
Software Engineering Education at Carnegie Mellon University:

One University; Programs Taught in Two Places

Ray Bareiss and Mel Rosso-Llopart

Institute for Software Research, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213

ABSTRACT

Teaching Software Engineering to professional master‟s students is

a challenging endeavor, and arguably for the past 20 years,

Carnegie Mellon University has been quite successful. Although

CMU teaches Software Engineering at sites world-wide and uses

different pedagogies, the goal of the curriculum -- to produce

world-class software engineers -- remains constant. This paper

will discuss two of the most mature versions of Carnegie Mellon‟s

Software Engineering program -- the main campus program and its

“daughter program” at the Silicon Valley Campus. We discuss the

programs with respect to the dimensions of curriculum, how

students work and learn, how faculty teach, curricular materials,

and how students are assessed to provide insight into how Carnegie

Mellon continues to keep its programs fresh, to adapt them to local

needs, and to meet its goal of excellence after 20 years.

Keywords: Software Engineering Education, Learning by Doing,

Coached Learning, Mentors, Project-Based Curriculum.

1. INTRODUCTION

Learning is experience. Everything else is just information.

 — Albert Einstein

In 1989, Carnegie Mellon University, in conjunction with the

Software Engineering Institute (SEI), embarked on the creation of

a professional master‟s degree program in Software Engineering.

The educational vision was to base a professional program on three

components: core knowledge, practical demonstration, and broad

study through electives. Although the curriculum has been adapted

to multiple campuses around the world (Silicon Valley, Korea,

India, and most recently Portugal), the program goals continue to

remain the same: to provide the best Software Engineering

education in the world and to produce world class Software

Engineers. Twenty years later and after hundreds of graduates, the

program has become a standard by which software engineering

education programs are evaluated world-wide.

This paper will present the two senior programs in the Carnegie

Mellon Software Engineering masters‟ degree offerings and

explore how these programs have evolved somewhat differently to

achieve these goals in two different environments.

2. THE MAIN CAMPUS PROGRAM

The original (often referred to “main campus”) program continues

today as a major benchmark for Software Engineering education.

The program currently offers two primary Software Engineering

degrees, the Master of Software Engineering (MSE), a 16 month

full-time degree, and the Master of Science in Information

Technology with an emphasis in Software Engineering (MSIT-SE)

degree, a 12 month full-time degree. Both degrees are also offered

part-time.

As noted, the curriculum has three components: core concepts,

broad elective knowledge, and project demonstration. Five courses

convey the core concepts: Models of Software Systems, Methods:

Deciding What to Design, Managing Software Development,

Analysis of Software Artifacts, and Architecture for Software

Systems [1].

What makes the program unique is that the core course concepts

and the elective courses are tightly intertwined with ongoing real-

world Studio and Practicum projects to allow the students to

acquire new skills and apply them on their projects under the

guidance of a mentor/coach immediately. Thus, the program is

built on the foundation of student teams actually producing

software; MSE teams start their Studio projects on the first day

and finish their projects 16 months later. (MSIT teams do shorter

Practicum projects. The roles of both projects in the curriculum are

similar; thus this paper will focus primarily on the MSE Studio.)

This approach, of incorporating the project use of knowledge as it

is being acquired from the curriculum, can at sometimes appear

unstructured, but it enables the students to see how real world

projects are affected by the experience and learning of team

members. The MSE Studio represents 40% of the program‟s

curriculum.

The main campus pedagogy combines traditional classroom

learning with in vitro class projects, case-studies, and simulations

to emphasize ideas and with in vivo use of the material on Studio

projects with mentors and a customer to deliver a product. The

program has continued to evolve with the MSE now using the

ideas of a Proposal Based Studio [2], Academic Project Ranking

[3] and game playing to learn concepts [4] as examples of recent

changes. Many of the courses are captured for delivery at a

distance. (Details of the distance curriculum are beyond the scope

of this paper.)

The curriculum is grounded in the Capability Maturity Model

(CMM) which was developed at the SEI [5]. Because of the CMM

influence, a primary theme of the program is that “data is king”

and “If you cannot measure it, you cannot improve it (Lord

Kelvin).” This is also a basis for many of the improvement ideas

we teach in software process modeling and management [6].

Particular technologies are used to provide context and emphasize

ideas, but they are not core to the program, given the pace of

change in the industry. Throughout their project work, faculty

expect the students to show that they are improving, not just to feel

they are doing better or to like what they are doing. An often-

repeated quote which captures the philosophy of our teaching is “If

you fail, but you know why, you have succeeded; if you succeed,

but you don‟t know why, you failed.”

Our teaching materials define the solution spaces in terms of

people, processes, and technologies, which together set the context

in which a software developer creates a solution for the problems

at hand. Most developers have a good handle on technology; they

have technical skills and generally have confidence that they can

learn new technologies quickly if needed to support a software

effort. However, they are often less confident about the other two,

people and process, so consideration of these permeates the

curriculum. We teach the students how to examine, evaluate, and

define the right processes, and to implement the right level of

process and the right measures to insure the processes are working

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 5 - YEAR 200972 ISSN: 1690-4524

http://www.goodreads.com/author/quotes/9810.Albert_Einstein

correctly for the environment. We also teach the student to use the

differences in people to create strength in their teams. Team

exercises, instruments such as the Myers-Briggs and team role

exchange help teams to understand and appreciate individual

strengths and weaknesses.

How Students Work and Learn

Students typically attend class twice a week for each class -- about

3 hours total. Most core courses are designed for 12 hours of

work per week so this leaves 9 hours of outside work the students

are expected to perform to understand and apply the knowledge.

Usually the students are expected to prepare for class by reading

material assigned on a course website and answering reading

questions to insure that they are prepared before class. In addition

to faculty lectures, class sessions are often student-driven,

featuring question-and-answer discussions and presentations.

Students calibrate their own knowledge by the questions (and

answers) of others.

As previously noted, assignments involve both class work and

outside projects. These can be individual or team based. All

courses provide in vitro project work to insure practical

understanding of the material presented as students apply the

material and check their initial understanding in an academic or

research type project.

After gaining in vitro mastery, the students are expected to apply

the material in vivo on their Studio projects under the guidance of a

faculty mentor/coach. Mentors are deeply aware of the curriculum

and guide the students in trying out learned concepts when project

opportunities arise. In particular, the Studio Project [2] is the

“gateway project” of the MSE program (called this because a

student cannot graduate from the program without its successful

completion). The Studio is a significant software effort scoped for

five or six students to complete (while practicing key concepts)

over four semesters. The students are assigned two mentors and

commit to 12 hours per week for three semesters and 48 hours per

week during the summer session. This represents a significant

portion of the MSE degree (again, 40% of the student‟s time).

Finally, students are asked to reflect on both the in vitro classroom

and the in vivo Studio experiences to reinforce and generalize their

knowledge. This also brings the results of application of

knowledge back into the classroom to provide feedback to the

faculty on its relevance and usefulness on a real project.

A significant portion of the student work is written, requiring

students to have very strong writing skills to do well in the

program. Whether writing or speaking, students are expected to be

able to defend their answers -- even when reusing information or

examples presented by the faculty.

How Faculty Teach

The primary learning context is the “traditional” classroom.

Faculty are expected to present key concepts and interesting

examples in the classroom at regular intervals throughout the

semester. Class sessions regularly mix instructor lectures, guest

subject matter experts, and classroom discussions.

The use of lectures forms a path through the material, but one key

notion for students is that we are showing a way through the

concepts, but not the only way. Students who develop new ideas

and new ways of applying them are viewed as exceptional, and

many times their answers become exemplars for other students to

review. Instructors put a premium on reflection, for example, what

students might do differently the next time they are faced with a

similar problem. What were the critical ideas or inputs that the

students used in making their decisions on a project?

The faculty member plays the role of moderator and discussion

leader in the classroom. He or she sets the pace for the class and

provides the student with examples and challenges with respect to

the subject matter. Some faculty also play the role of a Socratic

antagonist, asking the students to defend their positions and

decisions; in this role, the instructor is more interested in the

“Why” behind an answer than in the answer itself. The goal is for

the faculty member to serve as the facilitator of student learning

and not to be viewed as the oracle of knowledge.

The faculty also use the Studio projects and even current events as

examples to show the students how the material relates to the field

of Software Engineering [3]. These create a continuous set of case

study opportunities to show students how what they are learning in

the classroom can be used to better understand and help to address

issues encountered on real software projects.

Case studies from industry are common faculty teaching tools via

which the students are challenged to provide analysis with respect

to a particular topic of interest. The same case study may be used

across a number of topics. The student might first be asked to

evaluate the case study with respect to decision making as the key

topic and then later the same case study might be used to reflect on

estimation. When given such a task, the students present solutions,

and the faculty question their reasoning, usually in open

discussion.

Curricular Materials

We have discovered that maintaining a common representation for

course materials helps to ensure that students more quickly learn

“how to learn” in our program. All curricular materials for courses

are provided on websites and managed using a learning

management system similar to those used by other software

engineering programs. One unique aspect of our program is the

continuous review of courses and curricular materials by an

executive committee of Software Engineering faculty to ensure

that the courses and their materials continue to provide enduring

principles and concepts to the students as the field evolves.

A possibly unique aspect of our program, is the use of student-

generated curricular materials in the context of project work.

Projects employ two major frameworks for student generated

materials. MSE projects employ our Proposal Based Studio[2]

which forces the declaration of the processes and tools the students

have learned about in their courses and will use to solve the project

problems. These are used as a guide for the mentors in evaluating

the student‟s progress in the Studio. The idea of “say what you

will do, and do what you say” underlies the materials that will be

used to evaluate the real-world projects -- always a difficult task.

The proposal is negotiated among the mentors, their student teams,

and the customer. It enables a consistent assessment of projects

across the multiple domains and environments encountered in the

Software Engineering program. The students update their project

proposals each semester to allow them and the mentors to adapt in

light of increasing project experience. Thus, the measurement

framework, processes, and approaches evolve as the project is

changing, while the proposal remains an anchor for the project.

MSIT practicum projects also employ a student proposal created

before the project begins. The proposal is similar to the normal

project statement of work and like a Studio proposal, explains how

the team plans to solve their problems. Unlike the Studio, this

proposal specifically discusses how the team will attack the project

problems with what they have learned in each of the five core

courses and optionally in their electives. This practicum proposal

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 5 - YEAR 2009 73ISSN: 1690-4524

again acts as a framework against which the practicum project is

assessed and enables the mentors to be consistent in their

evaluation of across practicum projects.

We believe that having the students explain how they will use what

they have learned to handle the uniqueness of a real-world project

in proposals, is a key way in which students learn to apply our

curriculum to real-world software engineering applications.

How Students Are Assessed

Individual student performance is difficult to assess in Software

Engineering programs because the “lone wolf programmer” is a

dying concept. Software Engineers are expected to work in teams

almost from day one when they arrive in companies. In the

curriculum we put the students into teams, early and often. This

provides realism but poses challenges for individual assessment. A

student can “hide” in a team and perform reasonably well as part of

that team but never really master the material at the level we would

like as faculty. To meet this challenge we have developed some

techniques to facilitate faculty evaluations of individual students.

All student teams are required to do multiple presentations

throughout the semester -- in the extreme, they must present every

two weeks during our MSE “bootcamp”[7]. (Bootcamp is a 14

week discussion course of topics found to be useful in helping

teams form quickly and understand what the MSE program is

attempting to teach.) This represents seven presentations per

semester for each team and every individual is expected to give

one or more presentations. The students‟ grades depend in

significant part on the quality of their presentations. Each

subsequent course in the curriculum has a significant presentation

component which provides additional opportunities (and

requirements) to present.

Course work tries to balance group and individual evaluation. For

example in an assignment, a team might be asked to develop a

solution to a development problem, but then each individual team

member is asked to reflect on how well the team solution worked,

what they might have done differently, and how the team worked

together to solve the problem. This individual reflection gives us

an insight into how well the individual student is learning the

material and is able to evaluate the work they are doing with

respect to what they have learned. Reflection is a continuous

component of assessment and an expectation for both individual

students and for the student teams on projects. In some courses

exams and quizzes are used to aid in individual evaluation.

All students also have individual meetings with their project

mentors/coaches. These meetings provide a vehicle for evaluating

how students are using the concepts taught in the classroom in

their projects. The students are not evaluated against each other,

but rather against the problems they have been presented in the

project context and how they have addressed those problems. The

key idea is that students are expected to try what they have learned

and to be able to reflect on why it worked (or not) on their projects.

The mentors spend significant time asking students why the team

did what it did in light of what has been learned.

The faculty also use 360 degree peer reviews within teams to

understand how team members perceive each other and

themselves. This provides input into overall assessments but is not

the sole contributor. In nearly all courses, a percentage of the

grade is dependent upon the subjective assessment of the faculty

member. This will usually influence a grade within one plus or

minus grade level (which provides the faculty with an incentive to

perform careful, defendable assessments of students‟ performance

in a course).

All mentors meet regularly to discuss team progress in their

projects and to calibrate grading of the teams across the projects.

The “All Mentor” grading meeting follows the final presentations

of all the teams at the end of the semester, grading is reviewed, and

grades are assigned in a open forum with all faculty present. More

globally, we discuss our assessments of students at an end-of-

semester “Black Friday” meeting during which the performance

and progress of all students are reviewed.

3. THE SILICON VALLEY PROGRAM

Originally, Carnegie Mellon‟s Silicon Valley Software

Engineering program taught the same core content as the

Pittsburgh program -- only in a different way using a completely

project- and team-based approach tailored to the needs of its

student body. The students are comprised almost entirely of

working professionals attending graduate school part time. These

students have typically been out of college for some time and

approach traditional graduate study with considerable trepidation.

Over time, the content as well as the delivery of the program has

evolved to reflect the interests (and work situations) of our largely

Silicon Valley student body. It emphasizes:

 Product development

 Application of software engineering principles to smaller

projects with relatively short development cycles

 Agile methods

 Entrepreneurship.

The program prepares experienced developers for leadership roles

in development groups and beyond. More specifically, our students

are typically seeking to advance to a senior software engineer,

architect, or project manager role; many hope to become

entrepreneurs.

Our goals are to equip students with a broad range of knowledge

and skills directly relevant to their professional practice and to

impart facility at applying these skills to real-world problems. To

achieve these goals, we have adopted a pedagogy based heavily on

team-oriented projects, simulations, just-in-time tutorials, and

industrial practicums. Our curriculum design and course delivery

methods rely heavily on experience gained from the Pittsburgh

program‟s success with the MSE Studio, analyses of emerging core

requirements to train professional software engineers (e.g., [8]),

and a body of cognitive science knowledge of how adults learn

effectively.

The Software Engineering curriculum comprises six semesters of

project-based courses. Working almost entirely in teams, students

act as employees of a fictional company hired to architect, design,

and implement or manage the development of a series of very

different products on aggressive schedules. Within this framework,

and with support from faculty members, students confront realistic

technical and business problems, including conflicting

requirements, limited resources, and challenges of team leadership.

This Story-Centered Curriculum [9] fosters initiative,

collaboration, leadership, and repeatable success.

The program offers two tracks -- Technical and Development

Management -- to prepare students for a range of careers. The two

tracks share a common core of software engineering concepts,

methods, and practices. The actual courses taken depend on the

track and the available electives for that track. The Technical track

prepares graduates to effectively architect, design, develop, and

deploy complex software systems. The Development Management

track prepares graduates to manage projects, processes, and people,

whether in-house or outsourced. Students learn the technical,

business, and leadership skills required to successfully manage

software projects throughout their complete lifecycle.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 5 - YEAR 200974 ISSN: 1690-4524

The common core of the curriculum comprises three courses taken

during the first year: Foundations of Software Engineering,

Requirements Engineering, and Architecture and Design.

Foundations provides an end-to-end experience with agile software

development in which students apply a slightly modified version of

Extreme Programming to convert an existing application from a

desktop version to a modern web-delivered application and to

extend its functionality based on interaction and negotiation with

product management stakeholders. In Requirements Engineering,

students apply a variant of the Unified Process while eliciting,

analyzing, and documenting requirements for a web-based social

software application. In Architecture and Design, students research

a range of architectural styles in a case study context and then go

on to architect and prototype the previously specified social

software application. Technical students take a range of required

and elective technical courses in the second year, culminating in a

real-world practicum project. Similarly, Development

Management students take a range of required and elective

software management courses; they can also opt to do a practicum

project, but they have the option of taking additional software

management courses instead. Our very applied course in

Innovation and Entrepreneurship is a popular elective.

In addition to the primary subject matter of the courses, several

“threads” are woven into the curriculum, providing regular

opportunities to practice soft skills such as:

 teamwork, including virtual teamwork and the use of

collaboration tools

 written communication

 presentation

 negotiation

 principled decision making

 conflict resolution

 working with people from different cultures

 self awareness and reflection.

Interestingly, in our surveys of alumni, most count these skills

among the most valuable things they learned in the program.

We believe the Carnegie Mellon Silicon Valley Software

Engineering Program to be unique. While other US and European

schools offer software engineering education, none adopt as

intense a learn-by doing approach with the goal of producing a

transformative experience for practicing software professionals.

How Students Work and Learn

As noted earlier, nearly all student work is done in teams.

Teamwork is fundamental to the program for several reasons, most

notably:

 Virtually all real-world software projects are of a scope that

requires significant teamwork

 Teamwork enables students to have the experience of

completing a realistic project and producing a full range of

authentic work products

 Students are highly motivated by being members of a high-
performing team working on an intense project.

Students also do some individual work to ensure that each is

learning and contributing, to broaden their knowledge, and to

aid in student assessment. Most frequently, this work takes place

in the form of “management briefings” in which individual

students must produce short written memos on technologies,

development methodologies, or decisions confronting their

teams.

Teams are formed according to a number of criteria:

 Pre-existing knowledge and skills of each team member,

gleaned from pre-admission interviews of each student and a

self-assessment questionnaire (In subsequent semesters, teams

are re-formed repeatedly based on faculty knowledge of

students‟ strengths and weaknesses.)

 Balance, so that each team member has some relative

strengths and weaknesses, making each member valuable

and providing the potential for peer teaching

 Geographic location is also considered, but student teams

are nearly always formed to include remote members

making virtual teamwork a necessity
 Work schedules and style preferences are also considered.

Since virtual teams are the norm, significant time is devoted to

jumpstarting high team performance. The program begins with a

three-day orientation devoted largely to effective teamwork.

Students work together face to face performing intense but

enjoyable tasks to aid them in gelling as teams before those

teams “go virtual” to carry on the work of the program. Before

the beginnings of the third and fifth semesters, students must

attend weekend-long “Gatherings” during which they engage in

tasks and social events aimed at strengthening interpersonal and

team connections and broadening them across the student body.

Teams are expected to self-organize to achieve the tasks that they

are assigned. They are generally encouraged to adopt the roles of

the Team Software Process [10], modifying them as appropriate.

In particular, teams are encouraged to add a “learning manager”

who coordinates team learning activities such as producing an

explicit learning plan in addition to the work plan for each task,

dividing responsibility for optional learning materials, and

facilitating the team‟s discussions of readings and other learning

resources.

A team has a faculty coach (not a teaching assistant) who assists

the team in assigning roles, defining its own processes, and

executing those processes effectively with appropriate monitoring.

In addition to learning from faculty coaching, students learn from

rich curricular materials indexed to their tasks, and they learn from

responding to in-depth faculty feedback on their deliverables and

revising those deliverables to improve mastery of targeted

knowledge and skills. At the end of each project, they learn from

reflection activities designed to promote generalization of their

learning experiences. Finally, they perhaps learn most of all from

each other by sharing a range of knowledge and professional

experiences ranging from work at small start-ups to large

aerospace companies.

Curricular Materials

Curricular materials are provided on a program website. Note

however, that this is not eLearning, per se; the materials are

supplementary to interaction with faculty and each other. Each

course is divided into several tasks, each yielding deliverables for

evaluation. The website provides teams with significant

performance support for their tasks. In most courses, each task is

assigned via a simulated email from a “company executive,” and

follow-up emails convey additional scenario materials providing

grist for a team‟s work. A plan of attack provides a skeletal work

plan to assist the students in planning their work. Tips and traps

provide expert heuristic advice on aspects of the task, especially

pointing out subtle pitfalls which students should avoid. Readings

and other learning resources are indexed to aspects of the task to

direct students to material directly relevant to their contextualized

learning needs and to establish the relevance of all such material in

practice. Finally, a pre-submission checklist encourages students to

self-check all deliverables against faculty-formulated grading

criteria before final submission.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 5 - YEAR 2009 75ISSN: 1690-4524

How Faculty Teach

Faculty provide several kinds of educational support in a Story-

Centered Curriculum. In addition to supervising the running of a

course, faculty play several instructional roles. Depending on the

total course enrollment, all roles can be filled by a single faculty

member, or multiple faculty might be involved.

Team Coach. Since the bulk of student work and learning is done

in teams, the faculty role of team coach is preeminent. A team

coach assists teams in developing an effective team process, helps

resolve team issues, mentors students to use relevant materials and

approaches effectively, and reviews early drafts of student

deliverables. Coaches sometimes provide direct guidance such as a

just-in-time mini-tutorial, but more often they model problem

solving techniques and ask open-ended questions to lead the

students to discover relevant knowledge and to solve problems

themselves. Coaches typically meet with teams once per week and

have frequent email and telephone follow-ups with individuals as

well as the team as a whole. The coach‟s closeness to a team

enables him or her to provide accurate input into the grading

process regarding individual performance. At the end of each

project, the coach also hosts a team reflection session to reinforce

what was learned, discuss team process, and facilitate peer

reviews. In large courses, different faculty members provide

overall course supervision and coaching. When course size permits

(usually 25 or fewer students), however, faculty play both roles,

and students appreciate the instructional continuity.

Subject Matter Expert. The course supervisor (or lead instructor)

is typically the primary subject matter expert for the course, but

additional faculty or outside experts may be available as

consultants to provide just in time tutorial instruction and to

answer questions about technologies and methods that students

might choose to explore in depth. As a result of student demand,

all courses also have weekly “seminar sessions,” involving the

entire class, in which subject-matter expert faculty facilitate

discussions of readings and topics of general interest; these

sessions also sometimes feature just-in-time tutorials on

knowledge and skills relevant to the students‟ immediate work.

Roleplayer. Depending on the nature of the simulated scenario,

one or more faculty members will play fictional management roles

to provide guidance, data, and informal information as grist for the

students‟ work. Typically, such a faculty member will meet with

student teams individually or during seminar sessions several times

during the course, for example as the VP of Engineering or

Marketing or the CEO. Having several distinct roleplayers allows

students to encounter and deal with divergent opinions and, thus, to

sharpen their analysis and negotiation skills. All student

presentations are made to roleplaying faculty. These faculty

members also provide appropriate contextualized instruction and

suggest additional learning opportunities.

To summarize a key aspect of the discussion above, faculty

employ a range of research-validated teaching strategies:

 Open-ended questioning to guide students to discover

knowledge themselves [cf. 11]

 Cognitive Apprenticeship, especially modeling effective

problem-solving approaches, typically in problem contexts

analogous to the students‟ work [12]

 Just-in-time mini-tutorials whose content is immediately

relevant to the students‟ work [cf. 13]

 encouraging peer learning.

Our teaching faculty are unique because each has significant real-

world experience in large companies and/or entrepreneurial

ventures, as well as traditional academic credentials and significant

teaching experience. Our faculty might thus be regarded as a

“clinical faculty” in the sense envisioned by the Harvard Business

School symposium on business education [14].

How Students Are Assessed

Although students work in teams, individual grades are assigned at

the end of each course. As in Pittsburgh, this can be challenging

for Silicon Valley faculty members, but several mechanisms are

employed to ensure that weaker students do not “hide in teams”

and that stronger students receive credit for their higher

performance.

Team Grades. The team‟s grades for the various deliverables are a

starting point for assigning final grades, and the team grade

typically contributes about 80% of each student‟s grade. An

individual‟s grade can, thus, vary up to two letter grades from the

team‟s grade; however, a range of one letter grade plus or minus is

typical. We employ what might be called a “limited mastery”

approach to team deliverables and assessment. Teams are

encouraged to turn in draft work for in-depth feedback and have

the opportunity to revise the work before it is graded.

Individual Work. Components of team deliverables are often

attributable to individuals. Students are also required to produce

individual work at regular intervals and to present regularly;

furthermore, faculty may require individual work on an ad hoc

basis, when it seems necessary to assess a particular student‟s

performance.

Peer Review. Student teams are also required to complete a peer

review at the conclusion of each course. Each student uses a

structured instrument to assess the strengths and weaknesses of

each team member, including him- or herself. Students are not

penalized for accurately assessing personal weaknesses; instead,

these become targeted areas for self-improvement.

Coach’s Input. Finally the coach, who has spent many hours

working with the team during the course, provides input. The

supervising faculty member and coach look for a confluence of

indicators when adjusting an individual‟s grade relative to the

team‟s grade.

4. CONCLUSION

Consideration of these two Software Engineering master‟s degree

programs should make it clear that, like Software Engineering

itself, Software Engineering education at Carnegie Mellon

continues to evolve as well as to adapt to different student

populations and work contexts. That said, however, the curricula

remain grounded in core concepts, and the demonstration of

knowledge continues as the cornerstone on which professional

education is built. While pedagogy may vary, standards are set

consistently high to ensure the highest quality education is

delivered, and the highest quality graduates are produced.

To date, the main campus program has graduated 403 MSE

students between the foreign campuses and the Pittsburgh campus

program. We have also graduated 201 MSIT-SE students.

Versions of the main campus program are currently being offered

in Korea, India, and Portugal.

The Silicon Valley Campus has graduated 236 students with an

MS in Software Engineering -- 171 in the Technical Track and 65

in the Development Management Track. We have also graduated

104 students with an MS in Software Management. (The MS in

Software Management is distinct from the Development

Management track of Software Engineering. It attracts mid-career

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 5 - YEAR 200976 ISSN: 1690-4524

professionals aspiring to senior management and the curriculum is

not discussed in this paper.)

For the past two years, we have surveyed alumni of all Carnegie

Mellon Silicon Valley programs to ascertain the career value

they attribute to their graduate education. (No comparison data

for other programs are available.) In September 2008, 45 of 236

Software Engineering alumni completed the survey. Eighty-

seven percent of respondents believe the program gave them a

competitive advantage in their careers relative to their corporate

peers. Many of our students have been promoted: 41% during

the program and 45% after graduation; 82% changed jobs (either

within their company or by moving to a new company).

Our students have also seen significant salary increases:

 26% of respondents, greater than 40%

 13% of respondents, 21-40%

 33% of respondents, 11-20%

 28% of respondents, less than 10%.

As noted earlier, most students tended to value soft skills, such

as teamwork and effective communication, more than technical

skills in hindsight. Eighty-three percent of respondents included

one or more specific soft skills among the most important three

things they learned. Proficiency in technical skills is assumed of

graduates from top graduate programs; facility in soft skills is a

key differentiator -- and one that is sometimes sorely lacking in

graduates of traditional programs.

Finally, 87% of respondents would recommend Carnegie Mellon

Silicon Valley to friends with interests similar to their own.

Rather than ending this discussion with dry statistics, however,

let us end it by letting some of our students speak for

themselves:

The program’s learn-by-doing curriculum mimics the way

the software industry works in the real world. The faculty

guided us through software processes, assigning work that

consisted of writing code, completing projects, leading

teams, and negotiating with stakeholders about

requirements and deliverables. The program exposed me to

a variety of techniques and methodologies for developing

software, which I really appreciated, since at work I am

only exposed to my company’s process. However, the

program truly exceeded my expectations in how it taught

me the importance of team building and soft skills.

Understanding the importance of these skills and honing

them throughout my two years has helped me not only

professionally but personally as well.

 — Silicon Valley MSSE 2008 graduate

I am already taking away a lot from my schoolwork and

applying it to my job because I can leverage it right away.

What I learn on Monday, I can apply on Wednesday.

 — a student early in the Silicon Valley program

I have used every concept from the curriculum in my daily

work as a senior developer on challenging software projects.

— Pittsburgh MSIT-SE „05

Staff Software Engineer, Lockheed Martin

The MSE program pushed me to my limits … and beyond.

Far more than the tools, techniques and methods I learned at

Carnegie Mellon, it is the confidence that I can thrive in the

demanding business world of software engineering that has

served me best since graduating.

— Pittsburgh MSE „95

Director, Research and Development

Misys Healthcare Systems Homecare Business Unit

The relationships you build from the mentoring program will

last much longer than the school year, and are much more

valuable than just an education. The technical and personal

skills gained from the MSE program enabled me to influence

positive change and effective organizational transformation.

— Pittsburgh MSE„02

Senior IT Specialist, IBM-Rational Software

The MSE program is the perfect combination of management

and technology for anyone in the software engineering field.

What adds to the experience is the availability of so many

instructors who are widely recognized in industry and

academia. It’s cool to be sitting in class listening to the

people who wrote your college textbooks.

— Pittsburgh MSE„01

Senior Member, SEI Technical Staff

Despite these challenging times, our graduates appear to remain in

very high demand, and every year we receive acknowledgment

from our alumni of the practical value of their Carnegie Mellon

Software Engineering education. The practical nature of what and

how we teach ensures the students will have immediate

professional relevance, and the general skills they gain ensure that

they will continue to maintain that relevance throughout their

careers in this rapidly changing field.

5. REFERENCES

[1] D. Garlan , D.P. Gluch , J.E. Tomayko, Agents of Change:

Educating Software Engineering Leaders, Computer, v.30 n.11,

November 1997, p.59-65.

[2] D. Root, M. Rosso-Llopart, G. Taran, “Proposal Based Studio

Projects: How to Avoid Producing “Cookie Cutter” Software

Engineers,” CSEE&T 2008, pp. 145-151.

[3] G. Taran, D. Root, M. Rosso-Llopart, “Continuing Challenges in

Selecting Industry Projects for Academic Credit: Points to

Consider and Pitfalls to Avoid,” CSEE&T 2008, pp. 163-170.

[4] G. Taran, “Using Games in Software Engineering Education to

Teach Risk Management,”. CSEE&T 2007, pp. 211-220.

[5] M.C. Paulk, B. Curtis, M.B. Chrissis, C.V. Weber, Capability

Maturity Model for Software, Version 1.1, Technical Report,

CMU/SEI-93-TR-024, ESC-TR-93-177, February 1993.

[6] W. Humphrey, Managing the Software Process, Reading, MA:

Addison-Wesley, 1990.

[7] D. Root, M. Rosso-Llopart, G. Taran, “Key Software Engineering

Concepts for Project Success: The Use of “Boot Camp” to

Establish Successful Software Projects,” CSEE&T 2007, pp. 203-

210

[8] M. Shaw (editor), Software Engineering for the 21st Century: A

basis for rethinking the curriculum, Technical Report CMU-

ISRI-05-108, Carnegie Mellon University, Institute for Software

Research International, 2005.

[9] R.C. Schank, Making Minds Less Well Educated than Our Own,

Mahwah, NJ: Lawrence Erlbaum Associates, 2004.

[10] W. Humphrey, Introduction to the Team Software Process,

Reading, MA: Addison-Wesley,1999.

[11] Staff, Harvard Business School. Case Method Teaching, Report

9-581-058. November 6, 1998.

[12] A .Collins, J.S. Brown, and A. Holum, “Cognitive Apprenticeship:

Making Thinking Visible,” American Educator, Winter 1991.

[13] J.D. Bransford and D.L. Schwartz, Rethinking Transfer: A Simple

Proposal With

Multiple Implications, Review of Research in Education, 3(24),

2001, pp. 61-100.

 [14] Staff, Harvard Business School Discusses Future of the MBA,

HBS Alumni Bulletin (http://hbswk.hbs.edu/item/6053.html)

 November 24, 2008.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 5 - YEAR 2009 77ISSN: 1690-4524

http://hbswk.hbs.edu/item/6053.html

	XQ920BJ

