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Abstract 

 

Network security testing can be done at different levels of fidelity. This can 

involve simply scanning a network to identify any open ports for services and 

versions of services, to uncovering novel vulnerabilities in proprietary or 

undocumented services. The granularity of such an analysis depends not only on 

time and cost, but also on the availability of client software that can be used to 

interact with the different services. Complexity increases when the underlying 

protocol is undocumented or nontrivial. In this case, testers must first understand 

the protocols, and then develop software that can be used to interact; past the 

common handshake or initial connection behavior to uncover vulnerabilities. In 

this paper, we present an architecture that marries protocol reverse engineering 

and network fuzzing through a graphical interface. We have developed a proof of 

concept (PoC) that is capable of intercepting packets between source and 

destination nodes; allowing analysts to use the interface to interactively or 

pseudo-interactively (using hooks) observe, modify, drop, and/or forward the 

traffic during security tests. We designed our experimentation methodology with 

two perspectives in mind: blue-teaming (cooperative grey/white box) and red-

teaming (non-cooperative, black box). We report performance of our PoC with the 

Transport Control Protocol. 
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1. Introduction 

 

Given the ubiquitous nature of software and the growing complexity of 

technology and interconnected systems, magnified by adversarial techniques such 

as social engineering, the idea of keeping systems secure seems a distant goal. 

Risk assessments are a necessity to ensure that decision makers understand the 

vulnerabilities on their systems and the potential impacts of an adversarial event. 

For this reason, it is critical that network security testers have at their disposal 

tools and techniques that allow for efficient testing; as time and cost are precious 

resources.  

The network technology space is very dynamic; new devices are constantly 

developed and allowed on networks that access and are accessible across the 

globe. The Internet of Things (IoT), and in the military world, the Internet of 

Battlefield Things (IoBT), systems are good examples. While some of these use 

and rely on vetted and known network protocols; most difficult to test are the 
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nuances that are specific to the devices. As an example, many times, devices use 

the traditional Transport Control Protocol/Internet Protocol (TCP/IP) network 

stack to handle packet fragmentation, reordering, transmission control, and 

operating system sockets and ports. On transmission, the payload data (or the data 

that’s generated specifically by the device or application), is encapsulated within 

the other layers. On arrival, each of the layers is removed and processed and 

eventually the payload data is read and used by the target entity. This payload data 

may also have additional control logic in place. Since this code is often times 

specific to the technology documentation related to protocol, details and software 

source code are not readily available. This makes medium to high-fidelity fuzzing 

difficult. For a network security analyst, automation and adaptation are critical for 

testing and uncovering vulnerabilities in these systems. This automation must also 

take into account the objectives of the particular test. In the case of blue teaming 

assessments, more emphasis is placed on coverage (e.g., attempting to 

exhaustively find system weaknesses with granted access to systems). Red-

teaming on the other hand is focused on testing systems with a black-box view and 

finding at least one successful attack vector.  

With this as our focus, we present an interactive network fuzzer that derives 

protocol information from real data from real applications, by leveraging network 

traffic. Our contributions are the following: 

  

 A novel, and extensible, architecture that consists of a traffic-based model 

generator (TBMG) and the interactive proxy fuzzer (ProxyFuzz). 

 A proof of concept (PoC) system that is capable of modifying traffic on-the-fly 

either through automated scripts or through manual user interaction.  

 A performance study using the PoC on both a laptop and on a Raspberry Pi. 

 

 

2. Related Work 

 

The concept of traffic interception and modification is not new. Burpsuite 

(Wear, 2018) and Zap (Bennetts, 2013) are publicly available proxy tools that are 

used to capture web traffic, and, through a graphical interface allow testers to 

observe and modify HTTP messages such as POST requests; which may times 

may hold sensitive data that are not apparent from the browsers. The Non-HTTP 

Protocol Extension plugin for Burpsuite adds support for raw TCP protocol 

messages – allowing users to, for example, match and replace strings as they pass 

through the proxy. These packets are not dissected past the TCP layer (so users are 

provided with ASCII or raw hex). Additionally, these services intercept packets in 

user space (after the kernel has processed them).  

From the defense perspective, related technologies: honeypots, have been 

around for several decades. In the late 90s, the international nonprofit Honeynet 

project (Watson & Riden, 2008) was launched, and with it, documentation and 

tools to allow analysts to deceive adversaries and collect relevant information. In 

2003, the Honeyd software (Provo 2003) was made available to the public. It is 

now capable of claiming over 65000 network addresses and 1000 service 

personalities (derived using nmap (Lyon 2009) and xprobe2 (Arkin, Yarochkin & 

Kydyraliev, 2003) scan fingerprinting rules). Researchers were able to automate 

the generation of service personalities for honeyd using protocol characteristics 
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and traffic flows (Leita, Dacier, & Massicotte, 2006). However, from a tester’s 

perspective, and as part of live-network fuzzing, it is critical to analyze and 

modify packets as they traverse the network. 

While these technologies are very successful in their respective domains, the 

work presented here, focuses on live-network assessment; in the cases where 

protocol communication software is not available to the analyst and fuzzing is 

critical to uncovering vulnerabilities. 

 

 

3. Interactive Fuzzer 

 

3.1. System Architecture 

 

The goal of the architecture presented here is to generate skeleton code that 

incorporates values and behaviors of a real network service, as observed through 

network traffic. Afterwards, the security tester can refine and improve the fidelity 

for aspects of the protocol that are not represented in the network traffic. There are 

many benefits to using this approach. First, even with a short network capture, the 

generated skeleton will exhibit values that are specific to the technology. For 

example, an analyst can easily recreate what appears to be a ping originating from 

different operating systems by modifying the initial time to live fields (TTL) in the 

messages and default payload data and size (Subin, 2000). In addition, an analyst 

can choose one of these fields and then test boundary values either manually, 

using scripts, or by using external fuzzers (e.g., American Fuzzy Lop) to test 

ranges of values.  

The architecture is composed of two main components (see Figure 1. System 

Architecture). The traffic-based model generator is used to extract network 

packet structures and values from packets. ProxyFuzz is used to capture and 

modify packets using automated, rule-based scripts as well as through manual user 

interactions through a graphical interface.  

We built a PoC to demonstrate the key components of this architecture 

including its feasibility and potential application.  

 

3.2 Traffic-Based Model Generator 

 

The traffic-based model generator is responsible for reading traffic and parsing 

out structures and field values from packet data. 

This module works by using Wireshark dissectors to parse packet data into a 

structured form: packet data markup language (PDML) (Wagener, Popp, Hahn, & 

Brück, 2002). A vocabulary extractor stores packet field values and a state 

machine extractor infers sequencing patterns associate with packet types. 

Afterwards, this data is used to generate Python source code files that use Scapy 

for networking components such as packet construction, checksum calculation, 

and receive/transmit functionality.  

This module can be run independently from the others. Additionally, this 

module can also be used for security testing (e.g., for fuzz testing proprietary 

protocols). A more complete description of this component as well as a case study 

is described in (Acosta & Estrada, 2017).  
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Figure 1. System Architecture 

 

 

3.3. ProxyFuzz 

 

ProxyFuzz is composed of the net handler, the hook engine, and the interactive 

interceptor. The net handler primarily uses iptables and nfqueue, as demonstrated 

in (Nunn, 2018) to capture all IP packets that arrive or will be sent out on the 

network interface card. Backend PyPacker (Stahn, 2018) scripts are invoked to 

interact with the packets in the nfqueue (including modification and deciding 

whether to forward or drop packets) and Scapy is used to dissect packet data and 

apply capture filters. Unfiltered packets are processed by the hook engine 

component. Using this approach, incoming packets can be modified or discarded 

before they are processed by other applications in the operating system. Similarly, 

the packets may be modified or discarded just before they are sent through the 

network interface card. 

In the hook engine, small code snippets, written in Python, that may use Scapy 

or other packet manipulation application programming interfaces (APIs), are used 

to automatically apply some logic to packets based on a set of rules. As an 

example, a user may specify a rule that matches packets with a particular 

destination IP Address and then will change the TTL field to make it appear that 

the packet traversed a set number of gateway devices. The hook engine is built 

using a plugin architecture, allowing users to develop hooks without needing to 

know the internals of ProxyFuzz. The hook plugins can be grouped and applied 

collectively (which is useful when attempting to mimic services that are 

commonly attributed to operating systems and devices – such as standard services 

that are enabled with a fresh installation of Windows, Linux, MacOS, or specific 

IoT and embedded devices). On startup, ProxyFuzz scans for these hook plugins 

and will apply those that are tagged for use. After hooks are applied, the packets 

may be forwarded to the Operating System, or if the interceptor component is 

enabled, will be placed on a queue and will appear on the graphical interface.  
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The graphical interface is primarily used to manage the interactive interceptor, 

although it can also be used to enable and configure all of the other components. 

With respect to the interceptor, users can select packets and view field values, as 

well as choose to drop, edit, and forward; all in real time. A tabular interface 

separates features into three categories: incoming packets, outgoing/forwarded 

packets, and settings.  

The settings tab allows users to specify interfaces that should be used to 

intercept packets. The incoming and outgoing/forwarded packets tabs show a 

queue of selectable packets for those arriving and those being sent out 

respectively. When a packet is selected, the labeled field details, based on the 

dissected structures, are displayed in editable text entries. If field values are 

modified, then associated length and checksum fields are automatically 

recalculated. When a packet is forwarded from the PoC, any other packets that are 

ahead in the queue will also be forwarded. When a packet is selected to be 

dropped, other packets in the queue will be unaffected.  

To determine how well the system would work in a realistic scenario, we 

analyzed its performance against a widely used network scanner. 

 

 

4. Experimental Design and Setup 

 

In order to generate a meaningful and practical experiment, we informally 

consulted several cybersecurity analysts in order to understand gaps and critical 

needs. Based on these interactions, we continually developed and refined our 

experimentation setup. The end result was a flexible yet realistic study that reveals 

the practicality of the the PoC during red and blue-teaming events. 

When devices communicate using the TCP/IP network stack, the operating 

system creates a socket and listens for communication on a port. To test the 

performance of our PoC, we used the popular network mapper (nmap) tool to 

generate connection requests. 

Nmap is used to identify services running on systems (e.g., by attempting to 

establish a connection to the system on a specific port) and it is capable of 

inferring information about services to include version numbers (by, e.g., banner 

grabbing, or analyzing the first message after a successful connection and 

mapping to a known service), operating systems (e.g., by matching known 

characteristics to include timing and packet field values), and other system 

information. Basic scanning, which is our focus here, is the default scanning 

configuration: nmap will simply run a port scan on a specified range of systems.  

In our PoC, we developed a hook that would identify TCP packets and respond 

with valid packets associated with the handshake (correct sequence number, ports, 

connection flags, etc.). We wanted nmap to report that all scanned ports were open 

and listening for a connections. 

We envision this tool being useful in several environments ranging from large 

enterprise networks, to performance constrained systems, such as IoT, embedded 

and/or those commonly used in tactical networks. For this reason, we tested 

performance using modern laptops (Dell Precision 7720 with a 7
th

 generation i7 

processor and 16GB of RAM) and on a Raspberry Pi device (Raspi2 Model B 

with 900 Mhz ARM Cortex-A7 processor and 1GB RAM). As shown in Figure 2. 

Experimental Setup, the client machine used the nmap tool to port scan a server 

machine with 5 different intensity configuration (using the -T option and values 
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from 1-5). We incrementally probed the top 500 most commonly used port. In 

addition, we had 4 different configurations. In configurations A and B, the client 

targeted a device that was not running the PoC; a laptop and a Raspberry Pi 

respectively. In configurations C and D, we had a device (laptop or the Raspberry 

Pi, respectively) running the PoC. During our study, we observed differences in 

nmap completion times and scan results.  

 

 

 
Figure 2. Experimental Setup 

 

 

5. Results 

 

Our results show that the proof of concept system is practical on both modern 

laptop systems and, in certain circumstances, also on Raspberry Pi hardware. 

Table 1. Port Scan Completion Times (in seconds) shows the time taken for an 

nmap scan to complete under different configurations.  

Using the Laptop configuration, when using a hook to intercept and modify 

values of up to 300 ports, only a small delay is incurred by the POC. This is a 

good indication that a tester could use the system to introduce fuzzing and packet 

modifications (to, e.g., test how devices behave with boundary or invalid field 

values) without perturbing the timing between legitimate end points. A small 

delay of roughly 12-20 seconds is evident when using the software to intercept 

traffic on 500 ports. 

Use of the proof of concept is more limited, but still useful with the Raspberry 

Pi. Even though with most profiles, noticeable delays are introduced, in all cases 

except T5, the nmap scan results show all ports as open, meaning that a 

connection could be established; with the proof-of-concept in place. When using 

T5, the scan results were inaccurate. 

While, there is still room for improvement regarding performance, it is 

worthwhile to note the same program instance (including the hooks) works on 

both platforms (x86-64 and ARM architectures) without modification.  
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Table 1. Port Scan Completion Times (in seconds) 

 
 

 

6.  Conclusions 

 

We have presented an architecture and a proof of concept for an interactive 

fuzzer. The fuzzer allows analysts to capture packets and make modifications 

through manual or pseudo-automated means. Against basic TCP probes from the 

nmap tool, our system introduces latencies, but in most cases, scan results are still 

accurate even when using different scanning configurations.  

In future work, we will improve the system performance by experimenting with 

different nfqueue parameters and revisiting the system’s internal design. We will 

also expand the capabilities of the PoC to incorporate complex behaviors of 

protocols and incorporate elements from honeyd, to include the use of nmap and 

xprobe2 fingerprint rules, to mimic network service behavior. For protocols that 

have no specifications, we will introduce a dissector generator module that will 

allow analysts to use a graphical interface to develop lua dissectors, leveraging 

Netzob and other related work.  
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