

 A Connection Block Implemented in the RTL Design

for Delay Time Equalization of Wave-Pipelining

Tomoaki SATO
Computing and Networking Center, Hirosaki University

Hirosaki 036-8561 Japan

and

Sorawat CHIVAPREECHA
Department of Telecommunication Engineering,

Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang
Bangkok 10520 Thailand

and

Phichet MOUNGNOUL

Department of Telecommunication Engineering,
Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang

Bangkok 10520 Thailand

ABSTRACT

Field-programmable gate arrays (FPGAs) which have many
advantages are used in various devices. Use of the FPGAs is not
only prototyping and verification of circuits but also an
important part of the commercial products. A CPU of hardcore
is required in the FPGAs. But it has a problem with the
architecture of the CPU is limited. The method of solving these
problems is developing a system on a chip (SoC) which is
equipped with FPGAs and a customized CPU. From the view
point of ease of design and shortening a design period,
development techniques on a register-transfer level (RTL) using
a standard cell library are essential. On the other hand, applying
this method without using a design technique has a problem in
terms of throughput. In this paper, a connection block for routing
using wave-pipeline technique is proposed to solve the
throughput problems. This block is evaluated, and it is shown
that it is useful for wave pipeline operation.

Keywords: Connection Block, Field-Programmable Gate
Arrays, Delay Time Equalization, Wave-Pipelines, IPS,
Reconfigurable Circuits.

1. INTRODUCTION

Field-programmable gate arrays (FPGAs) that easily achieves
specialized circuits by using hardware description languages
(HDLs) are used for various devices. Usage of the FPGAs is not
only prototyping [1] and verification of circuits [2] but also an
important part of the commercial products [3]. Using FPGAs has
advantages as follows:
 Easy change of circuits
 Can be verified in circuits
 Significant reduction of development time
 Cost reduction of a small number of products

Furthermore, a central processing unit (CPU) core is built into
some FPGAs. On the CPU is capable of running an operating

system (OS) such as Linux. The OS running enables the
managements of task, memory, file control and peripherals.
After that, because an application software can share the
interface by the provision of an application programming
interface (API), the software development becomes easy.

Architecture and micro-architecture of the CPU built into the
FPGA chip is determined by the FPGA manufacturer, and the
FPGA users cannot customize it. As customizable CPU by the
FPGA users, a soft-core CPU is used. This CPU works on
FPGAs, which is disadvantageous in terms of operating
frequency and power consumption than the CPU built into the
FPGA chip.

The method of solving these problems is developing a system on
a chip (SoC) which is equipped with FPGAs and a customized
CPU. In particular, from the view point of ease of design and
shortening a design period, development techniques on a
register-transfer level (RTL) using a standard cell library is
essential [4-7]. Conventional FPGAs is developed at the RTL.
Therefore, FPGAs developed by the RTL is more
disadvantageous than conventional FPGAs in the point of a
throughput.

Wave-pipeline technique [8-10] is used as a design method to
improve the throughput of circuits on FPGAs [11]. The
technique leads pipelined operations without using registers.
Therefore, the advantage that power consumption doesn't
increase is possessed. This technique achieves high-speed
pipeline operations by reducing the difference between the
maximum delay time and the minimum delay time. However,
the use of the connection blocks in FPGAs has the problem that
the delay time difference extends.

In this paper, a connection block for routing in wave-pipeline
operations is proposed for the purpose of solving this problem.
The use of this block achieves that to reduce the significant
impact delay time difference in high throughput in wave-
pipelined operations. Furthermore, the connection block has to

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 1 - YEAR 2016 49

be developed in the RTL. Therefore, developed algorithm is
required to be applied to the RTL design. In this paper, the
development procedure of this block is shown.

This paper is organized as follows. Section 2 describes the
outline of FPGAs implemented in the RTL design and the
Connection Blocks for the FPGAs. Section 3 proposes the delay
time equalization of the connection block for high-throughput
operations in the FPGAs. The connection block is evaluated in
Section 4. Finally, Section 5 presents our conclusions.

2. CONNECTION BLOCKS ON FPGAS IMPLEMENTED
IN THE RTL DESIGN

A connection block is used to connect routing wires and logic
blocks. Transistors are used in conventional FPGAs as the
switch of the connection block. In the FPGAs that we design
using standard cells, the switch of the connection block is a
selector.

Figure 2. A connection block developed in the RTL design.

SELSELSEL

SELSELSELSEL

SELSELSEL

SELSELSEL

F

X3

X2

X1

RI(3) RI(0)RI(1)RI(2)

RO(3) RO(0)RO(1)RO(2)

Figure 1. The structure of conventional FPGAs

50 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 1 - YEAR 2016 ISSN: 1690-4524

This block is developed by using the development environment
and the standard cell library shown in Table 1. Figure 2 shows
the connection block for the RTL design. Figure 3 is the
connection block of Figure 2 developed by the RTL design. This
is the results of the logic synthesis using the logic synthesis tool
and the standard cell library in Table 1. This block is not applied
equalization of delay time. Therefore, there is a problem that the
delay time varies greatly depending on the routing path.

Table 1. Design environments

OS Cent OS 5.9 x86
CPU Intel Core 2 Duo E6600
Memory 2 GBytes

Logic
synthesis

Synopsys Design Compiler H-
2013.03-SP2

Technology Rohm 180 nm C-MOS

Standard cell
library

Tamaru/Onodera Lab. of Kyoto
Univ. [12]

Six selectors are used in the route from RI(2) of the input port to
X1 of the output port shown in Figure 1. Reason for such a route
is to secure the three signal lines. Thus, if the route uses the
connection block developed in RTL, the route should use a
minimum of three selectors of the vertical column. As a result,
each of the delay time of the signal lines shown in Figure 1 is
significantly different. The difference is shown in Table 2. The
delay time difference further expands by multiple use this
connection block.

Table 2. Delay time difference of Figure 2

Routes Delay times
RI(0) -> X3 0.27
RI(1) -> X2 0.87
RI(2) -> X1 1.76

Figure 3. A connection block developed by the RTL design.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 1 - YEAR 2016 51

3. DELAY TIME EQUALIZATION

The authors adjust delay times in buffer insertions in order to
reduce the delay time difference. Previous study of the
connection block for wave-pipelined operations is being
conducted by us in [7]. This study is needed to timing adjustment
in wave-pipelined circuit designs. Meanwhile, this paper is the
study to reduce the delay time difference of the routing.

In this delay adjustment, standard cells with a buffer or inverter
are used. The specific development procedure is as follows:
 The delay times of each path are examined using a logic

synthesis tool
 The delay time difference of each path is calculated
 Delay time adjustment circuits in accordance with the

insertion of delay time elements are made based on the
delay time difference

 Delay time adjustment circuits are inserted into the
connection block

Delay elements are inserted into the respective X1 and X2 of
output ports shown in Figure 4. Figure 5 is the results of the logic
synthesis using the design environments of Table 1. Each delay

Figure 4. Delay elements inserted into the connection block.

SELSELSEL

SELSELSELSEL

SELSELSEL

SELSELSEL

F

X3

X2

X1

Buffers for timing
adjustment

RI(3) RI(0)RI(1)RI(2)

RO(3) RO(0)RO(1)RO(2)

Figure 5. A connection block for delay time equalization.

52 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 1 - YEAR 2016 ISSN: 1690-4524

time is calculated based on the output delay time of the X1. Insert
buffers created based on this calculation is shown in Figure 6.
The delay times of the delay elements are given in Table 3.

All of these are possible to run on Design Compiler of Synopsys.
In other words, the design of the connection block in based on
the equalized delay time can be made automatically by creating
a script on the CAD. This is essential in the development of
FPGAs by the RTL.

Table 3. Delay times of Figure 6

Delay elements Delay times [ns.]
Inserted to X3 1.10 - 1.26
Inserted to X2 0.50 - 0.66

4. EVALUATIONS

The connection block for delay time equalization in wave-
pipelining developed in this study is shown in figure 5. Using
the development environment of table 1, the delay times of each
path are calculated. The delay times of each route are shown in
Table 4.

These results reveal that the different delay time is reduced to
approximately 1/5. Since these results are a delay time difference
per block, actual circuits are further expanded the delay time
difference.

Table 4. Delay time difference of Figure 4

Routes Delay times Delay type
RI(0) -> X3 1.42 Minimum
RI(1) -> X2 1.42 Minimum
RI(2) -> X1 1.70 Maximum

The clock cycle time of wave-pipelining, ܶ, is given by
the following equation.

 ܶ ൌ ሺܦெ െ ெூேሻܦ ைܶ. (2)
Here,
 ,ெ: The maximum delay pathܦ
 ,ெூே: The minimum delay pathܦ

ைܶ: Overhead time.
The clock cycle time of Figure 2, ܶଵ, is given by the following
equation.

 ܶଵ ൌ ሺ1.76 െ 0.27ሻ ைܶ. (2)
Also, the clock cycle time of Figure 4, ܶଶ, is provide by the
following equation.

 ܶଶ ൌ ሺ1.70 െ 1.42ሻ ைܶ. (3)
It can be expressed as
 ܶଶ ܶଵ. (4)
Thus, the connection block which has been proposed in this
study is excellent in terms of throughput.

5. CONCLUSIONS

It is imperative for circuits on FPGAs that are developed by RTL
to increase the throughput of the routing. In this paper, delay
equalizations of the connection block for the FPGAs were
performed in order to increase the throughput of wave-pipelined
operations. The delay time difference of this connection block
was confirmed by using 0.18um C-MOS technology. The delay
time difference is reduced to 1/5 of the previous state of delay
equalizations. That is, the delay time difference of the routing
for connecting between the logic blocks is reduced, it becomes
possible to increase the throughput of circuits on the FPGA.

In future research, the proposed algorithm is described as a script
for the synthesis tool. As a result, the connection blocks for delay
equalization are implemented by an automated design.

ACKNOWLEDGMENT

This work has been supported in part by VLSI Design and
Education Center (VDEC), the University of Tokyo in
collaboration with Synopsys, Inc. and KAKENHI Grant
Numbers 25330149. The standard cell library used on this
research was developed by Tamaru/Onodera Lab. of Kyoto Univ.
and released by Prof. Kobayashi of Kyoto Inst. of Tech.

REFERENCES

[1] M. Gschwind, V. Salapura and D. Maurer "FPGA

prototyping of a RISC processor core for embedded
applications," IEEE Trans. Very Large Scale

(a)

(b)

Figure 6. Delay elements (a) Inserted to X3 (b) Inserted

to X2.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 1 - YEAR 2016 53

Integration (VLSI) Systems, vol. 9, no. 2, pp.241-250,
2001.

[2] C. Xia-Tao, W.-K. Huang, N. Park, F. J. Meyer, and F.
Lombardi, "Design verification of FPGA
implementations," IEEE Design & Test of Computers,
vol. 16, no. 2, pp. 66 - 73, 1999.

[3] R. Duncan, P. Jungck, A. Norton, K. Ross and G. Triplett,
"FPGA-Driven Table System to Accelerate Network
Flows," Proc. of 2013 16th International Conference on
Network-Based Information Systems (NBiS), pp. 1 - 8 ,
2013.

[4] T. Sato, S. Chivapreecha and P. Moungnoul, “Wiring
Control by RTL Design for Reconfigurable Wave-
Pipelined Circuits,” Proc. of APSIPA ASC 2014, pp.
WP1-3-1-WP1-3-6, 2014.

[5] T. Sato, S. Chivapreecha and P. Moungnoul, “A Crossbar
Switch Circuit Design for Reconfigurable Wave-Pipelined
Circuits,” Proc. of WMSCI2014, vol. II, pp. 200-2052014.

[6] T. Sato, S. Chivapreecha and P. Moungnoul, "A Logic
Block for Wave-Pipelining," Proc. of IMETI 2013, Jul.
2013, pp. 130-134.

[7] T. Sato, S. Chivapreecha and P. Moungnoul, “Fine-Tuning
of Wave-Pipelines on FPGAs Developed by the RTL
Design,” Proc. of ECTI-CON 2015 (To be published).

[8] L. Cotton, "Maximum Rate Pipelining Systems," in Proc.
AFIPS Spring Joint Computer Conference, pp. 581-586,
1969.

[9] F. Klass and M. J. Flynn, "Comparative Studies of
Pipelined Circuits," Stanford University Technical Report,
no. CSL-TR-93-579, 1993.

[10] W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu,
"Wave-Pipelining: A Tutorial and Research Survey,"
IEEE Trans. Very Large Scale Integration (VLSI)
Systems, vol. 6, no. 3, pp. 464-474, 1998.

[11] I. B. Eduardo, L. Sergio and M. M. Juan, "Some
Experiments About Wave Pipelining on FPGA's," IEEE
Trans. Very Large Scale Integration (VLSI) Systems,
vol. 6, no. 2, pp. 232-237, 1998.

[12] H. Onodera, A. Hirata, A. Kitamura, K. Kobayashi, K.
Tamaru, "P2Lib:Process Portable Library and Its
Generation System," J. Information Processing, vol.40,
no. 4, pp. 1660-1669, 1999, in Japanese.

54 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 1 - YEAR 2016 ISSN: 1690-4524

	SA732LL15

