within last 5 years)] OR [BS,
Accounting or finance (within last 10 years)] OR waiver
is issued for the individual.
RESTRICT

a. cannot update any project over $5M until he has been
using the system 6 months, OR

b. waiver is issued for the individual.
3. Financial Auditor is determined by training and job

identifier.
Financial Auditor =>
a. job identifier=xx316, AND
b. training=[basic finance (within last 5 years) AND

Financial Analysis (within last 3 years) AND Financial
Audit (within last 3 years)) OR (MS, Accounting or
finance (within last 15 years)) OR waiver.

RESTRICT
a. data restricted to audit location code.
b. …

4. Bookkeeper …
5. Quality Control Specialist …
6. Administrator …
7 ….

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 4 - YEAR 2015 55

Application-Driven Access
Each of the roles must be coded for operations. For
illustration we will deal only with the Financial Analyst in
this example—who, in this case, is Fred2345432, or just Fred.
The evolution is the normal preparation for the access and
privilege associated with an application or service. The
figures below show the evolution of the access control, which
involve most of the services in the enterprise attribute
ecosystem.

The process begins with the generation of a SAML token.

Table 1 Basic SAML for Database Operations

SAML: Assertion

Version ID Version 2.0 Required

ID SAML ID Required

Issue Instant Timestamp Required

Issuer (content) Required

Signature (content) Required

Subject User Required - X.509
Identity

SAML: Attribute Statement

Subject User For local use

 Claims include
 Roles: and restrictions

(content) may include
parameters.

SAML: Conditions

NotBefore (content) Timestamp

NotAfter (content) Timestamp

Audience (content) Target Service

Figure 12 Application-Driven Access

The application (through the use of SAML) has the security
context of the user. The application has full privilege with the
database and is trusted to limit the user to his/her security
context.

Application-Driven Annotated Example
Fred is the Chicago Branch Manager. The definitions of the
various roles can be used to compute Fred’s claims. Fred is
evaluated based upon the enterprise data and he is provided a
claim of Financial Analyst but with some restrictions as
shown in the table below.

Table 2 Basic Data Evaluation for Fred
Financial Analyst => Fred Claims

Engine for Fred

manager and above,
AND

Chicago Branch
Manger

True

job identifier = Job code =43212 True

xxx12, AND

training=[basic
finance (within last 5
years) AND
(Financial Analysis
(within last 5 years)]
OR
[BS, Accounting or
finance (within last
10 years)] OR

waiver.)

Training = training on
basic AND
finance(8/4/2012),
AND
(Financial analysis
(6/5/2010), BS
Mathematics Purdue
(6/1/2000),) OR
On the enterprise
Training Waiver list
group for Financial
Analysts (TWFIN)

True AND
True AND

(False or True)
=True

Overall Fred =
Financial
Analyst

RESTRICTIONS

sub area q unless
supervisor is
corporate director or
above.

supervisor (all
billets report to 43200
or 43201) is Field
Office Manager

False Supply
Notq token to
application

Data restricted to
location code. AND

Location Code =
Chicago

Supply
Chicago token
to application

Cannot update any
project over $5M
UNLESS a waiver is
present in the
enterprise stores

Not in enterprise
group for
($5Mupdatewaiver)

False supply
Not$5M+
token to
application

Table 3 SAML for Fred (Application-Driven)

SAML: Assertion
 Version ID Version 2.0
 ID X34.?thik045ml23
 Issue Instant 12:11:00 06 May 2014
 Issuer www.securitytokenserver3.net
 Signature (content)
 Subject Fred- X.509 Identity
SAML: Attribute Statement
 Subject Fred2345432
 Claims: Role = Financial Analyst Data= Notq,
Chicago, Not$5M+
SAML: Conditions
 NotBefore 12:11:00 06 May 2014
 NotAfter 12:16:00 06 May 2014
 Audience www.mysqldata2.net

For databases, the application-driven approach has the
following advantages and disadvantages:

Advantages:
1. The data owner does not have to know the database

schema in order to specify access and privilege.
2. The service controls Fred’s interaction with the database.
3. Database administrators may or may not establish CRUDs

for the role in question.

Disadvantages:
1. The service developer must know the database specifics.
2. The service is granted full access to the database (to

accommodate the different users.
3. The service computes what is allowable (CRUD) and send

computed SQL for what it believes are reasonable requests
consistent with Fred’s authorities.

56 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 4 - YEAR 2015 ISSN: 1690-4524

Data-Driven Operations
A number of additional requirements are needed for data-
driven applications:

1. Database schema must be known to the developer of the

access control requirements. Assume column authorization
defined CRUDs

2. Elements in the database (when they represent the same
thing in the enterprise attribute store (EAS) must be
identical (and common definition) to the elements in the

EAS. (Example: Location code in the database is a three-
character code. It must be the same code in the EAS—
when multiple databases use the same value, they must all
have the same representation as the EAS).

3. The database must be prepared: The column CRUD
permissions are set in the database for each role (Figure
13).

4. CRUD by role:

Figure 13 CRUD by Role

a. A view template is created (Figure 14) by Role

showing all columns that a role can view.
b. A stored program is created that will provide a

tailored view for each role as tailored by the
individual attributes in the CRUD security of the role.
[14, 15].

c. This view can only be restricted, not enhanced. If
enhancement is desired, a new role must be defined.

5. View restrictions are by column but apply to rows
(Example: Project Location = ‘Chicago’).

6. When more than one role is in SAML, the application must
ask the requester which role is being exercised.

7. We assume for this example a column-organized relational
database. The claims can be built for any database and the
former is for illustration only. For the database, the
permissions are defined in terms of CRUD, normally by
columns. The database also applies these CRUD elements
for the role. In an identity-based access control system,
they would be written for each identity. The use of roles
and restrictions simplifies the definitions for an appropriate
view to be computed.

Transfer of the SAML to a stored program in the database to
set the view for the role as limited by other factors. For
example, Columns and their CRUDSs are set in the stored
view for each role. Rows are restricted by setting acceptable
values in various columns. The stored program validates the
SAML, resolves the rol, and sets the view in the security
context of the role (for the application of CRUDs to be
transferred to the application for further transmittal to the
user). The application must have at least four SQL queries
programmed in. These include:

1. Execute stored program for view and security context.
2. Create – New entry in the stored view and security context.
3. Update – (column, row) in the stored view and security

context are updated.
4. Delete – (column, row) in the stored view and security

context are deleted.

Any violation of the CRUD for the context view returns an
error.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 4 - YEAR 2015 57

Figure 14 View Template for Financial Analyst

Data-Driven Annotated Example
Fred is evaluated by the claims engine, and claims are slightly
modified based upon the database schema and the
instructions to the stored program as shown in the table
below.

Table 4 Modified SAML Data for Fred (Data-Driven)

The application authenticates itself to the database and
triggers the stored program—the SAML for Fred is
transferred as shown in Figure 15.

Figure 15 Posting SAML to Stored Program

The stored program verifies and validates the SAML and
pulls up the view template stored in the permissions for
Financial Analyst. The stored program then applies the
restrictions to the view. This restricted or tailored view is
provided to the application for action. Actions are performed,
but only in the context of the CRUDs in the tailored view.
The view is then updated for further work. The stored
program modifies the view as shown in Figures 16 and 17.

SAML: Assertion

Version ID Version 2.0

ID X34.?thik045ml23

Issue Instant 12:11:00 06 May 2014

Issuer www.securitytokenserver3.net

Signature (content)

Subject Fred - X.509 Identity

Subject Fred2345432

Claims:

Role = Financial Analyst
Restrict: “Project” ≠ ??????q

Restrict: “Project Location”= “Chicago”
Restrict: “Total Value” >=5,000,000
(content)

SAML: Conditions

NotBefore 12:11:00 06 May 2014

NotAfter 12:16:00 06 May 2014

Audience www.mysqldata2.net

58 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 4 - YEAR 2015 ISSN: 1690-4524

Figure 16 Tailoring the View for Data-Driven Access and Privilege

Figure 17 Tailored View for Financial Analyst Fred

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 4 - YEAR 2015 59

The CRUDS in the database will be enforced for the
restricted view. Figure 18 shows the exchange with the user.
Only accessible data leaves the database.

The A in figure 18 is:
A scripted exchange with the application about a user request
related to the tailored view (requests are not filtered).

The B in figure 18 is:
SQL Requests (Read is assumed in the view):

1. Create – New entry—stored view and security context
2. Update – (column, row)—stored view and security

context
3. Delete – (column, row)—stored view and security

context
No other SQL requests are allowed.
For databases, the data-driven approach has the following
advantages and disadvantages:

Advantages:
1. The service has limited access to the database.
2. The database controls Fred’s interaction with the database

based upon Fred’s credentials.
3. Database administrators must establish CRUDs for the

role in question.
4. The SQL authority of the service is limited and verified

by the database.

Disadvantages:

1. The data owner does have to know the database schema in
order to specify access and privilege.

2. Views are moved multiple times.
3. The service computes what is allowable (CRUD) and sends

computed SQL for what it believes are reasonable requests.

Figure 18 Data-Driven Exchange with User

Hardening Stage Five – Homomorphic Encryption
Homomorphic techniques allow encrypted queries of
encrypted data. The techniques have been proven in the lab,
but are currently impractical. Of current concern is partial
homomorphic encryption of databases, which may be
practically applied to Sequential Query Language (SQL)
database queries. [16-20].

6. SUMMARY

We have reviewed the basic approaches to the restriction of
database access, and the assignment of privilege with
databases. The common approach to a web service front end

of a Database Management System (DBMS) requires the web
service to restrict access and privilege based upon the user
context. In doing this it must be provided with full access and
privilege to the database, and be trusted to limit user access
and privilege. We reviewed the high-assurance security
paradigm and the changes that must be made for hardening
the security associated with database operations. The
suggested approaches build increasing security by adding
user-tailored restrictions directly into the database, and they
provide the web service fronting the DBMS with the same
privilege as the user. At the same time, it restricts SQL
queries to a fundamental set that will be enforced by the view
developed within the database and not at the web service. A
final area, yet to be developed is the application of partial
homomorphic techniques that keeps all transactions
encrypted.

This research is part of a body of work for high-assurance
enterprise computing using web services. Elements of this
work include bi-lateral end-to-end authentication using PKI
credentials for all person and non-person entities, a separate
SAML credential for claims-based authorization, full
encryption at the transport layer, and a defined federation
process. Many of the elements of this work are described in
[21-26].

REFERENCES

[1]. Jeffrey Ullman 1997: First course in database systems,
Prentice–Hall Inc., Simon & Schuster, p. 1, ISBN 0-13-
861337-0.

[2]. Tsitchizris, D. C. and F. H. Lochovsky (1982). Data
Models. Englewood-Cliffs, Prentice–Hall.

[3]. Beynon-Davies P. (2004). Database Systems 3rd
Edition. Palgrave, Basingstoke, UK. ISBN 1-4039-
1601-2.

[4]. Ken North, “Sets, Data Models and Data
Independence,” Dr. Dobb’s, 10 March 2010.

[5]. William Hershey and Carol Easthope, “A set theoretic
data structure and retrieval language,” Spring Joint
Computer Conference, May 1972 in ACM SIGIR
Forum, Volume 7, Issue 4 (December 1972), pp. 45–
55, DOI=10.1145/1095495.1095500.

[6]. Description of a set-theoretic data structure, D. L.
Childs, 1968, Technical Report 3 of the CONCOMP
(Research in Conversational Use of Computers)
Project, University of Michigan, Ann Arbor, Michigan,
USA.

[7]. Feasibility of a Set-Theoretic Data Structure: A
General Structure Based on a Reconstituted Definition
of Relation, D. L. Childs, 1968, Technical Report 6 of
the CONCOMP (Research in Conversational Use of
Computers) Project, University of Michigan, Ann
Arbor, Michigan, USA.

[8]. “TeleCommunication Systems Signs up as a Reseller of
TimesTen; Mobile Operators and Carriers Gain Real-
Time Platform for Location-Based Services.” Business
Wire. 2002-06-24.

[9]. “Structured Query Language (SQL).” International
Business Machines. October 27, 2006. Retrieved 2007-
06-10.

[10]. Internet Engineering Task Force (IETF), RFC 2459,
Internet X.509 Public Key Infrastructure, January 1999.

[11]. Request for Comments: The Transport Layer Security
(TLS) Protocol Version 1.2.
http://tools.ietf.org/html/rfc5246, August 2008

[12]. P. Mishra et al. Conformance Requirements for the
OASIS Security Assertion Markup Language (SAML)
V2.0. OASIS Standard, March 2005.

[13]. William List and Rob Melville, IFIP Working Group
11.5, Integrity In Information, Computers and Security,

60 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 4 - YEAR 2015 ISSN: 1690-4524

Volume 13, Issue 4, pp. 295–301, Elsevier,
doi:10.1016/0167-4048(94)90018-3, 1994.

[14]. My SQL stored Programs and Views.
http://docs.oracle.com/cd/E19078-01/mysql/mysql-
refman-5.0/stored-programs-views.html#stored-
routines-syntax

[15]. Purdue on Using stored procedures to set views
https://www.cs.purdue.edu/homes/ninghui/projects/Top
ics/DB_FineGrained.html

[16]. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.:
Private database queries using somewhat homomorphic
encryption. In: Jacobson, M., Locasto, M., Mohassel,
P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol.
7954, pp. 102–118. Springer, Heidelberg (2013),
Practical Packing Method in Somewhat Homomorphic
Encryption 49.

[17]. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama,
K., Koshiba, T.: Packed homomorphic encryption
based on ideal lattices and its application to biometrics.
In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E.,
Xu, L. (eds.) CD-ARES Workshops 2013.

[18]. Paillier, P.: Public-key cryptosystems based on
composite degree residuosity classes. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999).

[19]. Raluca A. Popa, Catherine M.S. Redfield, Nickolai
Zeldovich, Hari Balakrishnan “CryptDB: Processing
Queries on an Encrypted Database,” Comm. ACM, vol.
55, no 9, Sept. 2012 (also Proc. of 23rd ACM SoSP,
Sept. 2011).

[20]. R. A. Popa, F. H. Li, N. Zeldovich, “An Ideal-Security
Protocol for Order-Preserving Encoding,” Proc. of the
2013 IEEE Symposium on Security and Privacy, San
Francisco, CA, May 2013. Coimbatore Chandersekaran
and William R. Simpson, The 3rd International Multi-
Conf. on Engineering and Technological Innovation:
IMETI2010, Volume 2, “A SAML Framework for
Delegation, Attribution and Least Privilege,” pp. 303–
308, Orlando, FL, July 2010.

[21]. William R. Simpson and Coimbatore Chandersekaran,

The 3rd International Multi-Conference on Engineering
and Technological Innovation: IMETI2010, Volume 2,
“Use Case Based Access Control,” pp. 297–302,
Orlando, FL., July 2010.

[22]. William R. Simpson and Coimbatore Chandersekaran,
International Journal of Computer Technology and
Application (IJCTA), “An Agent-Based Web-Services
Monitoring System,” Vol. 2, No. 9, September 2011,
pp. 675–685.

[23]. William R. Simpson, Coimbatore Chandersekaran and
Ryan Wagner, Lecture Notes in Engineering and
Computer Science, Proceedings World Congress on
Engineering and Computer Science 2011, Volume I,
“High Assurance Challenges for Cloud Computing,”
pp. 61–66, San Francisco, October 2011.

[24]. Coimbatore Chandersekaran and William R. Simpson,
Lecture Notes in Engineering and Computer Science,
Proceedings World Congress on Engineering 2012, The
2012 International Conference of Information Security
and Internet Engineering, Volume I, “Claims-Based
Enterprise-Wide Access Control,” pp. 524–529,
London, July 2012.

[25]. William R. Simpson and Coimbatore Chandersekaran,
Lecture Notes in Engineering and Computer Science,
Proceedings World Congress on Engineering 2012, The
2012 International Conference of Information Security
and Internet Engineering, Volume I, “Assured Content
Delivery in the Enterprise,” pp. 555–560, London, July
2012.

[26]. Coimbatore Chandersekaran and William R. Simpson,
International Journal of Scientific Computing, Vol. 6,
No. 2, “A Uniform Claims-Based Access Control for
the Enterprise,” December 2012, ISSN: 0973-578X, pp.
1–23.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 4 - YEAR 2015 61

	SA219HD15

