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ABSTRACT 

 
The history of technological innovations in education has many 

examples of failed high expectations. To avoid becoming 

another one, current multimedia ICT tools need to be designed 

in accordance with how the human mind works. There are well 

established characteristics of its architecture that should be 

taken into account when evaluating, selecting, and using 

educational technology. This paper starts with a review of the 

most important features of human cognitive architecture and 

their implications for ICT-based learning. Expertise reversal 

effect relates to the interactions between levels of learner prior 

knowledge and effectiveness of different instructional 

techniques and procedures. Designs and techniques that are 

effective with low-knowledge learners can lose their 

effectiveness and even have negative consequences for more 

proficient learners. The paper describes recent empirical 

findings associated with the expertise reversal effect in 

multimedia and hypermedia learning environments, their 

interpretation within a cognitive load framework, and 

implications for the design of learner-tailored multimedia.  
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1. INTRODUCTION 

 

The design of effective ICT-based learning environments 

should take into account how the human mind works and what 

are its cognitive limitations. Most cognitive processes in 

learning occur consciously and involve information from the 

learner knowledge base. These attributes (consciousness and 

knowledge base) are associated with two major components of 

our cognitive architecture, working memory (a conscious 

information processor) and long-term memory (a store of 

knowledge). Their essential characteristics have been well 

established and become important issues in recent theoretical 

frameworks for learning and instruction.  

 

Mental resources we use when learning and performing 

different tasks are limited by the capacity and duration of 

working memory that represents a major factor influencing the 

effectiveness and efficiency of learning. If more than a few 

chunks of information are processed simultaneously, working 

memory may become overloaded and inhibit learning. 

 

 On the other hand, our long-term memory is not limited in 

capacity and duration and considerably influences the operation 

of working memory. It allows us to handle many interacting 

elements of information in terms of larger units (chunks) in 

working memory thus reducing cognitive load and making 

high-level cognitive activities possible. Available knowledge 

structures and associated learner cognitive characteristics may 

significantly change the effectiveness of various instructional 

methods. Therefore, in order to be efficient, ICT-based learning 

formats and methods need to be tailored to cognitive 

characteristics of learners. 

 

 

2. CHALLANGES 
 

Most ICT-based learning materials continue to be designed in a 

fixed way with novice learners as assumed intended audience. 

However, recent studies of the expertise reversal effect (see [1, 

2] for recent overviews) have indicated that designs and 

techniques that are effective with novices can lose their 

effectiveness and even have negative consequences when used 

with more experienced learners. The major ICT design 

implication of these studies is that information presentation and 

design techniques need to change as learners acquire more 

expertise in a domain.  

 

Tailoring instruction to individual learners is a very complex 

problem due to multiple learner characteristics, technical, 

organizational and other issues. The existing developmental 

projects in e-learning are focused mostly on technical issues of 

tailoring content to learner preferences, interests, choices, 

history of previous on-line behavior etc. and are not based on 

fundamental cognitive characteristics of learners.  

 

This paper discusses theory- and research-based cognitive 

principles and guidelines for managing cognitive load in ICT-

based learning environments by adapting them to levels of 

learner prior knowledge and skills. The suggested approaches 

and techniques are based on contemporary knowledge of 

human cognitive architecture and extensive empirical studies.  

 

The paper reviews empirical studies of the expertise reversal 

effect in ICT-based learning environments and their 

implications for the design of learner-tailored instructional 

systems. It starts by introducing a general theoretical 

framework for the described approach followed by the review 

of cognitively efficient evidence-based instructional 

techniques, procedures, and different forms of information 

presentations for learners with different levels of expertise. 

Finally, the paper suggests procedures and methods for 

dynamic online tailoring of learning tasks and information 

presentation formats to levels of learner expertise. 

 

 

3. THEORETICAL FRAMEWORK 

 

Human Cognitive Architecture 
A contemporary model of our cognitive architecture includes 

two major components: working memory and long-term 

memory. Their characteristics define how we learn and perform 
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in ICT-based learning environments. Most cognitive processes 

essentially depend on a knowledge base in long-term memory 

with effectively unlimited capacity and duration. Organized 

generic knowledge structures (schemas) allow us to mentally 

categorize and represent concepts and procedures, and govern 

our behavior.  

 

Our cognitive system also includes a mechanism that limits the 

scope of immediate simultaneous changes to the knowledge 

base. This mechanism is associated with working memory as a 

conscious processor of information within our focus of 

attention. Working memory is severely limited in capacity and 

duration when dealing with novel information [3, 4]. Working 

memory is believed to have separate limited processing 

channels for visual and auditory information modalities [5].  

 

Processing limitations of working memory influence 

significantly the effectiveness of performance, particularly in 

complex tasks. The learner domain-specific knowledge in long-

term memory and associated levels of expertise reduce these 

limitations and guide high-level cognitive activities.  

 

The available knowledge base is considered as the most 

important cognitive characteristic that influences learning and 

cognitive performance. Understanding the key role of long-

term memory knowledge base in our cognition is essential to 

successful management of cognitive load in ICT-based 

learning. 

 

Cognitive load theory (see [6, 7] for recent general overviews) 

and closely related cognitive theory of multimedia learning (see 

[8 9] for recent overviews) consider learning design 

implications of the above human cognitive architecture.  Based 

on theoretically and empirically established instructional 

principles, they make specific prescriptions for managing 

cognitive load in learning and instruction.  

 

These theories define several different types and sources of 

cognitive load: effective (intrinsic and germane) and ineffective 

(extraneous) cognitive load.  These types of cognitive load are 

associated with different instructional design methods and 

techniques. Examples of cognitive load factors that may 

influence effectiveness of ICT-based learning environments are 

levels of element interactivity in learning materials, their 

spatial and temporal configurations, redundant representations 

of information, etc.  

 

Role of expertise in cognitive processes 
The most important factor of our cognitive functioning is how 

working memory and long-term memory systems interact with 

each other. Knowledge base in long-term memory allow us to 

effectively reduce limitations of working memory by 

encapsulating many elements of information into larger, higher-

level units that are treated as elements in working memory. 

Another way to reduce cognitive load is to practice skills until 

they can operate under automatic rather than controlled 

processing [10, 11]. When basic routine procedures occur 

automatically, the system could avoid an overload and 

reallocate cognitive resources for higher-level mental 

processes.  

 

When learners do not have relevant knowledge (or if it not 

sufficiently automated), they have to deal with many new 

elements of information that may easily overload working 

memory. These learners may require considerable external 

support to build new knowledge structures in a relatively 

efficient manner. On the other side, more knowledgeable 

learners may rely on their available domain-specific long-term 

memory structures for managing cognitive load.   

 

Cognitive studies of expertise demonstrated that prior 

knowledge is the most important 1earner characteristic that 

influences learning processes. It has been established that 

learning procedures and techniques that are beneficial for 

learners with low levels of prior knowledge may become 

redundant for more knowledgeable learners. The effect is 

related to increased cognitive overload for more knowledgeable 

learners due to processing redundant for these learners 

instructional components [12, 13].  

 

Knowledge structures in long-term memory perform an 

organizing and governing role in complex cognitive processes. 

In the absence of relevant knowledge or sufficient external 

instructional guidance, we would use mostly random search 

processes in attempts to handle the task. If no guidance is 

provided for dealing with new units of information, the task 

may cause a cognitive overload.   

 

However, if guidance is provided to learners who have 

sufficient knowledge base for dealing with the same units of 

information, learners would have to relate and reconcile the 

related components of available long-term memory base and 

external information. Such integration processes may impose 

an additional cognitive load and reduce resources available for 

learning new knowledge, thus causing an expertise reversal 

effect.  

 

Presenting knowledgeable learners with detailed external 

guidance may hinder their learning and performance relative to 

the levels they could achieve with minimal instructional 

support. Therefore, as levels of learner expertise in a domain 

increases, relative effectiveness of learning tasks with different 

levels of instructional support may reverse.  

 
Although the expertise reversal effect was predicted within the 

cognitive load theoretical framework as a form of redundancy 

effect that could occur when some presented information that 

was beneficial (and non-redundant) for novice learners became 

redundant for learners with higher levels of knowledge in a task 

domain [14], the effect was then extended to different 

presentation modalities and levels of instructional guidance. 

 
The main implication of the expertise reversal effect is the need 

to tailor instructional techniques and procedures to changing 

levels of learner expertise in a domain. In order to design 

adaptive procedures capable of tailoring instruction in real 

time, it is necessary to have sufficiently rapid online measures 

of learner knowledge. Such measures should also have a 

sufficient diagnostic power to detect different levels of 

expertise.  

 

The idea of rapid diagnostic assessment of expertise is based on 

evaluating knowledge structures that learners are able to 

activate rapidly and apply to a briefly presented problem 

situation [15]. This approach has been successfully used for 

designing adaptive learning environments in well-defined 

(mostly, technical) areas. Its usability and applications in 

poorly defined task domains still remains to be established. 
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Sources of cognitive load  
One major type of cognitive load, an intrinsic cognitive load, is 

essential for learning and caused by internal complexity of the 

task relative to the level of learner expertise. Expertise in the 

language of instruction may also influence the level of intrinsic 

cognitive load, e.g., simple and routine sentences for native 

speakers may cause significant cognitive overload for second 

language learners. Intrinsic cognitive load is required for 

comprehending a situation and results in modified or new 

knowledge structures in long-term memory.  

 

Therefore, it is vital to provide all the necessary resources to 

accommodate this load without exceeding limits of working 

memory capacity. For example, to manage intrinsic cognitive 

load, the learning goal could be divided into a series of sub-

goals that require less processing resources, instructional tasks 

could be segmented into smaller units.  

 

Alternatively, some of the essential interactions between 

elements of information could be excluded from consideration 

in order to artificially reduce structural complexity of the task 

on initial stages of learning followed by the fully interactive 

materials later [16]. If intrinsic load is at low levels and much 

cognitive capacity remains unused, it could be increased, for 

example, by setting more challenging learning goals that 

require more complex cognitive activities with higher levels of 

element interactivity.  

 

In contrast to essential, extraneous cognitive load is an 

irrelevant form of load associated with a waist of cognitive 

resources due a poor presentation design, inappropriate 

selection and sequencing of learning tasks, or inadequate 

instructional support. For example, separating related sources 

of information in space and/or time; duplicating the same 

information simultaneously in different modalities; or using 

unguided problem-solving or exploratory activities with novice 

learners. 

 

The expertise reversal effect is associated with two types of 

situations that cause extraneous cognitive load: 1) insufficient 

external guidance does not compensate for limited knowledge 

of novice learners; 2) expert learner knowledge base overlaps 

with provided external guidance thus forcing learners to waste 

limited resources on co-referring internal and external 

representations of the same information.  

 

It should also be noted that the difference between extraneous 

and intrinsic cognitive load is relative to levels of learner 

expertise: some components of cognitive load that are essential 

for novice learners could become extraneous (irrelevant) for 

relatively more experienced learners, and vice versa. 

 

 

4. EVIDENCE-BASED METHODS 
 

Dealing with split-attention and redundancy  
Different sources of cognitive load are related to different 

modes and modalities of ICT-based information presentations 

(verbal and pictorial representational modes; auditory and 

visual information modalities). When learners process text and 

visuals that could not be understood in isolation, the integration 

of verbal and pictorial representations is required. When text 

and pictures are not appropriately located or synchronized in 

time, integrating these referring representations may increase 

cognitive load and inhibit learning.  

 

Instructional design techniques dealing with such split attention 

situations may enhance learning. Physically integrated or 

embedded formats were demonstrated to be an effective 

alternative to “split-source” instructions (split-attention effect 

[17, 18].  

 

Using dual-mode presentations (e.g., auditory explanations of a 

visual diagram) is an alternative approach to eliminate split 

attention. ). Integration of the verbal auditory and pictorial 

visual information may not overload working memory if its 

capacity is effectively expanded by using a dual-mode 

presentation (modality effect; e.g., [19. 20]). For example, it 

was demonstrated that an animation depicting the operation of 

a bicycle tire pump with simultaneous audio text produced 

better learning results than the audio text only without an 

animation or the animation only without audio text [21]. 

Comparisons between simultaneous and sequential 

presentations of the related audio and visual information 

demonstrated that dual-mode instructions were superior only 

when presented in the simultaneous form (the temporal 

contiguity or split-attention effect) [22, 23].   

 

Examples of other means for dealing with potential cognitive 

overload are eliminating redundant components of 

presentations. If different sources of information are intelligible 

in isolation, elimination rather than integration of a redundant 

source could be preferable (redundancy effect; e.g., [24, 25]). 

However, whether information is redundant depends on the 

level of expertise of the learner: what is essential for novices 

could be redundant for more knowledgeable learners.  

 

When onscreen text is embedded into a diagram or narrated 

when the diagram is presented, it is not possible to avoid 

processing the redundant information and integrating it with 

available knowledge structures in long-term memory. These 

processes consume cognitive resources that become 

unavailable for constructing higher levels of knowledge. 

Eliminating redundant verbal or pictorial information could be 

the best design decision when dealing with more experienced 

learners. Thus, the effectiveness of different instructional 

formats may depend on levels of domain-specific expertise of 

the intended learners (in accordance with the expertise reversal 

effect). 

 

Therefore, the relation between the split-attention and 

redundancy effects may reverse as learner gains more expertise 

[14, 26]. While novice learners may learn best from textual 

explanations embedded into a diagram or narrated over the 

diagram, for more experienced learners, diagram-alone 

materials could generate higher levels of performance and be 

easier to process. Textual explanations that are essential for 

novices may become redundant for experts. Thus, the 

instructional efficiency of different formats of information 

presentation depends on levels of learner expertise in specific 

task domains.  

 

Managing cognitive load in interactive visualizations 
Sophisticated ICT-based learning environments include various 

forms of interactivity and respond dynamically to learner 

actions. They involve multiple representations, linked 

information networks, and high levels of learner control. Such 

environments are expected to promote active construction and 

acquisition of new knowledge. High levels of cognitive load in 

interactive learning environments could be caused by a large 
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number of variables involved in corresponding cognitive 

processes; by uncertainty and non-linear relationships between 

these variables; and by temporary delays. In many situations, 

learners have to carry the burden of deciding when to use 

additional instructional support (if available) and what forms of 

support to request. While more advanced learners could handle 

such burden, it may go beyond cognitive resources available to 

less experienced learners.  

 

The cognitive load framework could be effectively applied to 

different forms of dynamic visualizations such as instructional 

animations, simulations, and games. For example, continuous 

animations may be too cognitively demanding for novice 

learners due to a high degree of transitivity. Less 

knowledgeable learners may benefit more from a set of 

equivalent static diagrams.  

 
The effects of static diagrams and computer animations on 

learner mental models of a mechanical system were studies in 

[27]. No evidence was obtained that animated diagrams led to 

superior understanding compared to static diagrams. 

Comprehension of diagrams was enhanced by asking students 

to predict the behavior of the machine from static diagrams and 

by providing them with a verbal description of the dynamic 

processes. Predicting motion from static diagrams presumably 

engaged students' spatial visualization and mental animation 

processes.  

 

However, animations still could be relatively more beneficial 

for more experiences learners who have acquired a sufficient 

knowledge base for dealing with issues of transitivity and 

limited working memory capacity. Optimal forms of tailoring 

visual dynamic representations to levels of learner expertise 

require selecting appropriate levels of visual dynamics. 

 

The interaction between levels of learner expertise and 

effectiveness of animated and static procedural examples in the 

task domain of transforming graphs of linear and quadratic 

equations in mathematics was investigated in [28]. The results 

demonstrated that less knowledgeable learners performed 

significantly better after studying static examples. Learners 

with higher levels of prior knowledge showed better results 

after studying animated instructions.  

 

As levels of learner expertise increased, the performance of the 

animated instruction group improved more than performance of 

the static group. Knowledge structures of more experienced 

learners may help them to handle the transitivity of animations, 

but processing details in static graphics may require redundant 

activities for these learners. Static graphics may be less 

beneficial for more experienced learners because their available 

dynamic knowledge structures would need to be integrated and 

reconciled with redundant for them details displayed in 

graphics. Additional cognitive resources may be required for 

such processes, increasing working memory demands and 

reducing relative learning effects.  

Interactive simulations may provide appropriate environments 

for exploring hypotheses and receiving immediate feedback, 

thus enhancing the development of critical thinking and 

problem-solving skills. However, high levels of working 

memory load could be responsible for instructional failures of 

many simulations.  

 

Many instructional simulations and games represent purely 

exploratory learning environments with limited guidance for 

learners. From cognitive load perspective, random search 

procedures that novice learners have to use in such 

environments may impose excessive levels of cognitive load 

and interfere with meaningful learning. Optimizing levels of 

instructional guidance represent an essential means for 

managing cognitive load and enhancing learning outcomes in 

such environments.   

 

Two different modes of visual representations in a gas law 

simulation for middle-school chemistry students were 

compared in [29]. Essential gas characteristics were presented 

either in symbolic form only (words ‘temperature’, ‘pressure’, 

and ‘volume’ with corresponding numerical values) or by 

adding iconic information to the symbolic representations (e.g., 

burners for temperature, weighs for pressure). While low prior 

knowledge learners benefited more from added iconic 

representations than from symbolic formats only, high prior 

knowledge learners benefited more from symbolic only 

representations. Iconic representations were redundant for these 

learners.  

 
An important feature of animations, as well as static images, is 

their fidelity level that characterizes the degree of realism or 

resemblance to the real world. High fidelity levels with many 

non-essential details that may distract learner attention may not 

always be instructionally effective. For example, it was 

demonstrated that schematic low-fidelity illustrations were 

retained better than analogical high-fidelity illustrations [30]. 

 
 

5.  TOWARDS ADAPTIVE ICT-BASED LEARNING 

 

A major instructional implication of the expertise reversal 

effect is the need to tailor dynamically instructional techniques 

and procedures, levels of instructional guidance to current 

levels of learner expertise. In ICT-based instructional systems, 

the levels of expertise may change noticeably as learners 

develop more experience in a specific task domain. Therefore, 

the tailoring process needs to be dynamic, i.e. consider learner 

levels of expertise in real time as they gradually change during 

the learning sessions. As levels of learner expertise increase, 

relatively less-guided exploratory, problem-solving, or game-

base environments could effectively assist in learning advanced 

knowledge and skills in specific task domains.  

 

Personalized adaptive environments may provide learner-

centered experiences that are specifically tailored to individual 

learners or groups. A possible adaptive methodology could be 

based on empirically established interactions between levels of 

learner expertise and instructional methods (the expertise 

reversal effect), and on real-time monitoring of expertise using 

rapid diagnostic methods. For example, completion tasks and 

faded worked examples could be used for providing 

appropriate levels of instructional support that are optimal for 

learners with different levels of expertise. As learners acquire 

more experience in a domain, reduced levels of guidance and 

more independent exploratory-based forms of learning could 

become more effective.  

 

This approach to dynamic tailoring of instruction to learner 

characteristics assumes a system-controlled format: a computer 

program or instructor dynamically select an instructional 

method that is most appropriate for the current level of learner 

expertise. An alternative format could be realizes as a learner-

controlled approach to the individualization of instruction. 
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Despite expected advantages of learner control (e.g., positive 

learner attitudes and a sense of control) research findings have 

been inconclusive and more often negative rather than positive 

in relation to learning outcomes [31, 32, 33]. Learners may not 

be able to select appropriate learning strategies on their own 

and require assistance in effective use of provided control 

facilities.  

 

According to cognitive load theory, the level of learner 

expertise is a defining factor: students could have control over 

the content and instructional sequences when they have 

sufficient knowledge of the task domain; otherwise they may 

require appropriate assistance. One form of such assistance is 

providing advisement to learners for making their own 

decisions [34]. Providing guidance and advisement to learners 

as they proceed through the instructional program may 

combine advantages of both learner control and system control. 

Using this information, learners can make effective decisions 

themselves.  

 
An advanced form of the advisement approach is an adaptive 

guidance strategy: providing learners with information on the 

current level of their knowledge, what to study or practice to 

achieve mastery, how to sequence learning tasks for gradual 

transition from basic to more complex strategies, and how to 

allocate cognitive resources [35, 36]. Advisement and adaptive 

guidance approaches are based on providing individualized 

prescriptive information in the form of recommended learning 

materials and tasks based on past performance. 

 

Existing adaptive ICT-based learning environments are mostly 

based on external characteristics of learner behavior rather than 

on real cognitive characteristics. Learner levels of prior 

knowledge or expertise should be made the primary factors in 

adaptive instructional systems, complemented with relevant 

secondary factors (e.g., navigational patterns, learning styles, 

and preferences). Individualized adaptive instruction should be 

based on detailed diagnostic assessment of learner knowledge 

structures that could appropriately direct instructional 

interventions. Different variable levels of learner control and 

adaptive guidance approach should be implemented in these 

environments as means of enhancing their adaptive capabilities. 

 

Students that have significant prior knowledge in a domain 

may be allowed control of the instructional content. These 

students could be able to use their prior knowledge to 

determine an appropriate instructional sequence. Low-ability 

and low-knowledge learners need to be provided with more 

guidance and default paths through the knowledge base. Pace 

control should be provided when students could benefit from 

additional time to integrate new information with their 

available knowledge base.  

 

Complex learning environments should assist learners in 

making effective use of the control they are provided. Adaptive 

guidance could be used to monitor and assess learner progress 

and provide learners with diagnostic information and individual 

recommendations on future learning activities. As learners 

acquire basic lower-level knowledge and skills, adaptive 

guidance should tailor subsequent learning tasks and activities 

to focus attention on more advanced knowledge and skills. A 

continuously available instructional support is important even 

when adaptive advice is provided to learners. 

 

 

6.  CONCLUSION 

 

The expertise reversal effect has been observed in many studies 

in ICT-based multimedia learning environments. They may 

provide a valuable guidance for instructional designers, 

particularly for the design of learner-adapted ICT-based 

instruction. For example, it has been demonstrated that a 

minimal instructional guidance would allow more 

knowledgeable learners to take advantage of their knowledge 

base in the most efficient way. Instructional guidance should be 

provided at the appropriate time, while unnecessary support 

removed as a learner progresses to more advanced levels of 

proficiency in a specific domain. Adaptive learning 

environments that dynamically tailor levels of instructional 

support to changing individual levels of learner expertise in a 

domain have the best potential for optimizing cognitive load.  

 

The quality of adaptive environments depends on the accuracy 

of information about levels of learner knowledge and skills. 

Using traditional tests and tracing user interactions with the 

system cold be imprecise and incomplete. Applying modern 

artificial intelligence approaches and using fine-grained 

production rule-based learner models in intelligent tutoring 

systems allowed a significant increase in the precision of 

adaptive methodologies [37]. However, implementations of 

such approaches require complex computational modeling and, 

therefore, have been limited to several well defined and 

relatively simple domains. 

  

A rapid diagnosis-based approach may offer appropriate tools 

that combine high levels of diagnostic precision with simplicity 

of implementation in learner-tailored instructional procedures. 

The development of adaptive learning environments in 

different domains would also require rapid diagnostic 

instruments for measuring levels of learner expertise in poorly 

defined task areas. Also, achieving higher levels of expertise is 

associated with flexible performance in new situations. 

Extending the described approaches and techniques to 

developing adaptive forms of expertise represents an important 

direction for future research.  
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