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ABSTRACT 

 
Due to some intractability considerations, reasonable 

formulation of necessary and sufficient conditions for decomposability 
of a general multigraph G into a fixed connected multigraph H, is 

probably not feasible if the underlying simple graph of H has three or 

more edges. We study the case where H consists of  two underlying 
edges. We present necessary and sufficient conditions for H-

decomposability of G, which hold when certain size parameters of G 

lies within some bounds which depends on the multiplicities of the two 
edges of H. We also show this result to be "tight" in the sense that even 

a slight deviation of these size parameters from the given bounds results 

intractability of the corresponding decision problem. 
 

Keywords: Multigraphs , Decompositions, Stars, Multistars, 

Intractability. 

 

 

1.   INTRODUCTION 
 

Given two graphs H and G, an H-decomposition of G is a partition of 
the edge set of G into disjoint isomorphic copies of H. The study of 

Graph decomposition started back at the mid19th  century, with the 

seminal concept of  Steiner triple systems [8], and has since become the 
subject of some hundreds of research papers, with active research still 

carried out today. R. Wilson's fundamental theorem [9] states that for 

any fixed graph H there exists an H-decomposition of the complete 
graph Kn if the obvious necessary divisibility conditions hold and n is 

large enough. A considerable amount of research was indeed devoted to 

thoroughly studying the existence of H decompositions of complete 
graphs for specific graphs H, such as: some small graphs, complete 

graphs, complete multipartite graphs, paths and cycles (a finite problem 

for every fixed graph H, in light of Wilson's theorem). For a review of 
methods and results see e.g. [3] and [2]. 

Hopes for similar accurate results where H decomposition of 

a general graph G is considered are slim, due to the following negative 
result: 

 

Theorem 1.1 Deciding whether there exists an H-
decomposition of an input graph G is  NP-complete for any fixed simple 

graph H which contains a connected component with at least 3 edges 

 
The above was conjectured  by  I. Holyer [5] on 1981 and 

proved sixteen years later in [4]. On the other hand, the existence of a 
polynomial time algorithm to decide H-decomposability of an input G, 

where every component of H consists of at most two edges was proved 

(though not in terms of an explicit necessary and sufficient condition) in 
[1]. 

In this research we study Multigraph decomposition, that is 

the case where multiple edges are allowed in both graphs H and G. 
Although Theorem 1.1 was not (yet?) generalized to multigraphs, a 

graph decomposition decision problem most probably remains at least 
as hard when extended to multigraphs. Furthermore, we have managed 

to prove the following intractability results [7]: 

 
Theorem 1.2 Deciding the decomposability of an input 

multigraph G with a constant multiplicity λ on all its edges, into the star 
K1,t is NP-Complete for every fixed λ and t ≥ 3. 
 

Theorem 1.3 Deciding H-decomposability of an input 

multigraph G into any fixed multistar (a multigraph whose underlying 
simple graph is K1,t , with any sequence of positive multiplicities on its t  

edges) with at least three underlying edges, is NP-Complete. 

 
In an attempt to find the conditions for decomposability of a 

general "input" multigraph G into a "fixed" connected multigraph H, 

serious hopes for results are limited, in light of the theorems above, to 
the case were H consists of two underlying edges. 

Quite surprisingly we found out this limited setting to be 

rather involved, producing somewhat unexpected results:  In a previous 
article [6], we considered the simplest case, where H=S1,2 is a 

multigraph on an underlying K1,2 with multiplicity 1 on one edge and 2 

on the other, and G is a multigraph on any underlying simple graph with 

a constant multiplicity λ on all its edges. We gave necessary and 

sufficient condition for such a decomposition to exist if  λ ≠ 2 and λ ≠ 5. 

We also showed that similar conditions for λ = 2 and for λ = 5 do most 
probably not exist, by proving the corresponding decision problems to 

be NP-complete. 

In Section 2 of this article we investigate the decomposition 

of a general multigraph G into Sα,β-an underlying K1,2 with multiplicities 

α and β. We show some necessary divisibility conditions to be also 
sufficient if certain size parameters of G lie between certain bounds 

which depend on α,β and 
α

β
. We then show in Section 3  this result to 

be "best possible" in the sense that the corresponding decision problem 

becomes NP-complete when the relevant size requirements are not met. 

The following terminology sets the frame for a more formal 
and rigorous treatment of the subject. 

 

Notation 

•  A multigraph  (V,E,w), also denoted by (G,w), consists of a 

simple underlying graph G=(V,E) and a multiplicity function 

w: E → N, where N is the set of natural numbers (unless 
explicitly stated otherwise, the multiplicity of an edge is 

strictly positive). 

•  The multigraph on an underlying graph G with a constant 

multiplicity λ is denoted by λ⋅G. 

• When referring to a simple graph G as a multigraph, we 

mean1⋅G. 
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• An isomorphism between multigraphs is an isomorphism 
between their underlying simple graphs, which preserves 

edge multiplicity. 

• A subgraph H of a multigraph G is a multigraph H whose 
underlying graph is a subgraph of that of G and its 
multiplicity function is dominated by the multiplicity 

function of G, i.e. the multiplicity of an edge in H does not 
exceed its multiplicity in G. 

• An H- subgraph of G is a subgraph of a multigraph G, 

isomorphic to a multigraph H. 

• Let G and H be two multigraphs. An H-decomposition of G 

is a set D of H-subgraphs of G, such that the sum of w(e) 

over all graphs in D which include an edge e, equals the 
multiplicity of e in G, for all edges e in G. 

• An H- λ decomposition of a simple graph G is an H-

decomposition of the multigraph λ⋅G. If it exists we say that 

G is H-λ decomposable, or that G admits an H-λ 
decomposition. 

• The t-star, St , (also commonly denoted by K1,t) is a simple 
graph, consisting of t edges which share one common vertex, 

referred to as the center of the star, and are otherwise 

disjoint. 

• The multistar 
1 2, ,..., tw w w

S  is the multigraph, whose 

underlying graph is a t-star, and the multiplicities of its t 
edges are w1,...,wt. 

• Associated with a fixed multigraph H is the H-

decomposition computational problem: Does an input 
multigraph M admit an H-decomposition? 

• In particular, associated with a fixed multigraph H and a 

natural number λ is the H-λ decomposition computational 

problem: Does an input simple graph G admit an H-λ 
decomposition? 

 
 

 

2. Sαααα,ββββ-DECOMPOSITIONS OF MULTIGRAPHS WITH A 

NARROW INTERVAL OF LARGE MULTIPLICITIES 

 

In this section we prove Theorem 2.1  which states that 

Some necessary divisibility conditions for Sα,β-decomposability of a 

multigraph G are also sufficient if the multiplicities of all edges of G are 

large enough and yet the ratio between the largest and smallest 
multiplicities is bounded. For a certain class of trees, which we refer to 

as odd regular trees, there is also a lower bound on the number of 
underlying edges of G. 

More definitions and some preparatory work are required for 

the detailed formulation of Theorem 2.1  and hence we leave it to a later 
stage. 

Along the rest of this chapter we assume that α and β are 

relatively prime, otherwise α, β and the multiplicity function should 

first be divided by gcd(α,β). We also assume α>β . 

Binding together the Sα,β-subgraphs which share a common 

center and considering a single edged multigraph decomposable, if and 
only if its multiplicity is 0, the following is clearly an equivalent way to 

look at an Sα,β-decomposition of a multigraph which is not a star. 
 

Definition Sα,β-decomposition of a multigraph M=(V,E,w), other than a 

star, is a two-variables function f, which assigns an integer fx(e) to each 

pair (x,e), where x ∈ V is a vertex and e is an edge, incident with x, such 
that:  

1. f_x(e)+f_y(e)=w(e) for every edge e=(x,y)\in E, and: 

2. for every vertex x ∈ V, incident with edges e1,...,en, the n-star 
with multiplicities fx(e1),...,fx(en), is S

α,β-decomposable. 

 

As it is often the case when a decomposition problem is at hand, 

there are some simple necessary divisibility conditions for Sα,β-

decomposition, which become also sufficient when certain size 

parameters of the Input multigraph are large enough. Our method of 

constructing Sα,β-decompositions deals with these two aspects in two 

separate phases: First we consider only the 'large enough' inequalities to 

construct a non-integer `approximation' which is then slightly modified 
until it fits the divisibility conditions. 

We now state the necessary divisibility condition for Sα,β-

decomposition by considering its projection on the ring of integers 

modulo α2 - β2 . 
 

2.1  Sαααα,ββββ-decomposition in the ring of   integers modulo αααα2- ββββ2  
The divisibility  conditions for an Sα,β-decomposition are captured by 

the following definition: 

 

Definition A Zα,β-decomposition of a multigraph M = (V,E,w), is a 

collection D of Sα,β-subgraphs of M, such that the sum of multiplicities 

of an edge e over all members of D which include e is congruent to w(e) 

modulo α2 - β2. 

 

Based on the argument which led to that Definition , we obtain the 
following equivalent definition for graphs which are not stars: 

 

Definition A Zα,β-decomposition of a multigraph M=(V,E,w), other than 
a star, is a two-variables function f, which assigns an integer fx(e) to 

each pair (x,e), where x is a vertex and e is an edge, incident with x, 

such that: 

1. fx(e)+fy(e) ≡ w(e) (modα
2 - β2 ( for every edge e = (x,y) ∈ E, 

and: 

2. for every vertex x ∈ V, incident with edges e1,...,en, the n-star 
with multiplicities fx(e1),...,fx(en), is Zα,β-decomposable. 

An Sα,β-decomposition of a 2-star on edges e1,e2 consists of a 

number, say a, of copies of Sα,β, with multiplicity α on e1 and β on e2, and 
additional b copies where the multiplicities are switched. The 

multiplicities on the edges of a decomposable 2-star are hence aα + bβ and 

bα + aβ.  Let Zα,β stand for the ring of integers modulo α2 - β2. We say 

that a pair (p,q) ∈ Z2
α,β is valid if there exist  a and b in Zα,β  such that       

p = aα + bβ and q = bα + aβ. 
A multiplicity function on the edges of a graph G naturally 

translates to a weight function on the vertices of its line graph, an S2 

subgraph of G is merely an edge of the line-graph and an Sα,β subgraph 

becomes an edge with weight α on one endvertex and β on the other. In 

light of that observation we define a Zαβ-factorization of a graph 

L=(U,F) with a weight function w : → Zαβ to be a function f which 

assigns a valid pair (fe(u),fe(v)) to every edge e = (u,v)  ∈ F, such that 
the sum of fe(u) over all edges e incident with a vertex u, equals w(u).  

A Zαβ-decomposition of a multigraph is clearly a Zαβ-factorization of its 

line-graph, with the same multiplicity (weight) function, and the 

existence of a Zαβ-decomposition is necessary for the existence of an 

Sα,β-decomposition. 

 
Lemma 2,1 A necessary and sufficient condition for         

(p,q) ∈ Z2
α,β  to be a valid pair is  αp = βq. 

 

Proof: Since α and β are relatively prime, both are multiplicative 

generators of Zαβ and division by α and by β is well defined. We use s 

to denote the quotient 
α

β
 ∈ Zαβ. The relation α

2 - β2 leads to s-1 = 
β

α
 = 

α

β
 = s. We restate αp = βq as q = sp (equivalently  p= sq). 

Necessity: If (p,q) is valid then there exist a and b such that      

p = aα + bβ and Q = aβ + bα = asα + bsβ = sp.  

Sufficiency: (p,sp) = (
p

α
α,

p

β
β) is valid.  � 

 

Lemma 2.2 A connected multigraph M = (V,E,w) admits a 

Zαβ-decomposition if and only if: 

1. ( )
e E

w e
∈∑  is divisible by α + β . 

2. If  G is either a simple path, or an even circuit then 

α ( )
e is odd

w e∑  ≡ β ( )
e is even

w e∑  (mod  α2 - β2) ,  

where `odd' and `even' refer to the location of e along the path (or even 

circuit, with an arbitrary first vertex). 
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The tighter restriction imposed on paths and even circuits is 
originated in these graphs being the only ones of which the line-graph is 

bipartite. Lemma 2.2 is proved, by induction, through Zαβ-factorization 

of general graphs, rather than just line-graphs. Bipartite and non-
bipartite graphs are dealt with separately. Within the scope of the 

following two propositions, arithmetics is again that of the ring Zαβ:  

 
Proposition 2.1    Let L=(U,F,w) be a connected bipartite weighted 

(over the vertices) graph, where U is partitioned into U1 and U2 and 

every edge has one endvertex in U1 and one in U2. A necessary and 

sufficient condition for L to admit a Zαβ-factorization is      

α
1

( )
x U

w x
∈∑  ≡ β

2

( )
y U

w y
∈∑ .  

 

Proof:   Again we set s = 
α

β
 ∈ Zαβ . Necessity immediately follows 

from Lemma 2.1.  Sufficiency: Let u be a vertex of L such that L \ {u} 

is still connected and let v ∈ U  be adjacent to u. Apply the Lemma to 
the smaller (induction) graph L \ {u} with the weight of v set to      

w(v)-sw(u). Then assign the valid pair (w(u),sw(u)) to the edge (u,v) to 

reach the required weights of u and v.   � 
  

Proposition 2.2    Let L=(U,F,w) be a connected weighted graph, which 

is not bipartite. A necessary and sufficient condition for L to admit a Zαβ 

-factorization is ( )
u U

w u
∈∑  belongs to the ideal generated by α + β. 

 

Proof:    Let us first observe that  α-1(α+β) = 1+s and α(1+s) = α+β. 

The ideal generated by α + β is then also generated by s + 1.     

Necessity:     Each valid pair contributes p + sp = p(s + 1) to ( )
u U

w u
∈∑ .  

Sufficiency:     Let us select a spanning bipartite subgraph L' of L (e.g. a 

spanning tree), where U is partitioned into U1 and U2 and every edge of 

L' has one endvertex in U1 and one in U2. Let us also select an edge (u,v) 
with both endvertices in the same side, say, in U2. Define                        

a =
1

( )
x U

w x
∈∑ . If the condition set by Proposition 2.2 is met then there 

exists t ∈ Zαβ  such that 
2

( )
y U

w y
∈∑  = t(s + 1) – a = sa + [(t-a) + s(t-a)].  

The required factorization consists of the valid pair (t - a, s(t - a)) 

assigned to the edge (u,v) and an Zαβ -factorization of L', which supplies 

the remaining weight, a on U1 and sa on U2, by means of proposition 2.1.  

The valid pair (0,0) is assigned to every edge of L\ L', other than (u,v). � 
 

2.2   Sαααα,ββββ-decompositions of stars 

Lemma 2.3 Let r > 1 be strictly smaller than 
α

β
. There exists 

∆0(α,β,r) such that the following conditions are sufficient for an S
α,β-

decomposition of an n-star, with a sequence {h1, … , hn} of multiplicities 

on its n edges, of which h1 is the largest. 

1. 
1

n

ii
h

=∑   is divisible by α + β and, if n = 2, also αh1 ≡ βh2 

(mod  α2 - β2). 

2. There exists a sequence of positive real numbers              

{h'1, … , h'n}, each larger than ∆0, such that    

 h1' ≤ r
2

'
n

ii
h

=∑  and for every i, 1≤ i ≤ n, |hi-h'i|<α-β
2. 

 
Proof:   Let us consider first the case where n = 2: As previously 

observed, a 2-star with multiplicities h1 and h2 is S
α,β-decomposable if 

and only if there exist non-negative integers a and b such that               

h1 = aα + bβ and h2 = bα + aβ.  If Condition 1 is met then Lemma 2.1 
states the existence of integers a', b', k1 and k2 such that                         

h1 = a'α + b'β + k1(α
2 - β2) and h2 = b'α + a'β +k_2(α

2 - β2).  Let            

a = a' + k1α - k2β and b = b' + k2α - k1β to obtain h1 = aα + bβ and       

h2 = bα + aβ.  These equations yield h2 =
β

α
h1 + b

2 2α β

α

−
 and           

h2 = 
α

β
h1 - a

2 2α β

β

−
.  Thus a and b are both non-negative if and only 

if
β

α
h1 ≤ h2 ≤ 

α

β
h1. The leftmost inequality suffices, given h1 ≥ h2. Let 

us recall the conditions |hi - h'i| < α
2 - β2 for i = 1,2 and h'1 ≤ r h'2 for 

some r strictly smaller than 
α

β
.   If we select ∆0 > (α

2 - β2 )

1

r

α

β
α

β

+

−

 ,  

then h'2 > ∆0 would provide the required inequality. 

Assume now n ≥ 3:  Define W= 
1

n

i

i

h
=

∑  and k= 
W

α β+
.  To 

obtain the required decomposition, each hi should be partitioned into ai 

summands of size α, and bi summands of size  (thus hi = aiα +biβ), such 

that each  α-summand can be matched to a β-summand of another hj to 

form k copies of S
α,β. Necessary and sufficient conditions for such a 

perfect matching to exist are: 

1. 
1

n

ii
a

=∑ = 
1

n

ii
b

=∑  = k and 

2. ai + bi ≤ k, for every i, 1 ≤ i ≤ n 
Condition 1 is obvious. Condition 2 is imposed by Hall's condition for the 

existence of a perfect matching: An  α-summand can be matched to any  

β-summand, unless they are parts of the same hi. Hall's condition for the 

set of all  α-summands of hi is hence ai ≤ 
n

jj i
b

≠∑  which is equivalent to  

ai + bi ≤ k (Other sets of summands should not be considered since any    

β-summand can be matched to at least one of two α-summands of distinct 

his ). 

Let us define a sequence 1{ }nix  by  ai = 
i

i

h
x β

α β
−

+
, which 

implies  bi = 
i

i

h
xα

α β
+

+
 .  

In terms of these new parameters conditions 1. and 2 can be 

equivalently restated as: 

1. 
1

n

ii
x

=∑ = 0             and 

2. xi ≤ 2 2

2
i

W h

α β

−

−
, for every i, 1 ≤ i ≤ n  

Since aiα + biβ = (ai - kβ)α + (bi + kα)β, the coefficient ai can be 
selected, for every fixed I (assuming hi is not too small), from an 

arithmetic progression of difference β, where the smallest element is 

smaller than β. Similarly, the smallest possible value of bi is smaller 

than α. Accordingly, xi can be selected from an arithmetic progression 
of difference 1, where the smallest element is smaller than                     

1 -
( )

i
h

α α β+
  and the largest is larger than 

( )

i
h

β α β+
 - 1.  Combining 

this last outcome with Condition 2 we get 

 

3. For every i, 1 ≤ i ≤ n, the value of xi can be selected from an 
arithmetic progression of difference 1,   where the smallest 

element is smaller than  1 - 
( )

ih

α α β+
  and the largest is 

larger than   min{ 1
( )

i
h

β α β
−

+
, 

2 2

2
i

W h

α β

−

−
-1}      

Regardless of Condition 1, 
1

n

ii
a

=∑  = 
1 1

n ni
ii i

h
xβ

α β= =
−

+
∑ ∑  = 

1

n

ii
k xβ

=
− ∑  implies that 

1

n

ii
xβ

=∑  is an integer. Similarly 
1

n

ii
xα

=∑  

is also an integer and since gcd(α,β) = 1, the sum 
1

n

ii
x

=∑  is an integer. 

Therefore, instead of directly considering Condition 1 ., it suffices to 

verify that the bounds set in Condition 3 allow a sequence of xi's, for 

which 
1

n

ii
x

=∑  ≤ 0 and one for which 
1

n

ii
x

=∑  ≥ 0 . 

If hi ≥ α(α + β)  (which is obtained by selecting                   

∆0 > α(α + β)  + (α
2 - β2), the lower bound 1 - 

( )

ih

α α β+
 is negative 

for every hi and hence a sequence for which 
1

n

ii
x

=∑  ≤ 0  clearly exists.  
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It remains now to require min{ 1
( )

ih

β α β
−

+
, 

2 2

2 iW h

α β

−

−
-1} ≥ 0 . Due to 

the last lower bound for hi, terms of the form 1
( )

ih

β α β
−

+
 are positive. 

The sum of any two terms      
2 2

2 iW h

α β

−

−
-1 + 

2 2

2 jW h

α β

−

−
-1 = 

2 2 ,

2
2qq i j

w
α β ≠

−
−

∑  is always positive (properly selecting ∆0 we get 

hi > α
2 - β2, and this is the only place where N > 3 is indeed essential). 

Recalling that h1 is maximum in 1{ }ni ih =   we should only verify                  

1

2 2

2W h

α β

−

−
-1 + 

2
( 1)

( )

n i

i

h

β α β=
−

+
∑  ≥ 0,  which can be straightforwardly 

restated as: 2 2

1 2
( )

n

ii
h h n

α
α β

β =
≤ − −∑ . Since |hi - h'i| < (α

2 - β2) it 

suffices to require 2 2 2 2 2 2

1 2
' ( ' ( )) ( )

n

ii
h h n

α
α β α β α β

β =
+ − ≤ − − − −∑   

or equivalently: 2 2

1 2
' ' ( 1 ( 1))( )

n

ii
h h n n

α α
α β

β β=
≤ − + + − −∑ .The lemma 

assumes h1' ≤  r
2

'
n

ii
h

=∑  and hence the required inequality is achieved 

if
2

'( )
n

ii
h r

α

β=
−∑ ≥ 2 2( 1 ( 1))( )n n

α
α β

β
+ + − −  , which holds if for 

every i ≥ 2, 2 2

1

1 1
' ( )( )

1

n
h

n
r

α
α β

α β
β

+
≥ + −

−
−

 . The above is reached if 

we select  ∆0 > 
2 21

(2 )( )

r

α
α β

α β
β

+ −

−

   � 

 

2.3  Constructing Sαααα,ββββ-decompositions 
 

Definition        Let r and δ be positive real numbers for which:  r > 1, 

1-δ ≥ δ and   r(1-δ) ≥ 1,  that is,0<δ≤min{
1 1
,1

2 r
− }.  

1. A sequence  of positive real numbers is (r, δ)-balanced if      
δ ≤ fi  ≤ r(1-δ) for every 1 ≤ i ≤ n.   

2.  An (r, δ)-balanced sequence \{f1,...,fn}, of at least two 

elements, is (r, δ)-feasible if fi  ≤ r ij i
f

≠∑  for every        

1 ≤ i ≤ n. (It clearly suffices to consider i for which fi is 
maximum). A singleton \{f1} is feasible if f1 = 0.  When the 

context allows `(r, δ)-' is omitted from '(r, δ)-balanced' and  
`(r, δ)-feasible '.  

3. Let G=(V,E), be a graph and w : E → R a real valued weight 

function on its edges. An (r, δ) decomposition of G is a two-
variables function f which partitions w(e) on each edge         
e = (x,y)   into two summands   w(e) = fx(e) + fy(e) such that 

for every vertex x ∈ V, incident with edges e1,...,en, the 
sequence {fx(e1),...,fx(en)} is feasible. 

4. A graph G=(V,E) is (r, δ)-resolvable if for every real valued 
function w : E → [1,r(1-δ)] there exists an  (r, δ)-
decomposition of (G,w). 

5. A graph  is randomly resolvable if it is (r, δ)-resolvable for 

every  r > 1 and    0 < δ ≤  min{
1 1
,1

2 r
− }.  

Whenever  r and δ are used in the context of an (r, δ)-decomposition, we 

assume r > 1 and 0 < δ ≤ min{
1 1
,1

2 r
− }.    A weight function w, 

mentioned in that context, have range [1,r(1-δ)], unless explicitly stated 
otherwise. 

 
The role of the last definitions lies in the following lemmas, which are 

the core of our schema for constructing Sα,β-decompositions: 

 

Lemma 2.4     For every r, 1 < r <
α

β
, and δ , 0<δ≤ min{

1 1
,1

2 r
− }, 

there exists λ0(α,β,r,δ), such that:  If a graph G = (V,E) is (r, δ)-
resolvable  and w : E → [λ,r(1-δ)λ], for some λ > λ0, then (G,w) admits 

an Sα,β-decomposition if and only if 

1. ( )
e E

w e
∈∑  is divisible by α + β 

2. If G is either a path, or an even circuit, then 

α ( )
e is odd

w e∑  ≡ β ( )
e is even

w e∑  (mod α2 - β2), where 'odd' and 

`even' refer to the location of the edge e along the path, or even circuit 
(with an arbitrary first vertex). 

 

Proof:    Let ∆0(α,β,r) be as stated in Lemma 2.3, and λ0 =  
0

δ

∆
.  Since 

w

λ
 : E → [1,r(1-δ)],  there exists an (r,δ)-decomposition f of (G, 

w

λ
). 

The function   h' = fλ then associates every vertex   x ∈ V, incident with 
edges {e1,...,en}, with a sequence {h'x(e1),...,h'x(en)} which satisfies: 

1. h'x(ei) ≥ ∆0 (or h'x(ei) = 0 if d(x) = 1)) 

2. h'x(ei) ≤ r ' ( )x jj i
h e

≠∑  

Also for every edge e = (x,y): 

3.  w(e) = h'x(e) + h'y(e). 

Now let g be a Zα,β-decomposition of (G,w), whose existence is implied 
by Lemma 2.2.  According to Definition:   

4. gx(e)+gy(e) ≡ w(e)( mod α2-β2) for every edge e∈E.  

         For a vertex x ∈ V, incident with edges e1,...,en, the sequence 

{gx(e1),...,gx(en)} is the weight function on the edges of a Zα,β-

decomposable n-star and as such, complies with the divisibility 

conditions of Lemma 2.2, which are the same divisibility conditions 
stated in Lemma 2.3 , for every vertex x of degree 2 or more, and an 

edge e incident with x.  We select from the interval  [h'x(e) – (α
2 - β2) , 

h'x(e) + (α
2 - β2)],  an integer hx(e) congruent to  gx(e) modulo  α2 - β2, 

such that, for every vertex u ∈ U 
5. hx(e) + hy(e) = w(e). 

Let us verify that such a selection is indeed possible: If each hx(e) is 

congruent to gx(e) modulo α
2-β2 then Condition 4 supplies the necessary 

congruence of the sum. Considering 3 and the existence of two 

candidates for hx(e) in each given interval, one smaller and one larger 
than h'x(e), there exists a selection for which Condition 5 indeed holds. 

Each pair of sequences h = {hx(e1),...,hx(en)} and                  

h' = {h'x(e1),...,h'x(en)} complies with the conditions of Lemma 2.3 and 

therefore the star centered at each vertex x ∈ V admits an Sα,β-

decomposition with multiplicities {hx(e1),...,hx(en)}. Together with 

Condition 5 we meet the definition  for an Sα,β-decomposition of (G,w). 

� 
 

Lemma 2.5 Let α be larger than β and let ε be any constant 

for which 0 < ε < 1 - 
β

α
,  then there exists λ0(α,β,ε) such that for every 

λ > λ0 : 

If G is randomly-resolvable and w : E → [λ,
α

β
 (1-ε)λ] , then (G,w) 

admits an  Sα,β-decomposition if and only if 

1. ( )
e E

w e
∈∑  is divisible by α + β 

2. If G is either a path, or an even circuit, then  

α ( )
e is odd

w e∑  ≡ β ( )
e is even

w e∑  (mod α2 - β2). 
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Proof:   Select any r such that (1 )
α

ε
β

−  < r < 
α

β
  and δ ,                

0 < δ ≤  min{
1 1
,1

2 r
− }, such that (1 )

α
ε

β
−  < r(1 - δ), then apply 

Lemma 2.4 .   � 
 

 

2.4  Conditions for (r.δδδδ)-resolvability 
The following ad hoc notation helps us dealing with trees, where edges, 

rather than vertices, are at the center of attention: 
1. An edge , incident with a vertex of degree 1 , is a leaf  (or a 

leaf-edge, where confusion with conventional vertex 

notation might be caused). 

2. A tree can be  rooted at any selected leaf-edge, that then 
becomes the root of the tree. 

3. Let s = (x,y) be the root of a tree. An edge s1 = (y,z) ≠ s, is a 
lower-neighbor of s, and s is the parent of s1. 

4. Let s = (x,y) be the root-edge of a tree T and e = (y,z) a 

lower-neighbor of s, then e is the root of the connected 

component which includes that edge, obtained by deleting all 
other edges incident with y. This component is the subtree of 

T, rooted at e. 

5. Recursively, once a root is selected to a tree T, every edge e 
becomes the root of a certain subtree; it has a unique parent 

(unless it is the root of T) and possibly some lower-

neighbors. 
6. A rooted tree T=(V,E) is even, or  odd according to the parity 

of |E|. The parity of an edge e ∈ E is that of the subtree 
rooted at e. 

7. A rooted tree is Regular if no odd edge has an odd lower 

neighbor and every  even edge has exactly one odd lower 

neighbor. If L is not regular then it is irregular. 
8. A tree T, rooted at s = (x,y), d(x) = 1 is almost randomly 

resolvable (ARR) if for every r, 1 < r < 
α

β
 , and δ ,              

0 < δ ≤  min{
1 1
,1

2 r
− }, and w : E → [1,r(1-δ)], there exists 

t, δ ≤ t ≤ r(1 - δ), such that (T,w') admits an (r,δ)-
decomposition f, where w'(s) = fy(s) = w(s) - t and            

w'(e) = w(e) for any other edge e. We say that f is an (r,δ)-
decomposition of (T,w) with residual weight t on the root s. 

If f is to be expanded to an (r,δ)-decomposition of a larger 

graph where d(x) > 1 then fx(s) = t. 

9. A tree T, rooted at s = (x,y), d(x) = 1 is (r,δ)-strongly 

resolvable if for every w such that δ  ≤  w(s)  ≤  r(1 - δ) and 

w(e) ∈ [ 1, r(1 - δ)] , for any other edge e, (T,w) is (r,δ)-

decomposable. If T is (r,δ)-strongly resolvable, it is clearly 

(r,δ)-resolvable. 
10. A tree is strongly randomly resolvable (SRR) if for every r,  

1 < r < 
α

β
, and δ, 0 < δ ≤  min{

1 1
,1

2 r
− }, it is (r,δ)-strongly 

resolvable.  If T is SRR it is clearly randomly resolvable. 
 

Proposition 2.3     If {f1,f2} is (r.δ)-feasible, f1 + f2 ≥ 1- δ and {f1,f2,...,fn} 
is(r.δ)-balanced, then {f1,f2,...,fn} is (r.\delta)-feasible. 
 

Proof: If one of {f1,f2}, say, f1 is maximum in {f1,f2,...,fn} then         

f1 ≤ rf2 ≤ r
2

n

ii
f

=∑ . Otherwise 
1,2if ≠  ≤ r(1-δ) ≤ r(f1 + f2) ≤ r ij i

f
≠∑ . � 

 

Proposition 2.4       For every r, 1 < r < 
α

β
, and δ ,                              

0 < δ ≤  min{
1 1
,1

2 r
− }, if {f1,f2,...,fn}is (r.δ)-balanced then there exists a 

positive real number z, δ ≤ z ≤ 1 - δ such that {f1,f2,...,fn,z}is (r.δ)-
feasible. 

 

Proof:     Select x = max{δ,
1

r
fm}, where  fm = max{f1,f2,...,fn}.  

Now fm ≤ rx ≤ r(x + 
n

mi m
f

=∑ . � 

 

Lemma 2.6 Every tree T is ARR. 
 

Proof:     If T consists of a single edge s then the residual weight is  

t = w(s). If not, apply induction to the trees T1,...Tn rooted at the lower-
neighbors of s, to get a feasible sequence {t1,...tn, z}, where ti is the 

residual weight on the root of Ti and z is obtained by Proposition 2.4 .  

Since z ≤ 1 - δ, the residual weight t = w(s) - z is indeed in the proper 

range.  � 
 

Lemma 2.7 A connected graph G which is not a tree is 
randomly resolvable. 

 

Proof:    Let G = (V,E) and w : E → [ 1,r(1-δ)]. Let Ec ⊂ E be the 
set of all edges e such that, either e belongs to a circuit, or each of the 

two connected components, obtained when e is removed, contains a 

circuit. Let Vc be the set of vertices of the subgraph spanned by Ec. The 
edges in E \ Ec are partitioned into trees,  each rooted at an edge             

s = (x,y) with exactly one vertex x in Vc. Applying Lemma 2.6, we 

decompose T with a residual weight fx(s) = t on s. For every e=(u,v)∈Ec 

we define fu(e) = fv(e) = 
( )

2

w e
.  If a vertex v is incident with an edge of 

Ec then it is incident with at least two such edges e1,e2. Since 

fv(e1)+fv(e2) = 
1

2
(w(e1)+w(e2)) ≥ 1, the sequence {fv(e)| e is incident 

with v} is feasible by Proposition 2.3, and f is indeed an (r,δ)-

decomposition of (G,w).    � 
 
Lemma 2.8 If for some edge e of a tree T, the subtree rooted 

at e is (r,δ)-strongly resolvable then T is (r,δ)-strongly resolvable. 
Consequently, if the subtree is SRR  then T is SRR. 
 

Proof: Let T be a tree, rooted at s = (x,y) and let s' = (y,z) be a 

lower-neighbor of s, such that the subtree  T', rooted at s' is (r,δ)-

strongly resolvable. Let w(s) be in [δ, r(1 - δ] and w(e) ∈ [ 1,r(1-δ)] for 
any other edge e. Let t1,...tn be the residual weights on all lower-
neighbors of s, other than s', obtained by Lemma 2.6. Apply Proposition 

2.4, to find z which makes the sequence {t1,...,tn,w(s),z} feasible. Since 

T' is (r,δ)-strongly resolvable it can be decomposed with residual weight 

z on s' and hence T is (r,δ)-strongly resolvable. The assertion of the 

Lemma follows by induction � 
 

Since every tree is ARR, we can relate to the residual weight 

on the root of any tree: 
 

Lemma 2.9 Given a rooted tree, T, the parameters r and δ 
and a weight function w in the proper range, the set of the residual 

weights on the root s, over all (r,δ)-decompositions of T with residual 
weight, is an interval. 

 

Proof: Considering w(e), fx(e) and fy(e) over all edges e = (x,y) ∈ E 

as variables. The definition of an (r,δ) decompositions (with or without 

residual weight), forms a convex polytope. The assertion of this lemma 

immediately follows. � 
 

Lemma 2.10  The residual weight t on the root s of a regular 

tree T=(V,E), can be freely selected from an interval which: 

• Contains [0,kδ] if T is even on 2k edges,  or  
• Includes a and b, such that a ≥ 1-δ and b ≥ r(1- kδ) if T is 
odd on 2k-1 edges  

As far as 1 ≤ k < 
1

δ
 

 

Proof:     If  T consists of a single edge then T is odd, k = 1 and       
a = b = t = w(s) is indeed in the right range. We proceed by induction on 

the height of T: 
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Let s = (x,y), d(x) = 1, be the root of an odd tree T on 2k+1 
edges and let T1,...,Tn be the (all even) subtrees rooted at the lower 

neighbors e1,...,en of s. Let each Ti contain 2ki edges, 
1

n

ii
k

=∑ = k. By the 

induction hypothesis, each residual weight    ti = fy(ei) can be aimed at 

any value in the interval [δ,kiδ] (a smaller residual weight cannot be 

used). If we select ti = δ for every i then the sequence can be made 

feasible by an additional δ, that is fy(s) = δ, implying a residual weight   

a = w(s) - δ , which is at least 1-δ. On the other hand if for every i,         

ti = kiδ then we can set fy(s) = r
1

n

ii
k δ

=∑  = rkδ. The residual weight on s 

is then b = w(s) - rkδ, which is at most r(1 - (k + 1)δ). The odd case is 
completed, considering Lemma 2.9 .  

Let T be even on 2k edges. Again T1,...,Tn are the subtrees, 

rooted at the lower neighbors e1,...,en of s = (x,y). This time we assume 

that T1 is odd on 2k1-1 edges and for i ≥ 2 (if there is any) each Ti is 

even on 2ki edges, 
1

n

ii
k

=∑ = k. Decompositions of T1,...,Tn again yield 

residual weight ti = fy(ei) on each edge e2,...,en, which can be selected 

from [δ,kiδ].  T1 is odd and hence the interval from which the residual 

weight t1 = fy(e1) can be chosen, contains a and b, a ≥ 1 - δ and               

b ≤ r(1 – k1δ). By selecting  t1 ≥ 1 - δ, and fy(s) = w(s), the sequence 
{t1,...,tn,fy(s)} becomes feasible due to lemma 2.3    and the residual 

weight on s is w(s) – fy(s) = 0. 

We now choose fy(s) = 1 - kδ and show that t1,...,tn can be 

selected to make {t1,...,tn,fy(s)} feasible. We start with t1 = b ≤ r(1 – k1δ) 

and ti = kiδ for i ≥ 2. We obtain t1 ≤ r(
2

n

ii
t

=∑ +fy(s)), which provides 

feasibility in the case where t1 is the maximal term. If another term tj is 
the maximum, we reset t1 = tj, this is possible because the interval from 

which t1 is selected contains a and b where a ≥ 1-δ ≥ tj > b. Now there 
are two equal maximal terms and hence the sequence is feasible. Since 

w(s) ≥ 1 the residual weight s(w) – fy(s) can be made at least as large as 

1-kδ. The induction is completed by lemma 2.9.  

 

Lemma 2.11 A regular tree T=(V,E) with |E| ≥ 
2

δ
 edges is 

(r,δ)-strongly resolvable. 
 

Proof:    Let T = (V,E), rooted at s be a tree with |E| ≥ 
2

δ
, such that 

each of the trees T1,...,Tn, rooted at the lower-neighbors e1,...,en of s has 

less than 
2

δ
 edges, and, therefore can be subject to Lemma 2.10.  Take 

now the induction step in the proof of Lemma 2.10 one step farther. In 

both parts of the induction - T even, or odd, we now obtain       

1

n

ii
k

=∑ = k = 
1

δ
.  Consequently kδ > 1, which allows any residual 

weight from 0 to r(1 - δ) - δ. The tree T is then (r,δ)-strongly resolvable 
and the same holds for any regular tree with that many edges by Lemma 

2.8 .    � 
 

Lemma 2 12 A graph is randomly resolvable, unless it is an 
odd regular tree. 
 

Proof:    In light of Lemma 2.7 we can restrict the discussion to 

trees. Residual weight 0 on the root means an (r,δ)-decomposition, 
hence Lemma 2.10 states that every even regular tree is randomly 

resolvable. We will now prove that an irregular tree is SRR. Let s be the 

root of a minimal irregular tree T=(V,E). By minimality of T the 
subtrees T1,...,Tn rooted at the lower neighbors e1,...en of s are regular 

and at least two of them, say, T1 and T2 are odd. Lemma 2.10 allows 

decompositions of T1,...,Tn with residual weight of at least 1 - δ on both 
e1 and e2. The sequence consisting of the residual weights on e1,e2,...,en 

and of w(s) is feasible,  by Lemma 2.3,  regardless of any term 

(particularly w(s)), but the first two. T is thus proved SRR and, by 
Lemma 2.8, so is any tree which contains a minimal irregular tree, 

namely every irregular tree. � 

 
 

2.5  The main result 
Theorem 2.1  Let α be larger than β and let ε be any constant 

0 < ε < 1 - 
β

α
 , then there exist λ0(α,β,ε) and M0(α,β,ε) such that for 

every λ > λ0,  

If G=(V,E) is 

• Any connected graph, other than an odd regular tree,  or 
• An odd regular tree where |E| ≥ M0,  

   And 

• w : E → [λ, 
α

β
(1 - ε)λ]. 

then (G,w) admits an Sα,β-decomposition if and only if 

3. ( )
e E

w e
∈∑  is divisible by α + β 

4. If G is either a path, or an even circuit, then  

α ( )
e is odd

w e∑  ≡ β ( )
e is even

w e∑  (mod α2 - β2). 

 

Proof:    If G is not an odd regular tree, combine Lemmas 2.5 and 
2.12 .  If G is an odd regular tree, follow the proof of Lemma 2.5 to 

obtain r,δ, and λ0. Finally select M0 = 
2

δ
 and apply Lemma 2.11 .      � 

 
 

2.6  Optimizing the parameters 
In this subsection we compute explicit bounds for λ0, and M0, once α, β 

and ε are given, and reach the following conclusion: 

• The parameter λ0 of Theorems 2.1 is roughly                    

(4 + 8
β

α
)(α2 - β2)/ε2, if ε is  small and approximately         

(5 ±  1)α2  if  ε > 3/4  (and hence α > 4β). 

• The parameter M0 that sets the minimum number of edges 

when the input graph is an odd regular tree is of order
4

ε
, if ε 

is small. No such bound is required when ε ≥ 1/2( possible if 

α > 2β). 

• When ε <1/2, the bound M0 (for an odd regular tree) can be 

pushed down as closely as wished to 2/ε, but then λ0 is 

increased proportionally to 
0

1

2 /Mε −
. 

      Here is the actual computation :  

Recalling the proofs of Lemmas 2.3 and 2.5, it appears that λ0 ≥ 
0

δ

∆
 

suffices, where the dominant bounds for ∆0 are as following  

∆0 ≥ 
2 21

(2 )( )

r

α
α β

α β
β

+ −

−

.               (1) 

  

∆0 ≥ α(α + β) α
2 - β2                 (2) 

We will show in the sequel that, unless both 
α

β
 and ε are rather large, 

Eq. 1 is a stronger requirement than Eq. 2. Let us consider first Eq. 1 

only.  Minimizing λ in that case is equivalent to maximizing δ(
α

β
 - r), 

subject to the constraints
α

β
(1-ε)≤ r(1 - δ)  and  0 < δ < 

1

2
, posed in the 

proof of Lemma 2.5 and  Definition . The additional condition r(1-δ)≥1, 

is implicit in 
α

β
(1 - ε) ≤  r(1 - δ).  For the sake of convenience we 

define   ρ = 
β

α
,  q = rρ and θ = 1 - δ, and maximize 

1

ρ
(1 - θ)(1 – q), 

subject to qθ ≥ 1 - ε and 1 > θ ≥ 
1

2
. If  ε ≤ 

3

4
, the maximum is reached 
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at q = θ = 1 ε−  and its value is 
1

ρ
(1 - 1 ε− )2.   Accordingly,       

λ0 =  (1 + 2
β

α
)(α2 - β2)/(1 -  1 ε− )2  would suffice for Theorem2.1 .  

If ε is small then this value is roughly (4 + 8
β

α
)(α2 - β2)/ε2, as claimed 

above. 

At that point δ = (1 -  1 ε− ), which implies                      

∆0 = (1 + 2
β

α
)(α2 - β2)/(1 - 1 ε− ).  Thus Eq. 2 becomes relevant if 

α(α + β) α2 - β2  ≥ (1 + 2
β

α
)(α2 - β2) / (1 - 1 ε− ).  That is (after 

some algebraic manipulation) , when 1 ε− ≤
21 2 2

2

ρ ρ

ρ

− +

−
, where ρ 

stands, again, for 
β

α
. This clearly implies ε > 

3

4
 and, since our 

theorems assume 1 - ε > 
β

α
, also

α

β
 > 4.  

For that range of the parameters we go back to the 
maximization schema we derived from Eq. 1. Now the maximum is 

obtained at q = δ = 
1

2
 and the bound becomes                                       

λ0 > (1 + 2
β

α
)(α2 - β2)/(ε -  

1

2
).  For that value of δ we also obtain     

λ0 ≥ 2(α(α + β) + α
2 - β2) from Eq. 2. This way or the other, since         

ε > 3/4 and α > 4β the bound for λ0, in that case is between 4α
2 and 6α2.  

When the graph at hand is an odd regular tree, there is also a 

lower bound of M0 = 
2

δ
 on the number of edge (Theorem 2.1 and its 

proof).  This bound equals  2/(1 - 1 ε− ), if ε < 3/4, or roughly 
4

ε
 for 

small ε.  No M0 (well, at least 2) is required if ε > 1/2 (Although for      

ε = 1/2, our computation so far yields M0 ≈ 6.8, there are only three odd 
regular trees with three or five edges. Of these, two are paths. For paths, 

in general, smaller M0 suffices because the constraints obtained from the 

analysis of n-stars, n ≥ 3 does not apply. We omit the explicit discussion 

of the remaining tree of five edges). 
We recall the analysis of Eq. 1 once more, this time with the 

minimization of M0 in mind, for the case of an odd regular tree, and       

ε < 1/2. This is clearly equivalent to maximizing δ. The given 

constraints allows to set δ as close to ε, as wished, that is M0 as close to 

2

ε
 as wished.  The price is increasing λ0, proportionally to 

1

ε δ−
. 

 

 

3. THE INTRACTABLE CASES 
 

The upper bound 
α

β
 - ε on the ratio between the smallest and the 

largest multiplicities, presented in the previous section, is clearly tight. 

Take for example a multigraph M on an underlying simple path with 

2n+1 edges, where the multiplicity alternates between αλ and βλ on the 
first 2n edges and its value on the last edge is arbitrarily set to comply 

with the necessary divisibility condition. M does not admit an Sα,β-

decomposition, no matter how large λ and n are. 
A similar example, where the ratio between the alternating 

multiplicities is slightly less than 
α

β
 shows that the bounds we set for 

λ0 and M0 are also rather tight. 

Although these bounds are clearly not necessary, there is not 
much hope (as long as P versus NP is not settled) to characterize 

decomposable multigraphs which do not obey them: In this section we 

prove that Sα,β-decomposition becomes NP-Complete even when the 

multiplicities are arbitrarily large if the smallest multiplicity is larger by 

a constant than 
β

α
 times the largest one. 

On the other direction we show NP-completeness of Sα,β-

decomposition for any pair (α,β) when small multiplicity is allowed, 
even if the multiplicity range is restricted to a single value. However, 

we are able to do that for a specific constant multiplicity (of size αβ to 
be precise) and we do not know what the complexity status is when 

larger (yet not as large as λ0) multiplicities are allowed within a 

bounded ratio range. We state now these two results: 

 

Theorem 3.1   Sα,β-αβ decomposition is NPC. 
 

Theorem 3.2    For any positive constant integer λ > α, Sα,β-
decomposition is NPC, even if the input's multiplicity function is 

bounded to the interval [(λ + 1)β, λα]. 
 
Proof:    The proofs of both theorems are based on the same 

underlying idea: We construct a multigraph T with two special vertices 

of degree1 each, u incident with an edge eu and v incident with ev, 
which satisfies the following: 

• There are exactly two Sα,β-decomposable subgraphs of T 

which achieve the full multiplicity of T on every edge 
except, maybe, on eu and on ev. 

• One of these subgraphs has the same multiplicity as T on eu 

and its multiplicity on ev is smaller by αβ than that of T, and 
the same holds for the other one with the roles of eu and ev 

switched. 
We start with an input graph G=(V,E) for Sα+β-decomposition (known 
to be NPC), and replace each edge (u,v) of G by a copy of T (with u and 

v as in the definition of T), to obtain an input multigraph G' for Sα,β-

decomposition 
After removing one of the decomposable subgraphs of each 

copy of T, what remains of G' is an arbitrary decomposition of G into 

stars, with a constant multiplicity αβ. Since gcd(α,β) = 1, the only 

partitions of αβ into α and β summands consist of α summands of size 

β each, or vise versa.  A star Sn is then S
α,β-αβ decomposable, if and 

only if n = k(α+β) for some integer k (in which case the decomposition 

consists of  kβ edges decomposed into α summands of size β and kα 

edges decomposed into summands of size α). 

Accordingly, an Sα,β-αβ decomposition of G' can be 

completed if and only if the remaining stars form an Sα+β-decomposition 

of G. 

To complete the proofs of Theorems 3.1 and 3.2 a 
multigraph T should be constructed, subject to the constraints implied 

by each theorem on the multiplicity function. 

 
 

3.1  Constructing T with constant  multiplicity ααααββββ 
The α or β summands into which the multiplicity of each edge is 

partitioned in an Sα,β-αβ are divided between the two endvertices, such 

that around every vertex the number of α and β summands is the same, 

so they can be matched to form copies of Sα,β. It comes handy to count 
summands of one size as positive and the others as negative. 

Accordingly, an Sα,β-αβ decomposition of a graph G=(V,E) 

is equivalent to an assignment fu(e), fv(e) to every edge e = (u,v) ∈ E, 
such that either  fu(e)  and  fv(e)  are non-negative integers and          

fu(e) + fv(e) = α , or  fu(e)  and  fv(e)  are non-positive integers and    

fu(e) + fv(e) = - β;  and for every vertex v ∈ V the sum of fv(e) over all 
edges e incident with v, equals 0. We refer to these two types of edges 

as α-edges and β-edges,respectively. 
 
Proposition 3.1      Let x be a vertex of a graph H, shared by two or 

more subgraphs, which are otherwise vertex disjoint. Let one of these 

subgraphs S, be a star on m+1 edges, centered at a vertex c which is not 

x (so x is a leaf of S). For every integer t,     -β < t < α,  there exists m,  
1 ≤ m ≤ α + β - 1,  such that in any Sα,β-αβ decomposition of H,     
fx(c,x) = t. We refer to the vertex x of S as the connector of a t-enforcing 
star.  
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Proof:    Let us try to Sα,β-αβ decompose H. The condition 

( )cf e∑  = 0  over the edges of S implies fc(c,x) = (m - a)β - aα where a 

and m-a are the numbers of α-edges and β-edges among the other m 
edges of S. When letting the integer a run from 0 to m, the value of 

fc(c,x) can be set to any mβ( modulo(α + β)) integer between  –mβ and 

mβ. Yet, by definition, fv(e) is always in the interval [-β, α] and for any 

m, other than m =  α + β - 1,  exactly one representative of the relevant 

residue class resides in that interval. In the other hand, since β and α+β 
are relatively prime, the right selection of m would set fc(c,x) to any 

target in [-β, α].  Selecting m such that fc(c,x) = α - t  if t is positive, or 

fc(c,x) = -β - t  if t is negative  (m = α + β - 1 ,  for either one if t = 0), 

would imply fx(c,x) = t .   � 
 

The graph T consists of:  

• A β-enforcing star with connector x  

• An "α enforcing gadget" made of α copies of (a-1)-
enforcing star with a common connector y and otherwise 

disjoint,  

• A three edges path: eu = (u,x) , (x,y) , (y,v) = ev. 
 

When Sα,β-αβ decomposing (a maximal subgraph of) T, 

Proposition 3.1  implies fx(u,x) + fx(x,y)  =  -β and fy(x,y) + fy(y,v)  =  α.  

If (x,y) is an α-edge then (u,x) is necessarily a β-edge and fu(u,x) = 0,  

fx(u,x) = -β,  fx(x,y) = 0,  fy(x,y) = α, and fy(y,v) = 0, which means that 

the edge ev remains untouched.  Similarly, if (x,y) is a  β-edge then T is 
fully decomposed except for eu which remains untouched. T indeed 
complies with the requirements.  

 

3.2  Constructing T with multiplicity range [(λλλλ+1)ββββ, λλλλαααα] 
For an integer k, 1 ≤ k ≤ αβ, let us define a k-couple to be a multigraph 
on an underlying two edge path, (x,c),(c,d) with multiplicity                

w( (x,c) ) = λβ + k and w( (c,d) ) = λα. As far as Sα,β-αβ 
decomposability is the issue, a k-couple, sharing its connector x with 
the rest of a bigger multigraph, behaves as an edge of multiplicity k: It 

takes λ copies of Sα,β to saturate the multiplicity of (c,d) and the rest of 
the graph "sees" the edge (x,c) with the residual multiplicity k.  
 

The graph T consists of the following: 

1. A path eu = (u,x),(x,z),(z,y),(y,v) = ev with the corresponding 
multiplicities n1,n2,n3,n4, where all four are integer products 

of αβ, taken from the permissible interval (here is where      

λ > α is essential). 

2. A set of 2 3n n αβ

β

+ −
 α-couples, sharing z as a common 

connector (and otherwise disjoint) 

3. A set of 1n

β
 α-couples, sharing x as a common connector. 

4. A set of 4n

α
 β-couples, sharing y as a common connector. 

 

When decomposing T, after all α-couples of  Condition 2 are matched 

to β-summands on (x,z) and (z,y), the sum of the residual multiplicities 

remaining on these two edges is αβ. As previously observed, this 

amount is fully partitioned into α-summands, or fully into β-summands. 

Assume the first option. In that case, none of the α-couples of  
Condition 3 can be matched to (x,y), so they are all matched onto eu and 
that way fully saturate its multiplicity. A simple computation shows that 

a residual multiplicity αβ then remains on ev. Similarly, if the second 

option is considered , T is fully saturated, except for a residual 

multiplicity αβ on eu.    � 
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