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ABSTRACT 
Over time, technical systems such as automobiles or spacecraft 
have grown more complex due to the incorporation of 
increasingly more and different components. The integration of 
these components, which are frequently designed and 
constructed within separate departments and companies may 
lead to malfunctioning systems as their interplay cannot be 
tested within the earlier phases  of development.  
This paper introduces compatibility management as one 
solution to the problems of late component integration. 
Compatibility management is carried out on a common cross-
domain model of the system and therefore allows to test 
compatibility early on.  
We show how compatibility management can be embedded into 
the phased development of ECSS-M-30A and present the 
(Unified) Compatibility Modeling Language ((U)CML), which 
is used for the underlying cross-domain model. A case study 
demonstrates the application of (U)CML in the development of 
a small satellite and explains different degrees of compatibility. 

Keywords: compatibility management, phased development, 
multi-disciplinary system model, product life cycle, micro 
process 

1. INTRODUCTION 
Technical systems such as automobiles or spacecraft have over 
time grown more elaborate and complex due to the 
incorporation of increasingly more and different components. 
Especially high-tech systems have experienced this transition in 
the course of which, for example, mechanical and electrical 
engineering are increasingly being merged with software 
engineering – for instance in the development of embedded 
systems. For example, today’s cars include up to 80 micro-
controllers, which are connected with up to five bus systems 
that communicate with hardware such as sensors or actuators 
[3]. 
Moreover, components are usually developed by independent 
teams and within separate departments or companies, which 
frequently leads to malfunctioning systems, the need for major 
rework, and quite frequently to time and production delays. 
The main focus of compatibility management is to assure 
compatibility of components that exist only as drawings or 
textual descriptions from the early development phases on to 
avoid higher costs for their integration in later phases. Therefore 

compatibility management is centered on defining and 
providing methods and processes for assuring the compatibility 
of systems during development, production, and maintenance. 
 
This paper describes a modeling language that allows to test 
compatibility during the conception and design phases of a 
product. In a second step the paper describes the phased 
approach for space systems product development, proposed by 
the ECSS-M-30A standard. Thirdly, the interplay between 
compatibility management and phased development, as well as 
how difficulties with the integration of components affect the 
product lifecycle is demonstrated. The presented paper 
concludes with a case study showing the application of the 
compatibility modeling language in the development process of 
a small satellite. 

2. A NEW LANGUAGE FOR MODELING 
COMPATIBILITY: (U)CML 

Due to the complexity of today’s systems, their extensive 
textual documentation can become very difficult to understand. 
Therefore key aspects are usually extracted and considered in 
models of the system. These models provide the basis for 
understanding and, as [7] states: “models are central objects of 
scientific communications”. 
Compatibility cannot be modeled adequately in standard 
modeling languages like the Unified Modeling Language 
(UML) or the Systems Modeling Language (SysML), as shown 
in [2]. That is why the (Unified) Compatibility Modeling 
Language ((U)CML) has been developed [8].  
(U)CML is an object-based modeling language laid out for the 
design of technical and especially embedded systems (thus 
incorporating the disciplines computer science, electrical and 
mechanical engineering). With only a few adaptations, the 
language can be used for modeling systems of any domain, but 
this has not been proven so far and is the reason, why the 
‘Unified’ of (U)CML is put in brackets. 
The smallest entities of (U)CML are components, which expose 
their inherent functionality through associated input and output 
interfaces, which are called plugs. Each plug has a designated 
direction (input or output) and belongs to exactly one 
component. 
Packages are used as containers to group components. They are 
organized in a hierarchic tree-like fashion, because a package 
may contain components as well as other packages, but cannot 
contain itself. One package (the so called system package) is 
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therefore the root of the package hierarchy and usually 
resembles the product to be developed. In order to account for 
consistency within the model, packages do not possess a 
functionality of their own, but make interfaces available to their 
surrounding.  
This second type of interface (besides the plugs) is actually 
called an interface in (U)CML. Within the following sections, 
only package interfaces (within a (U)CML context) are termed 
interfaces – plugs are referred to as plugs. Interfaces are used to 
forward the port information of a plug associated with a 
component that lies within the package to which the interface is 
connected. Interfaces may also pass information through their 
associated package without being consumed (by connecting an 
input interface of a package to an output interface of the same 
package). 
The key entities for testing compatibility are connections. One 
connection connects exactly two plugs (plus intermediate 
package interfaces) and models a channel for the flow of matter, 
electrical signals or information between the plugs. The 
introduction of external plugs allows connections to the 
environment of the system. External plugs are similar to normal 
plugs, but are connected directly to the interfaces of the root 
package (i.e. the system). 
For the purpose of a bidirectional communication (e.g. a 
function call), communication variants of plugs, interfaces, 
connections and external plugs are provided. The graphical 
representation is identical to their unidirectional counterpart in 
combination with a reversely directed second plug / interface / 
connection. Figure 6 shows several elements of a 
communication between the components “Camera_Mech” and 
“OBDH” involving the communication plugs 2a and 2b. 
 
All representations of (U)CML entities display two aspects: a 
graphical shape and an associated list of (compatibility-
relevant) attributes, which is called description field in (U)CML 
(marked by “4” in Figure 6).  
The graphical shape shows, with which other entities an entity 
is associated (plugs are assigned to a certain component, 
interfaces to a certain package, components and packages to 
other packages) or with which it communicates (connections 
between plugs and/or interfaces). Interfaces and plugs on the 
left side of a component/package indicate an input whereas a 
position on the right side characterizes an output.  
The graphical notation also provides clues as to which 
discipline the entity belongs and whether an entity failed the test 
for compatibility by color. The border of a component that is 
mechanical is marked in green. A plug filled in yellow displays 
a compatibility warning. A compatibility warning indicates that 
the marked plug does not fit to its connected counterpart, 
although this mismatch is not critical.  
As mentioned above, every graphical entity has an assigned list 
of attributes. The values for these attributes are the basis for 
compatibility tests. For instance, the set of attribute values of 
one plug are compared with the attribute values of the other 
plug, which is connected to it by one connection on whether 
they “match”. “Matching” in this context means that given a set 
of compatibility rules the connection is valid or at least feasible. 
For example, the compatibility rule “a round building block 
may be inserted into a square hole” applied in a well-known 
children’s game would cause compatibility warnings in an 
(U)CML model that models the game.  (U)CML is designed to 
include project-specific and company-specific sets of rules. 
These two sets of rules may coexist and differ only by the 
person that administers the rules and by their applicability.  

A more detailed explanation of (U)CML and how compatibility 
is defined is provided in [8]. 

The practical aspects of modeling compatibility 
(U)CML is a useful tool in the development of a system, 
because its concept enables the translation of models written in 
other modeling languages like UML or SysML into an (U)CML 
notation [2]. Thus  (U)CML can easily be integrated into an 
existing modeling landscape. A software editor supporting 
system design in (U)CML – which is needed for large models – 
is currently being implemented at the Technische Universität 
München. 
Alternatively, other modeling languages for modeling 
compatibility in multi-disciplinary systems are SysML in 
combination with UML, proprietary partial solutions and textual 
descriptions. 
SysML is designed for the creation of integrated models of 
hard- and software and is supported by various commercial 
editors. With SysML, the user is able to describe compatibility 
through the use of comments and specialized expressions 
formulated in the Object Constraint Language (OCL). But this 
is a workaround, as comments have been defined for 
unstructured, informal information. Therefore SysML requires 
new test routines that filter out relevant information from 
comments to allow for automated tests for compatibility. 
Proprietary modeling environments offer compatibility rules 
tailored to the company they were designed for. As a drawback, 
they are designed for only a few systems. Using a proprietary 
modeling language for a different type of product is usually not 
feasible and thus requires the costly development of a new 
modeling environment.  
Lastly, textual descriptions provide an almost unlimited number 
of compatibility rules, but cannot be understood as easily and 
tested as structured graphical models. 

3. THE PROJECT PHASING IN ECSS-M-30A 
Aside from tools, system development is guided through a 
process. A representative development process that is widely 
used in the engineering of space systems is the standard for 
project planning [5] by the European Space Agency (ESA). 
This standard is part of the ECSS (European Cooperation on 
Space Standardization) set of standards, which define how 
systems consisting of hard- and/or software are developed 
within ESA and by its suppliers. The project planning standard 
ECSS-M-30-A mentioned above addresses phased development 
of space systems [5]. In the following, the phases are mentioned 
together with the activities they focus on. The phases are 
supposed to be traversed in the given order without overlap. 

Phase 0 (Mission Analysis/Needs Identification): 
characterization of the intended mission, needs, operating 
constraints, possible system concepts 

Phase A (Feasibility): finalizing the expression of needs and 
proposing solutions meeting the perceived needs 

Phase B (Preliminary Definition – of project and product): 
selection of technical concepts for solutions, precise 
definitions, confirmation of feasibility and determination of 
operating constraints 

Phase C (Detailed Definition – of the product): detailed study of 
the chosen solution, ‘make-or-buy’ decisions, initialization of 
production and verification 
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Phase D (Production/Ground Qualification Testing): qualified 
definitions, production for experimental results, integration 
and verification 

Phase E (Utilisation): launch campaign, launch, in-flight 
acceptance of space elements 

Phase F (Disposal): all events from end-of-life until final 
disposal of the product 

 
Project milestones mark the end of each phase. When such a 
milestone is reached, a major review is conducted to assure that 
the product has completed the phase successfully, to determine 
areas for rework or – in the case of major difficulties in an early 
phase – abort the project. After phases B to D, the milestones 
also serve the purpose of setting a controlled baseline (a 
specified configuration of the product and all its artifacts, which 
will not be changed anymore). 
The ECSS project management standards cover a variety of 
knowledge areas such as project management, schedule, cost or 
risk management.  
Configuration management is also part of these standards. It 
specifies which versions of different system artifacts and 
components have been tested together. Thereby it insures a 
basic consistency between components.  
In addition to that, compatibility management assists in the 
exchange of consistency information between departments and 
between models (instead of testing compatibility on components 
that are already built). 

4. THE COMPATIBILITY MANAGEMENT PROCESS 
WITHIN ECSS-M-30A 

This section shows, how compatibility management and the 
phased development of ECSS-M-30A can work together. 
As mentioned above, distributed development and problems 
with the integration of subsystems are crucial issues when 
developing technical systems. Within the ECSS-M-30A 
process, integration takes place in phase D. In phases B and C 
the components of the system are developed separately. It is 
evident that an earlier detection of inconsistencies and design 
errors leads to lower overall costs [10]. Compatibility 
management insures consistency during distributed 
development and hence a smooth integration of the system. 
Therefore, compatibility management should take place in 
every phase of the development process. During the design 
phases, compatibility management is based on models, whereas 
it is based on existing components in the construction phase. 
In general, compatibility management is carried out within a 
process that consists of a sequence of certain steps. These steps 
are Definition, Identification, Evaluation, Measures, 
Implementation and Control – called DIEMIC for their first 
letters [1]. A compatibility manager (CM) is chosen, who 
controls and coordinates this process with different 
departments. The CM controls the six DIEMIC steps by 
focusing on the activities laid out in the following subsections. 

Definition 
The DIEMIC process starts with a definition of compatibility 
requirements and an identification of the compatibility-relevant 
traits of the system. 

Identification 
When malfunctions, inconsistencies or incompatibilities within 
the models/components are found, they have to be reported to 
the CM in an extensive description of the problem. The 

department then identifies affected components, hierarchy 
levels and domains together with the CM.  
In this step, experts are needed to assure that the observed 
behavior is a mistake in the system model or an incompatibility. 

Evaluation 
The evaluation step assesses the criticality of the observed 
malfunction and requires a decision about the future course of 
action to restore functionality respectively compatibility of the 
system.  

Measures 
Actions occurring in this step are the identification and 
definition of appropriate measures. Where necessary, other 
areas of management are brought in (i.e. project management, 
configuration management, change management and/or 
problem management). 

Implementation 
The CM then forwards the suggested counter-measures to 
affected departments. These document and report back changes 
to the system and contingently inquire about ambiguities or 
mistakes. 

Control 
A last step for the CM is forwarding information about the 
completeness of the implementation to the initiating department 
and receiving a confirmation of desired effects of the measures 
taken. If this confirmation is negative, a new cycle has to be 
started. 
 
DIEMIC can also be seen as a phased process, but has to be 
carried out several times throughout the development of a 
product and does not contain milestones. It can be linked to the 
phases of the ECSS-M-30A product development process so 
that this DIEMIC micro process is completed several times 
within a single phase of the ECSS-M-30A macro process. 
 
 

 
Figure 1: DIEMIC micro process in the context of phased 

development [2] 
 
During the phases 0 to C, all steps of the micro process are 
usually carried out, because the most critical decisions are made 
within these early phases. In phases D through E the definition 
phase is usually skipped as – in general – no additional 
compatibility-relevant properties are discovered. The disposal 
phase F normally does not require compatibility management 
(indicated through lighter coloring in Figure 1) since products 
are decommissioned and do not necessitate further design 
enhancement and correction processes [2]. 
Besides this, Figure 1 displays a fundament of a common cross-
domain model of the system for the phase model and thus for 
the DIEMIC processes. The thorough utilization of a model of 
the system common to all departments and disciplines is the 
main driver for compatibility within the design phases A to C, 
since it enables the detection of inconsistencies between models 
at the time the models are created. This may not be an online 
process, but regular (automated) coordination between the 
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separate models and the common model already suffices. If 
only little time elapses between the modeling and integration of 
the system, the rationale determining the appearance of the 
subsystem is preserved for evaluating the necessity of recent 
changes and the proposition of alternative designs.  
The ability to detect inconsistencies originates in relating the 
previously unrelated CAD-models, circuit layouts, UML 
diagrams etc. When these models are composed, shared 
components have to be identified and differing perceptions of 
the component are thus detected.  
To sum up the relation between compatibility management and 
the ECSS standard: it is supposed to be another field of duty 
alongside project management, change management or problem 
management (which [6] implements in a micro process in a 
similar fashion). At the same time, it is strongly linked to these 
management (sub-) processes and is therefore very pervasive 
throughout development. 
Due to the fact that the development process of a student project 
is hardly visible, the next section describes the gain from a 
common cross-domain model of the system in (U)CML. 

5. CASE STUDY: CUBESAT MOVE 
Currently, a small satellite is being developed within the 
Institute of Astronautics at the Technische Universität 
München. Students of different backgrounds are employed to 
construct the picosatellite MOVE [9]. To be precise, MOVE is 
designed according to the CubeSat guidelines, which demand a 
maximum size of 10 x 10 x 10 cm and at most 1 kg weight [4]. 

Model(s) of the CubeSat 
The payloads of MOVE are an optical camera system and an 
experiment board. Within the following models of the satellite 
only small sections of the original model(s) are covered. The 
focus is on the camera payload and the mainboard of the 
satellite (or in technical terms: the on-board data handling 
subsystem (OBDH)). 
The following figures present MOVE from three different 
perspectives – Figure 2 is a CAD drawing of the structure of the 
satellite and the two extracted parts camera and OBDH. The 
mounting places for both extracted parts are marked by the 
arrows. It is evident that these two parts have to physically fit 
into the place that has been reserved for them in order to allow 
for a functioning satellite. This is an example for compatibility 
modeling of mechanical parts (within the domain of mechanical 
engineering). 

 
Figure 2: A CAD model of MOVE, its mainboard and camera 

 

Figure 3 is an abstract block diagram displaying the important 
aspects of the electronic communication between camera 
payload and OBDH. Less detail is used to model the experiment 
board and the power supply (EPS). Electronic aspects modeled 
in the image sensor interfaces of camera and OBDH provide an 
example for electronic compatibility as the signals sent and 
those that were expected to be received have to match.  
 

 
Figure 3: Block diagram of the satellite MOVE 

 
Finally, the following two figures show UML diagrams that 
model the information exchange and processing related to 
images and their raw data between camera and OBDH on an 
object-oriented basis. 
 

 
Figure 4: UML class diagram of the image handling process 

 

 
Figure 5: UML sequence diagram of the image handling 

 
All three models are different from each other and represent 
views from various disciplines onto the same subject. Even here 
it becomes obvious, that a large amount of effort is needed to 
connect the camera component to the component OBDH and 
maintain consistency between the models used. A common 
cross-domain system model in (U)CML can be constructed 
from the combination of all three models to facilitate the 
DIEMIC compatibility management process [2]. 
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Figure 6: (U)CML diagram of the camera and the OBDH 

 
A possible (U)CML model that incorporates the information of 
figures 2 to 4 is given in Figure 6. This merged diagram is only 
the first step towards a true cross-domain model, as links 
between components that belong to different disciplines cannot 
be inferred from the original diagrams. Therefore, a second step 
incorporating connections between components of different 
domains would greatly improve the utility of the common 
model. The manual insertion of new connections between 
electronic and software components requires the collaboration 
of experts of the involved disciplines and enables automated 
testing of the connections between different domains [2]. For 
the sake of clarity and deducibility from the original domain 
models, these cross-links have been omitted. 
The (U)CML diagram in Figure 6 allows system architects (in 
this case: students) of the involved disciplines to identify their 
part of responsibility – if modeled correctly as for the camera 
package and not using one component for more than one 
represented domain, which is demonstrated in the OBDH 
component. The engineers have to specify only their 
(assumptions about) interfaces to components of other domains. 
Furthermore, as both participants in an exchange of matter, 
electrical signals or information may reference the same 
(U)CML connection, communication between engineers from 
different disciplines is simplified. 

Testing compatibility of the (U)CML model 
To illustrate the utility of a compatibility test on an (U)CML 
model, the model drawn in Figure 6 is evaluated based on the 
values given in the lists of attributes (labeled with “4” in the 
same (U)CML diagram). 
The comparison of plugs 1a and 1b, which constitute the two 
ends of the connection that describes the handing over of image 
information, will be described first. This is followed by a test on 
compatibility of the communication plugs 2a and 2b and finally 
a compatibility test of the plugs 3a and 3b that model a channel 
for direct current. 

Consistency of the image hand-over: In Figure 6, the 
description fields connected to the plugs 1a and 1b show the 
assumptions of both components related to the software 
information that is exchanged.  
Both plugs expect a value of a “rawData” type, which is 
characterized (in both assumptions) by a range of [0 … 100] in 
both dimensions and a unit of “DataField”. As the plug type is 
also identical, both attribute lists are the same and compatibility 
of “Camera_SW” and “OBDH” related to this connection can 
be assumed.  
Of course, this case is very trivial and could be conducted on a 
simple table as easily. The compatibility examples presented in 
the following tests will demonstrate that this triviality is not 
always the case. 

Compatibility of the electrical data transfer: This 
test involves the communication plugs 2a and 2b forming the 
two endpoints of the electronic communication connection that 
links up the “Camera_El” to the “OBDH”.  
This communication is modeled to exchange electrical signals, 
which enable the transfer of the raw data of the image. As 
mentioned above, this relationship between electronic and 
software components is not represented within the (U)CML 
diagram, because it was not (and could not be) shown in the 
original domain models. 
 
This communication connection also has a designated direction, 
meaning that the communication is initiated by one partner – 
which in this case is the electronic part of the camera.  
Looking at the return-direction (from the OBDH to the camera), 
which is described in the bottom parts of the two description 
fields, the information of both plugs is identical, because 
comments do not contribute to compatibility. 
In contrast to that, the initiating direction (originating at the 
camera) does not match completely. The camera sends integers 
(int) within a range of [0 … 4096], whereas the OBDH could 
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receive integers ranging from 0 to 65536. This is not a critical 
difference, since all information sent is preserved. Hence, this 
would be a (U)CML warning thus indicating that the attribute 
values of the plugs are not alike, but the connection is feasible. 
When using a more rigid rule set that does not allow non-equal 
values for connected plugs, this connection might be marked as 
erroneous. 
Another error can be detected within the power supply and is 
explained in the following subsection. 

Examination of the power supply connection: The 
diagram displays a third connection between plugs 3a and 3b.  
This connection models the channel for the voltage of a directed 
current between OBDH and camera. Both plugs are tagged as 
being electronic and provide/consume an amount of mV given 
as an integer value. These are the only congruities of the 
description fields belonging to plugs 3a and 3b.  
The stepping given within the plugs differs by 50 mV, but the 
source increases by 100mV and could – by the stepping alone – 
be consumed by the receiving plug that allows steps of 50mV. 
Besides the stepping, the two plugs conflict in the range of mV 
they offer/can receive and in their expected starting values; the 
output plug 3a delivers a narrower range of voltages than input 
plug 3b is constructed to accept. This alone would – given a 
normal ruleset for compatibility – not lead to an error. If, 
furthermore, the starting voltage of the consuming plug is lower 
than the lowest deliverable voltage by the source, a 
compatibility error is certain; a given set of compatibility rules 
should always evaluate this mismatch as compatibility error, 
because an implementation of this electrical connection would 
reveal that a component receiving a higher voltage than it is laid 
out for will be damaged. For this kind of information, experts 
are needed, who assert that this damage is certain (as mentioned 
within the identification step of the DIEMIC process). 
 
In the example discussed within this section, three different 
types of compatibility conclusions have been discussed 
including: 
• strict compatibility due to identical needs on both sides,  
• a compatibility warning because of non-identical, but 

possibly compatible plugs and  
• a compatibility error occurring when differing values for 

an attribute cause malfunctions within the implemented 
system 

6. CONCLUSIONS 
Within this paper, the modeling language (U)CML, its functions 
and the applicability for space engineering were shown.  
We described, how (U)CML could be used within phased 
development according to ECSS-M-30A. Compatibility 
management has been introduced as additional knowledge area 
within space system development and as such is carried out in a 
micro process of its own. The steps of this DIEMIC micro 
process have been explained and it was shown how to embed 
compatibility management into the phases of the ESA standard.  
For the cross-domain model that is required to allow for 
compatibility tests within even early development phases, we 
chose (U)CML, which meets the requirements for multi-
disciplinary modeling of compatibility best.  
This paper was concluded with a case study on the development 
of the CubeSat MOVE. This student project involved 
mechanical, electrical and software engineering and their 
respective models. We translated the three models to (U)CML 
and merged them into a common model. A simple compatibility 
test was demonstrated on the cross-domain model, which 

showed three different cases of compatibility – strict 
compatibility or the exact match of interface descriptions, non-
strict compatibility or conformity of interface descriptions by a 
compatibility rule and a compatibility error. 
Currently, an editor for (U)CML is being developed at the 
Technische Universität München. This editor will be used to 
facilitate the modeling of large systems and allow for first 
applications of (U)CML within companies that are concerned 
with developing (complex) technical systems. 
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