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ABSTRACT 

 

The decision takers of the public transportation system, as part of 

urban critical infrastructures, need to increase the system 

resilience. For doing so, we identified analysis tools for 

biological networks as an adequate basis for visual analytics in 

that domain. In the paper at hand we therefore translate such 

methods for transportation systems and show the benefits by 

applying them on the Munich subway network. Here, visual 

analytics is used to identify vulnerable stations from different 

perspectives. The applied technique is presented step by step. 

Furthermore, the key challenges in applying this technique on 

transportation systems are identified. Finally, we propose the 

implementation of the presented features in a management 

cockpit to integrate the visual analytics mantra for an adequate 

decision support on transportation systems. 

 

Keywords: Public Transportation System, Transportation 

Network Analysis, Munich Subway Network, Visual Analytics, 

Management Cockpit. 

 

 

1.  INTRODUCTION 

 

The analysis of complex networks is an ongoing research field 

for various disciplines [1–3]. The concept of a complex network 

is used as a simplified frame of a complex system (e.g. a public 

transportation system). The nodes and the links of a network are 

represented by the entities and their interrelations in a system [4]. 

However, finding suitable visualization techniques for the 

structural information of complex networks is an open question 

[5]. 

 

Several studies showed so far the applicability of visual analytics 

in general [6–8] and to transportation systems in particular [9]. 

The paper at hand aims for developing a visual analytics 

technique to detect multiple vulnerable areas in a transportation 

network. This approach was already applied in bioinformatics to 

biological network analysis [10,11], but should not stay limited 

to this field of application.  

 

Transportation networks are often the target of disturbances and 

attacks, which makes the knowledge about vulnerability and 

resilience even more important. We therefore aim for applying 

the biological network analysis to the field of transportation 

networks in order to analyze and visualize critical spots.    

 

In section 2, relevant features for transportation networks are 

identified. Methodological background, such as the visual 

analytics process and applied network analysis measures for 

transportation networks, is presented in section 3. In section 4, 

the Munich subway network is used as an example to apply the 

proposed visual analytics technique. Thereby, several visual 

representations according to different measures are presented. 

Section 5 presents the key challenges of this technique and a final 

conclusion. 

 

 

2.  FROM BIOLOGICAL NETWORKS TO 

TRANSPORTATION NETWORKS 

 

To translate the analysis of biological networks to transportation 

networks, we first have to define their main characteristics and 

differences. Compared to biological networks, transportation 

networks tend to be smaller. While biological networks can have 

several million nodes, the world-wide air transportation network 

has only 1.000 nodes and 35.000 links [12]. 

 

The example network in this paper, the Munich subway network 

has 100 nodes and 198 links [13]. This leads to the fact that the 

visualization of a transportation network is rather focused on 

information visualization than on network drawing. The network 

drawing is more oriented on the visual representation, while the 

information visualization is more oriented on operating the 

network hierarchies for various view perspectives and 

interactions between its nodes. 

 

Compared to biological networks, the visualization of 

transportation networks tends to be more subjective. This holds 

especially for the purpose of gaining information and knowledge 

for decision making. Thereby, nodes and links in transportation 

networks can be associated with costs and/or causalities. 

Therefore, the loss or damage of just one can be very significant 

in such networks [14]. 

 

While most biological networks are time independent, analyzing 

a transportation network, e.g. in terms of passengers’ flow, train 

traffic, financial revenues/losses, particular vulnerabilities, etc., 

is preferred to be studied on a time base. For example, the time 

window when a node reaches its maximum value in terms of 

passengers’ flow. Also, when studying for example the network 

reliability, route alternatives, or the shortest path of a route, more 
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information needs to be considered for transportation networks. 

Besides the length of a link, e.g. also the availability of trains on 

that link need to be considered [14]. When visualizing a 

transportation network as a directed network, the weights can 

store various information, e.g. the weights representing the 

number of trains traveling from one station to another in a 

subway network. These values are related to the degree of the 

nodes. Therefore, when considering parts of network with only 

one subway line, the number of trains varies in a small range, 

while for the dense areas where the stations are crossed by more 

than one subway line, the number of trains increase significantly 

with the number of subway lines. 

 

The connectivity of a transportation network is rather loose 

compared to most biological networks. For most of the world-

wide subway networks it would be enough to identify and cut one 

node, or one link, in order to disconnect the whole network [15].  

 

 

3.  BACKGROUND 

 

Visualization, as a science, is mainly dealing with visualization 

techniques for an efficient interaction. Branch of this science is 

the information visualization. This one refers to the visualization 

of abstract data with no explicit spatial references available [16]. 

In the last decade, an interdisciplinary version of visualization 

arose: visual analytics. The reason is the strong need of 

understanding, and also visualizing, huge amounts of data. 

Visual analytics is an adapted version of information 

visualization which combines advanced data analysis algorithms. 

Therefore, it can be defined as “an integral approach to decision-

making, combining visualization, human factors and data 

analysis” [17]. 

 

The visual analytics process is described  as an adaptive process 

[9], where the user can be rather involved in the visual data 

exploratory loop, or to the automated data analysis loop. This 

process is applied to assess transportation networks in Section 4. 

 

The network analysis combined with visual analytics is a key 

element for a proper understanding of a network. Classical 

network topology parameters can offer important structural 

information of the analyzed networks. These are recognized as 

relevant for network vulnerability measures [18,19]. Topology 

parameters, such as the number of nodes and links, diameter, 

network connectivity, girth, nodes and links connectivity, and 

cohesion, are compiled components for heuristic reliability 

indexes [20]. These indexes offer a quicker and insightful 

overview of the entire network vulnerability. This type of 

analysis was already conducted on transportation networks [15]. 

 

Structural measures, such as network entropies, can be 

considered as reliable measures to determine the structural 

properties of a network [21]. These measures capture the 

information structure of the complete neighborhood and the 

centrality properties of each node in the network [22]. Entropy 

measures have been successfully applied on transportation 

networks  by using this information-theoretic method [23]. 

 

In this paper we refer to the recently introduced flow-weighted 

efficiency measure [14]. This measure calculates the efficiency 

of a transportation network by assessing two metrics weights: the 

length of links and the train traffic on each link. The most 

efficient nodes are here considered as being most vulnerable, as 

losing their regular flow results in a serious disturbance regarding 

the serviceability of the network [14]. We therefore propose 

applying the visual analytics technique to the flow-weighted 

efficiency measure. This enables the detection of network 

vulnerabilities from different visual perspectives: modularity, 

distances, train flow, and efficiency. 

 

 
  Figure 1. A simple tree-like visual representation of the Munich subway network. 
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Figure 2. A modular tree-like visual representation of the Munich subway network. 

 

4.  APPLICATION: MUNICH SUBWAY NETWORK 

 

The visual analytics process is applied to the Munich subway 

network. This is encoded as an adjacency matrix for a directed 

network. The subway network consists of 100 stations as nodes, 

and 198 connections between stations as links [13]. 

 

In this work, we consider the train traffic between every two 

linked stations in both directions on a daily basis. The collected 

numbers are public and available at http://www.mvv-

muenchen.de/. The selected schedule is based on the weekday 

schedule for business days between Monday and Thursday. 

However, results might differ for the other schedules available 

on the network, Friday, Saturday, Sunday and Holidays [24]. 

 

For visualization, we follow the visual analytics mantra “Analyze 

first, Show the Important, Zoom, filter and analyze further, 

Details on demand” [25].

  
Figure 3. Top five shortest (real) distances of the Munich subway network highlighted in a tree-like visual representation. 

74 SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 14 - NUMBER 6 - YEAR 2016 ISSN: 1690-4524



In this paper, the focus is on a simple representation of the 

network. The nodes are the key of our visual analysis. The 

selected visualization layout is Reingold Tilford’s [26] which is 

a tree-like layout. For this layout, some cycles of the network 

might be omitted. Figure 1 is a simple representation of the 

network as directed graph with the selected visualization layout. 

The plots in this paper are generated with the RStudio [27] 

software and the igraph [28] package.  

 

More insights on the placement of nodes according to the other 

nodes can be seen from a modular perspective, which is 

illustrated in Figure 2. A module contains a connected subgroup 

of nodes of the network selected on different criteria. In this case, 

the nodes are grouped based on the available connections 

between them. Two different types of groups can be spotted. The 

small ones highlight the linear paths of subway lines, while the 

big ones highlight the presence of hub nodes. The latter are the 

key nodes of the network. The big groups show their impact in 

the network in terms of connectivity. Hub nodes like Innsbrucker 

Ring, Kolumbusplatz, Hauptbahnhof (for the lines U1, U2, U7, 

U8), Münchener Freiheit and Implerstraße can be spotted in the 

figure. 

 

Another interesting analysis is the perspective of distances in the 

network. Figure 3 shows the top five shortest distances 

highlighted based on real life data [29]. The connections belong 

to the following groups of nodes: Josephsplatz - Theresienstraße 

0.513 km, Hauptbahnhof (for the lines U4, U5) - Karlsplatz 

Stachus 0.521 km, Böhmerwaldplatz- Richard Strauß Straße 

0.552 km, Silberhornstraße – Untersbergstraße 0.553km, and 

Giselastraße - Münchener Freiheit 0.579 km. 

 

In Figure 4 the top ten most demanded nodes in terms of train 

flow in the Munich subway network are highlighted for a 

weekday schedule. For this analysis the total number of trains 

stopped in a node per day are considered. The nodes with the 

highest daily train flow are: 

 Innsbrucker Ring with 759 trains/day,  

 Giselastraße with 719 trains/day,  

 Implerstraße with 719 trains/day,  

 Marienplatz with 719 trains/day,  

 Odeonsplatz (lines U3, U6) with 719 trains/day, 

 Sendlinger Tor (lines U3, U6) with 719 trains/day,  

 Universität with 719 trains/day,  

 Goetheplatz with 717 trains/day,  

 Poccistraße with 717 trains/day,  

 Sendlinger Tor (lines U1, U2, U7, U8) with 712 

trains/day. 

 

In Figure 4 a very demanded route can be observed in the 

network with eight consecutive nodes in the top ten selection. 

The other two nodes highlighted represent central node hubs of 

the network. 

 

In the last visual perspective of Figure 5, the top results of the 

flow-weighted efficiency measure [14] are highlighted. This 

measure is a combined analysis from the shortest distance of any 

pair of nodes in a network and the minimum number of trains 

available on that route per day. Thus, the measure uses the exact 

data processed for Figure 3 and Figure 4. 

 

The top ten highlighted nodes and their values from Figure 5 are: 

 Giselastraße - 6.32,  

 Münchner Freiheit - 6.32,  

 Hauptbahnhof (lines U4, U5) - 5.86,  

 Karlsplatz Stachus - 5.86,  

 Implerstraße - 5.83,  

 Poccistraße - 5.83,  

 Marienplatz - 5.71,  

 Odeonsplatz (lines U3, U6) - 5.71, 
 Goetheplatz - 5.37,  

 Universität - 4.91.

 
Figure 4. Top ten most demanded nodes in terms of train flow in the Munich subway network from Monday to Thursday highlighted in a 

tree-like visualization. 
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Figure 5. Top ten most efficient nodes in terms of train flow and shortest (real) distances in the Munich subway network from Monday to 

Thursday highlighted in a tree-like visualization. 

 
For profound managerial decision making each analysis might 

make sense and give additional insights into the network 

structure. This shows that applying measures from biology 

definitively makes sense for other fields of application, such as 

transportation networks. However, the special architecture and 

design of a transportation network demands for further 

improvements of the measures. To this end, the flow-weighted 

efficiency measure was found to be very helpful and allowing for 

deeper insights [13].  

 
A more convenient solution than working with heat maps is the 

extraction of highlighted nodes. This would lead to a further step 

via creating another network: the network of networks. In this 

way, the last step of the visual analytics mantra “Details at 

demand” can be applied. More precisely, the network analysis 

measures presented in the previous section could now be applied 

on the exact parts of the network on which decisions must be 

focused. However, the procedure stays unchanged and follows 

the approach presented here. 

 

 

5.  CONCLUSION 

 

The paper at hand might be seen as one more proof that the 

application of visual analytics is favorable for several disciplines 

and might support managerial decision making in various fields.  

As critical infrastructures in general, and the rail-bound public 

transport in special, are essential for the functioning of a society 

and are therefore often target of disturbances and attacks. We 

analyzed the systems vulnerability and identified the most 

important spots that need special treatment in terms of safety and 

security, as well as recovery after interruptions. Thereby, we 

showed that the combination of two different measures from 

biology can be used to gain deeper insights into the serviceability 

of the system. 

 

However, there are several challenges in applying the visual 

analytics process on transportation networks. Concerning the 

analysis, it is an open gap to find the most suitable tools for the 

structural interpretation of the networks. The same holds for 

visualization techniques for this type of networks. The solutions 

are rather subjective. 

 

However, assessing multiple values of weights for links and the 

physical position of each node in relation to the others will 

improve the analysis of transportation networks. In this sense, the 

analysis will be more realistic when measuring classical 

topological measures, e.g. diameter, shortest path, or average 

path length. A physical position of the nodes can control the 

overlapping problem when plotting. 

 

This type of analyzes can also be performed on a time base, being 

an extension from static networks to dynamic networks. 
Therefore, the most vulnerable spots of the transportation 

networks can be assessed for different time schedules. 

 

In conclusion, visual analytics can be successfully applied to 

describe and visualize network structures and their 

vulnerabilities. However, decision makers do not have modelers 

available all the time. Therefore, we propose the automated 

analysis via the implementation of several measures for special 

types of networks, such as transportation networks, in a 

management cockpit. This integration of visual analytics into a 

novel decision support tool would allow for fast and detailed 

analyzes in such special fields. The integration into a 

management cockpit will be presented in a follow-up 

publication. 
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