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ABSTRACT

Presently, most computers authenticate user ID and password
before users can login these systems. However, danger soon
comes if the two items are known to hackers. In this paper, we
propose a system, named Intrusion Detection and Identification
System (IDIS), which builds a profile for each user in an intranet
to keep track his/her usage habits as forensic features with which
IDIS can identify who the underlying user in the intranet is. Our
experimental results show that the recognition accuracy of
students of computer science department is up to 98.99%.

Keywords: Forensic Features, Data Mining, Identifying
Users, Intrusion Detection, Real-time System

1. INTERODUCTION

Being widely used and quickly developed in recent years,
network technologies have provided us with new life and
shopping experiences, particularly in the fields of e-business,
e-learning and e-money. But along with network development,
there has come a huge increase in network crime. It not only
greatly affects our everyday life, which relies heavily on
networks and Internet technologies, but also damages computer
systems that serve our daily activities, including business,
learning, entertainment and so on. Forty million user files of
MasterCard and VISA were exposed in 2005 when the company
cooperating with CardSystem Solutions was hacked [1, 2].
Many people were forced to renew their credit cards to avoid
any financial loss. This event shows the importance of network
security. Besides, internal hacking is difficult to detect because
firewalls and IDSs usually only defend against outside attacks.

Currently, many systems can identify who the user logging
into a system is by deploying biotechnical verifications [3-9].
Most current computers check UID and password as an
authentication. But hackers may install Trojans to pilfer victims'
security patterns, or issue a large scale of trials with the
assistance of a dictionary to access users’ passwordsbefore they
can “legally”log in to a system. When successful, hackers may
access users’ private files or even destroy system settings. Most
host-based security systems can discover an intrusion from a
user’s logged history afterward. And most network-based
systems can detect an intrusion online [10-12]. However, to

identify who the attacker is in real-time is difficult since attack
packets are often issued with forged IPs.

In this paper, we propose a security system, named the
Intrusion Detection and Identification System (IDIS), which
mines log data to identify commands and their sequences
(together named command sequences (C-sequences in short))
that a user habitually submits and follows respectively as the
user’s forensic features. When an unknown user logs in to a
computer, the IDIS starts monitoring the user’s input commands
to detect whether he/she is issuing an attack. In the following,
we use “hacker”, “attacker”and “intruder”interchangeably as
the same terms are even defined differently by different authors.

The rest of this article is organized as follows. Section 2
introduces the related research. Section 3 describes the
framework and details of the IDIS. Experimental results are
shown in section 4. Section 5 concludes this paper and addresses
our future work.

2. RELATED WORK

Computer Forensics, which views computer systems as scenes
of a crime, is computer security technologies that analyze what
attackers have done. Most of their applications focus on how to
identify malicious network behaviors and the characteristics of
attack packets, and the way to identify attack patterns based on
their analyses. Abdullah et al. [13] used package dump tools,
such as tcpdump and pcap, to collect and analyze network
packets and to identify network attacks from different network
states and packets’ distribution.

Yu et al. [14] provided another example of integrating
computer forensics with IDS. A knowledge-based system was
deployed to collect forensic features from malicious network
behaviors. This system performed excellently in improving the
hit rate of intrusion alerts.

Yin et al. [15] proposed an approach that built a Markov
chain to describe users’normal operations. A state of the chain
records the probability of entering the next state. However, this
approach focuses on system calls generated instead of
commands submitted. Chau et al. [16] used a pattern extraction
technique to identify particular crime data, such as segmenting
and extracting a suspect from a picture on a security video.
Cabrera et al. [17] deployed sequential pattern mining to
identify attack patterns that hackers frequently submit, and
classified the modus operandi that suspects used in the
commission of crimes into predefined crime types.
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These techniques and applications truly contribute to
network security. However, they cannot easily authenticate
remote-login users, and cannot detect specific types of
intrusions, e.g., when an unauthorized user logs in to a system
with a legal UID and password. Authentication based on the
user’s operation habits is what we propose. The IDIS uses data
mining and forensic techniques to respectively analyze and
identify user operation characteristics, which as a kind of
biological characteristics are essential in identifying a user. This
system can identify attack patterns that hackers often use as
well. By long-term observation, user habits can be effectively
identified.
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3. SYSTEM FRAMWORK

The IDIS framework, as shown in Fig.1, consists of intelligent
monitor, detection server and mining server. Intelligent monitor
collects input commands from underlying user and transfers the
command sequences to detection server which compares these
commands with attack patterns real-time to discover attacks. In
IDIS, attack patterns are represented by a reverse tree, a tree of
which commands are organized in the reverse order of their
arrival from the root. If matched, detection server notifies
intelligent monitor to disconnect the session established for the
user. Mining server analyzes log data with data mining
techniques to identify user habits. The IDIS can discriminate

who a underlying user is in a concerned intranet by comparing
the user’s current inputs with all others’ habits. 

Intelligent Monitor
As an extended portion of an operating system, intelligent
monitor comprises input interceptor and system call filter (see
Fig. 2). When a user submits a command, at least one system
call will be generated. A system call generated by shell in
executing a command is compared with sensitive call table, a
table holding all sensitive calls. Once matched, the system call
will be transferred to system call filter to check to see whether
the call is safe or not. Unsafe system calls will be retained for a
further analysis. A safe one will be sent to system kernel to
perform its corresponding service.

Besides, we divide users into groups according to their
occupations. Each group G has its corresponding inhibited
commands, named class-limited command list (G) [18].
Intelligent monitor denies a user’sinput command immediately
if the command is in the user’s class-limited command list.

After the IDIS starts up, input interceptor sends a command,
request-cmd-list as shown in Fig. 3, to request monitored
command list which consists of last commands of all attack
patterns. As an input command is in the monitored command list,
this command will be held by input interceptor until detection
server replies with “safe” or “unsafe”.
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Fig. 3 Communication between intelligent monitor and
detection server.

Mining Server
Mining server extracts commands that a user has habitually used
from his/her log file, counts the frequency each command
appears in the log file, and stores the result in the user's habit
file. After that, users' habit files are mutually compared with
each other to identify common and user specific command
sequences, with which user profiles [18,20] can be then created.

Mining User Habits and Attack Patterns
A log file consists of many sessions. Each comprises commands
a user submitted within the period of time between his/her login
and the corresponding logout. Given a user’s log file, the IDIS 
processes the commands with a sliding window of size 10,
named Log-sliding window (L-window in short), to partition the
commands along their submitted sequence into k-grams where k
is the number of consecutive commands, k =2, 3, 4....10.
Besides, another sliding window of 10 commands, named
Compared-sliding window (C-window in short), is also
deployed on another concerned session. This time, k’ 
consecutive commands, preserving their submitted sequence,
are extracted from C-window generating a total of (10– k’ + 1) 
k’-grams, k’=2, 3, 4,...10. Mining serverinvokes algorithm 1 to
compare each of
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by using the longest common sequence algorithm. After that,
C-window shifts one command right. The procedure repeats
until the last session of the log file is involved. Then
Log-window shifts one input command right. The whole
procedure repeats until last ten or all (if less than ten) commands
of the last second session are encountered by the L-window.

Algorithm 1: generating a habit file
Input: a log file with r sections
Output: a habit file
{
1. Let x=0, 0 x r  ;
2. while ( 1x r  ) /* from the first to the last

second session */
{y=x;
for (each of u L-windows in session x , where

| | 9u session x  if | | 10session x  ,

otherwise u=1)

{for (each of
10

2

(10 1)
k

k


  k-grams, e.g., p-gram, in

current L-window)
{while ( y r ) /* from x++ to the last session */

for (each of w C-windows in session y, where
| | 9w session y  if | | 10session y  ,

otherwise w=1)

{for (each of
10

' 2

(10 ' 1)
k

k


 
k’-grams, e.g., g-gram, in C-window)

{compare the p-gram and g-gram with the
longest common sequence algorithm;

if (the result, a common sequence,
does not exist in habit file)

insert the common sequence into
habit file with count=1;

else increase the count of the common
sequence by one;}

shift C-window one command right as a
new C-window;}

y=x+1;}
shift L-window one command right as a new

L-window;}}}

In a habit file, a line is a habit, also a common sequence,
ended by its appearance frequency. The more frequently a
common sequence appears, the higher probability the sequence
isthe user’s habit. After the habit file is constructed, each time
when the user logins and logouts later, algorithm 1 will be
invoked under the situation that current session is treated as a
L-window and log file sessions are processed by C-window to
generate new habits and to increase habit counts.

Furthermore, we can apply algorithm 1 to known attackers’
log files to extract their usage habits as attack patterns.

Create User Profiles
A user’s profile is a habit file, but each habit is ended by a 
discrimination score instead of appearance frequency. Let DScij
be the discrimination score of command sequence j, a usage
habit, submitted by a user i.

1

0

ij
ij n

tj
t

H
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H
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



(1)

Where n is the number of users in the intranet concerned, and Hij
is command sequence j’s appearance frequency in user i's habit
file. ijDSc is a floating number ranging from 0 to 1 for all i and j.
A user’s habitual command sequence, that rarely appears or has
not appeared in others’ habit files,will obtain a high score.
Those given low scores are commonly used command
sequences.

Similarity Scores
We deploy Eq. (2),
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which is frequently used to assign a weight to a term in
information retrieval domain, to calculate a weight for a
command sequence. Given a set of user habit files D = {UP1,
UP2, …, UPN} where N is the number of users in an intranet. Let
T = {CS1, CS2 …, CSMi} be the set of the sequences retrieved
from D where Mi is the number of sequences. The weight Wij of
CSi in UPj is defined as where sfij is appearance frequency of
CSi in UPj, nsj total number of sequences in UPj, AVG(ns) the
average number of C-sequences a UP has, and
log((N+0.5)/Mi)/log(N+1) is the ICPF (inverse characteristics
profile frequency) [21]. Given an unknown user x’s current 
input commands CMDs (1≦x≦N), the similarity score between

CMDs and UPj is defined as
1

p

xj ij
i

SimS W


 where p is the

number of sequences appearing in both of CMDs and UPj.

Ranking Profile Similarity score
Rank 0 sXX2845.pro 1267.878
Rank 1 sXX2816.pro 1256.459
Rank 2 sXX2819.pro 940.535
...               …
Rank 174 sXX2852.pro 0.0

a total of 655 user profiles, @ rank 2, decisive rate:
99.695%, cost 1906ms

Fig. 4 The identification of user x given sXX2819’sinput
commands as an unknown user’s current inputs. x is ranked the 
second.

Fig. 4 lists experimental results given a user x
(=sXX2819)’s input commands as an unknown user’s current 
inputs. The higher a similarity score, the higher probability x is
the user who submits these input commands.

Detection Server
As stated above, attackers' common behaviors are represented by
a reverse tree, named common reverse tree.
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Fig. 5 Representation of attackers' common behaviors

Fig. 5 gives an example. Nodes of the first level are last
commands of attackers' common behaviors. Monitored
command list consists of all commands of the first levels of the
common reverse tree. Assume that user has entered m
commands {C1, C2,…Cm} after his/her login where Ci is
submitted prior to Ci+1, i = 1, 2, … , m-1. To detect intrusion
on-line, the underlying input command Ci, 1≦i≦m, is
compared with monitored command list first. If matched, a
modified deep-first search traversal algorithm will start
traversing the sub-tree of the common reverse tree which is
rooted at Ci to see whether the user’s inputs, Cj to Ci-1, j = 1,
2,….or i-2, in the reverse order of their arrival can finally reach
a leaf node or not.

In this algorithm, when one input command Cj matches node
Nk, a node at level k, in the common reverse tree, and Cj-q, q = 1,
2, …, or j-1, with the smallest q (if there are several such Cj-q)
also matches one of Nk’s immediate child nodes, e.g., Nk+1, then
let Cj = Cj-q and try to find another Cj-q that matches one of
Nk+1’s immediate child nodes. Each time when no such Cj-q can
lead the algorithm to arrive at a leaf, the algorithm backtracks to
the last second matched node and tries to find Cj-q’that matches
Nk’s another immediate child where Cj-q’locates between C1 and
Cj-q (since on last match on Nk, the smallest q is chosen as the
next command that matches Nk+1, therefore, it should be that
q’≧q), and q’ is the smallest integer if several q’s exist. When 
one is found (at level k+1), the algorithm looks for a matched
node at level k+2. The procedure repeats until no such Cj-q can
match Nk’s immediate child or the algorithm reaches a leaf 
node. The latter is considered as an attack. Detection server
replies intelligent monitor with an “unsafe”(see Fig. 3).The
former means it is safe.

4. EXPERIMENTS

We collect 253 computer-science students' log files and 206
non-computer-science students’ log files from computer center
of TungHai University as the experimental data.

All commands extracted from a computer-science student’s
log file are saved in the user’s habit file in accordance with their
original submitted sequence. Others parameters, e.g., time and
date, are removed to simplify the scope of the following
experiments. To perform privacy preserving experiments [22],
we hid user IDs for all users in the data set involved.

Identifying Unknown Users
The first experiment, to identify an unknown user, is performed
ten times, each time we select different 75% commands from
each log file as the training data to generate his/her profile. The
remaining 25% are the test data (a test file). Given an unknown
user’s test data, if a user's similarity score, the average of its
ten-fold values, is within first x% of all users, we say the decisive

rate is x ( =(|UPs|-avg_rank)/|UPs|*100%)%, 0 ≤ x ≤ 100, where
|UPs| is the number of user profiles, and avg_rank, average of all
users’ranks, is defined as
| |

1 1

( / )

| |

qUPs

ij
i j

rank q

UPs
 


where q (=10) is the times

of experiment and ijrank is user i’s ten-fold ranks. The

experimental result shown in Fig. 6 depicts that avg_rank=2.56,
and the average decisive rate x of all users is 98.99% (=
(253-2.56)/253*100%).“Rank P”and“Cost Y ms”respectively
represent that a user profile is ranked P and the time required to
compare the user’s test file (i.e., 25%) with 253 profiles (i.e.,
75%) is Y ms.

User’s test
file

Rank Decisive
rate (%)

Cost
(ms)

1 sXX2808.tst 0 100.00 31
2 sXX2959.tst 75 88.55 375
3 sXX2811.tst 160 75.57 328
… … … … …
108 sXX2849.tst 5 99.24 62
… … … … …
253 sXX2902.tst 2 99.69 828

A total of 253 user profiles (75% portion)
A total of 253 test files (25% portion)
Total cost = 20108 msec
Average rank = 2.56
Average decisive rate = 98.99 %
Average number of commands per user profile =
165.96
Average number of commands per test file = 56.8

Fig. 6 A part of experimental results generated by a cross
comparison by comparing each user’s test data (25% of a
profile) with 253 user profiles (75%). (sXX28XX and
sXX29XX are computer science students)

Students of non-computer-science departments often use
simple and common commands, and of their log sessions are
often short and highly similar. Thus, the average decisive rate of
206 non-computer-science department students goes down to
93.33%.

Detection of Single Command Attack Pattern
To detect single command attack pattern, we randomly inserted
twenty different attack commands AC1 to AC10 to a legal
user’s log file. Before retrieving the user’s habits, we ripped off
three types of patterns including those that are legal and safe,
that contain more than one attack command, and that are not
ended by an attack command. We deleted the third because
those located after an attack command are safe according to the
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definition of single command attack pattern. Fig. 7 shows
several habits of a user. Each is ended by a single command
attack pattern.

cat cat ls cd ls AC9
cat cat ls ls AC3
cat cd cd AC2
cd vi AC6
ls cd quota AC1
ls clear ls w AC8
…

Fig. 7 User habits, each line is ended by a single command
attack pattern

After that, we selected a% of user log contents from each log
file and b% of collected attack patterns, and mixed them to
simulate attackers’inputs, which will be described below.

From 459 user log files, we extracted 76,341 commands,
from which 1423 attack patterns were extracted. Let a = b = 15
and a sliding window of size ten is used to mix an attack pattern
and legal commands. Table 1 shows the mixed patterns and the
detection results. The field “ID of an inserted pattern (inserted
location)”lists IDs of single command attack patterns followed
by their locations. They are generated by the following
procedure. Given an attack pattern (C1, C2,… , Cx), which were
mixed with 10-x consuetude log file commands R={ C’q-(10-x),
C’q-(10-x)+1,…, C’q-1} in the underlying session by randomly
inserting Ci, i = 1, 2, 3, …x-1, to any position among the
elements of R under the constraint that Cx is located at C’q
position and Ci should be prior to Ci+1 where Ci is ith command
of the pattern. After insertion, Ci might be adjacent to Ci+1 or
separated by several commands, and now the location of Cx
became q+x-1. For example, #793(11) in the first record of
Table 1 represents that the last command of attack pattern #793
(cd cd ls AC2), x=|#793| = 4, is inserted into the 8th (i.e., qth)
position of log 01982. Original C’8 becomes C’9. Commands cd,
cd and ls are mixed with those in { C’2, C’3, … , C’7 }. After
that, Cx becomes the 11th command.

Table 1 Patterns obtained by mixing log contents with single
command attack pattern and the detection results

Mixed patterns Detected attack patterns
User

log file
No. of

inserted
patterns

ID of an
inserted pattern

(inserted
location)

No. of
detected
patterns

ID of a detected
pattern (detected

location)

log0
1982

2 #632(4),
#793(11)

2 #2000(4),
#1257(11)

log0
2864

19 #7(5),
#1203(12),…

19 #1(5), #100(12),
#1270(20),…

log0
2871

9 #1382(6),
#1409(15),…

9 #810(6),
#1406(15),…

… … … … …

Nevertheless, the commands coming from both of #793 and R
individually follow their original submitted sequence.

The field “ID of a detected pattern (detected location)”
represents the ID of a detected pattern followed by a detected
location which is the position of the pattern’s last command. For
example, #1257(11) in the first record shows that attack pattern
#1257 (ls AC2), ended at position 11 of log01982, is detected.
Basically, a shorter pattern may be contained in a longer one.
Hence, the ID of a detected pattern may be different from that of

the inserted since #1257 is a proper subset of #793. From Table
1, we can conclude that the number of patterns inserted is equal
to that of discovered, i.e., precision = recall = 100%. The
detection process costs 348 ms.

Detection of Multi-stage Attack Pattern
A log file consisting of multi-stage attack patterns. Each line has
several stages. Each stage in turn is a user habit ended by a
single command attack pattern. For detecting multi-stage attack
patterns, again, let a = b = 15 given nineteen stages, S1 to S10,
from which 58 different attack commands are retrieved, i.e.,

10

1

| { | , }| 58r r r i

i

C C is a command C S


  where

{ | , }p p p iC C is a command C S ∩

{ | , }q q q jC C is a command C S   , i, j = 1, 2,…9, and i ≠j.

That means, S1 to S10 are non-cross-reference patterns so that
all the IDs of detected patterns are exact the same as those of the
inserted ones. The common reverse tree is six levels in height,
and 76,341 commands extracted from 459 user log files were
compared, costing 210 ms. Also, the precision = recall = 1.

5. CONCLUSIONS

In this article, we bring up an approach to find out users' habits
by deploying data mining and forensic techniques. To identify
the representative C-sequences for a user, the frequency that a
habitual command sequence appears in the user’s log file is
counted and its discrimination score is calculated so that the
user’s profile can be established. By comparing a user's current
input commands with all others’profiles, the IDIS can identify
who the user is. The accuracy is high enough to make the IDIS
be a valuable auxiliary subsystem in a closed environment to
assist the identification of an internal hacker. Of course, a new
user whose user profile has not been established will not be a
candidate to be identified. Meanwhile, a user’s input commands
are compared with the common reverse tree in which all
commands of an attack pattern are organized in their reverse
order so as to real time detect whether underlying inputs are an
attack or not. Employing the common reverse tree can
lightweight IDIS and lower the load of detection server.

Moreover, accurately and completely collecting user
behaviors on much more basic operations, such as system calls
instead of commands, is much more helpful in detecting hackers
and identifying a user. Such will also help us to collect intrusion
behaviors in a system that employs GUI interface.

However, how to process and mine such a huge volume of
data may be the first challenge. Several papers have addressed
this topic [15,23]. But many systems have not been
implemented, and many did not describe their implementation.
Additionally, to detect an attack and respond real time, we need a
fast algorithm and a distributed computing environment to
speedup data processing since the time complexity of algorithm
1 is high. Cluster and/or Grid computing should be the
candidates. Besides, a mathematical analysis on the IDIE’s
behaviors so as to build its formal performance and cost models
is interesting. Those are our future research topics.
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