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Abstract 

In a railroad system, train pathing is concerned with the 

assignment of trains to links and tracks, and train timetabling 

allocates time slots to trains. In this paper, we present an 

optimization heuristic to solve the train pathing and timetabling 

problem. This heuristic allows the dwell time of trains in a 

station or link to be dependent on the assigned tracks. It also 

allows the minimum clearance time between the trains to 

depend on their relative status. The heuristic generates a number 

of alternative paths for each train service in the initialization 

phase. Then it uses a neighborhood search approach to find 

good feasible combinations of these paths. A linear program is 

developed to evaluate the quality of each combination that is 

encountered. Numerical examples are provided. 
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1. INTRODUCTION 

The path of a train service is the ordered set of rail segments 

assigned to the train trip, and the train timetable specifies the 

time when the train uses each rail segment. The former 

represents the spatial attribute of the movement of the train in 

time-space, while the latter represents the time attribute. These 

two attributes are deeply inter-related and should be considered 

simultaneously when developing operating plans for train 

systems. 

Developing train paths and timetables for a rail system is a 

complicated task. The physical rail facility is shared by multiple 

trains, and the fact that trains are confined to tracks means that 

detailed planning is necessary to avoid conflicts and enhance 

efficiency. Due to its importance, related topics have attracted 

considerable attention in the literature. Most published results 

deal with the train timetabling problem (TTP), which attempts 

to develop timetables for train systems without considering the 

exact path of individual trains. Early work by Frank[1] analyzed 

the TTP mathematically and proposed solution methods. 

Optimization models for the TTP are used in a number of papers, 

for example [2-10]. In addition, Cordeau et al.[11] has presented 

a survey of relevant optimization models. Due to the complexity 

of the TTP, most contributions are limited to simplified models 

or small instances. In particular, most papers focus on single 

track rail lines or one-way tracks. Some results take into 

consideration the track capacity constraint, which requires that 

the meeting and overtaking between trains to only occur within 

stations. Station capacity is also considered by some models. 

There have been few studies concerning the train pathing 

problem (which assigns trains to tracks and determines their 

times as well). Carey[12] proposed a mixed integer program to 

solve for the paths of trains in a one-way-track system. The 

numerical example provided in Carey’s paper has 10 nodes, 28 

links, and 10 train services and requires significant amount of 

time to solve. In another article, Carey[13] has extended the 

model from one-way to two-way-tracks. The resulting model is 

also a mixed integer program, which the author reasoned is 

easier to solve than that of his earlier model[12], but this newer 

study did not provide testing results. Other works have 

considered the problems of routing trains through stations, e.g. 

[14-16]. The problems studied in these papers are different from 

that of ours in nature, scope and scale. 

This research was motivated by the operations of the Taiwan 

Railways Administration (TRA). In a highly developed and 

densely populated country like Taiwan, rail systems are mainly 

multi-track networks. Lines between stations as well as within 

stations can be bi-directional. Inter-station distances are short; 

headways are tight with a train every few minutes. At stations 

there is often a choice of up to four tracks with platform access 

at which a train can stop, sometimes together with additional 

tracks that do not have platform access. The tracks can be 

one-way or two-way. In such a busy and complicated system, 

conflicts between trains are widespread and interdependent, and 

many factors have to be considered in detail in the optimization 

model to achieve useful results. 

In this paper, we propose a heuristic to solve for a set of train 

paths and a timetable for such a complicated system as 

described above. The heuristic includes a number of realistic 

factors that are important in practice and have not been covered 

in previous papers. For any given link, the same train can have 

different dwell times depending on the assigned track, and 

different trains can have different track preferences. The 

minimum clearance time (headway) between consecutive trains 

also depends on the relative status of the trains as well as the 

track layout, i.e., whether the two trains travel in the same 

direction, if they use the same track, or if the two different 

tracks they use cross each other. The rule that only one train can 

occupy one block at any time is also observed. The optimization 

objective is to generate a timetable as close as possible to the 

given ideal timetable. 

This paper is divided into five sections. Following this 

introduction, section two defines the problem studied in this 

research. Section three explains the solution heuristic in detail. 

Section four presents computation results, followed by 

conclusions in the final section. 

2. PROBLEM DESCRIPTION 

In our model, we view the railroad as a collection of links, 
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tracks, and blocks as illustrated in Figure 1. A link is either a 

segment of railroad between consecutive stations or the segment 

of the railroad within a station. The links are connected together 

serially as illustrated in Figure 1(a). Each link can have one or 

more parallel tracks as illustrated in Figures 1(b) to 1(e). 

Therefore, when a train service uses a link, it will use exactly 

one of the tracks in the link. Tracks are composed of one or 

more blocks connected serially. Within a station, a block 

represents a stretch of a track. For example, a block could be the 

segment of a track with access to a platform for passenger 

boarding. Between consecutive stations, a block corresponds to 

a section of a track, which allows no more than one train at any 

time. In either case, only one train can occupy a block at any 

point in time. If a train service uses a particular track, it will use 

all its blocks in a serial manner. Sometimes, two tracks cross 

each other. When this happens, we view the crossing point as 

one block which is shared by these two tracks. As illustrated in 

Figure 1 (b), track 2 is composed of blocks 2, 3, and 4, while 

track 3 is composed of blocks 2, 5, and 4. These two tracks 

cross at the shared blocks 2 and 4. Figure 1 (c) shows a station 

that also has three tracks, but none of the tracks share the same 

blocks. Stations of these configurations are common in the TRA 

system. A few rail segments in Figure 1 (c) do not belong to any 

block because they play no role in the heuristic we propose. 

Figure 1 (d) shows a 4-track station without shared blocks. 

Finally, Figure 1 (e) shows a stretch of railroad between the 

stations. This stretch of railroad has two tracks, divided into two 

blocks each. 

(a) A link is a segment of the railroad. 

(b) A station where tracks 2 and 3 share blocks. 

(c) A station where no tracks share blocks. 

(d) A 4-track station without shared blocks. 

(e) A stretch of railroad between stations. 

Figure 1. Illustration of links, tracks, and blocks in a 

railroad system. 

A service is defined as a train trip that travels from its 

origination station to its destination station, passing through a 

number of links. We assume that the locomotive for each 

service is given and fixed, but that different services can use 

different locomotives, resulting in different tracking power and 

other properties. Every service is given a target departure time, 

which is defined as when (in the resulting timetable) a service 

should plan to become ready for its first station in the trip. 

Besides, each service has an associated minimum and maximum 

dwell time at each block it might use, which is usually derived 

from its tracking power as well as other properties. For a block 

that is part of a station, the dwell time is the stopping time of the 

service at that station. Otherwise, the dwell time is the travel 

time of the train on that block. Because different trains have 

different travel speeds and tracking power, and different 

services have different stopping time at stations, the dwell times 

can differ between services, even for the same block. The dwell 

time of a train on a track is the sum of the dwell times of the 

train on all the blocks of that track. Note that parallel tracks of 

the same link can have different dwell times for the same train 

due to different physical conditions (e.g., speed limits imposed 

by turnouts) of the blocks that make up these tracks. Therefore, 

the dwell time of a train on a link depends on the track it uses. 

A train path is an ordered set of tracks that a service can take on 

its trip. The ordered set of links that each service uses is given 

and fixed. However, because each link can contain multiple 

parallel tracks, it is possible for one service to have multiple 

alternate train paths, all using the same set of links. Each train 

path can also be assigned a departure time at its first station. 

Based on this departure time, and assuming that the dwell times 

of the train at each block in the path are the average of its 

minimum and maximum dwell times at that block, the entering 

and exiting time of any train path at each of its blocks can be 

easily calculated. These times are referred to as pseudo times to 

distinguish them from the final timetable. The departure time of 

a train path at its first station is referred to as pseudo target 

departure time.

The minimum clearance time between two consecutive trains 

that use the same link can depend on the track assignment. 

Suppose two trains enter the station shown in Figure 1 (c) from 

the left hand side on the upper line. If they both are assigned to 

the same track (e.g. track 3), then an appropriate headway at the 

track should be arranged in the timetable. If they are assigned to 

different tracks, there are usually no restrictions to regulate the 

times they enter or leave the station. (However, they still have to 

be properly separated on the approaching block, which they 

both use before entering the station.) It is more complicated 

when tracks cross each other. Consider the station layout in 

Figure 1 (b), and suppose that one train enters track 2 of the 

station from the left hand side on the upper line, and a second 

train enters track 3 from the right hand side on the lower line. 

Although the two trains travel in different directions, approach 

the station from different tracks, and use different tracks in the 

station, they still have to be correctly time-separated because 

tracks 2 and 3 cross each other. If the second train is assigned to 

track 1 instead, there will be no such requirement. 

The required clearance time between trains that use the same 
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track can also depend on the relative status of the two trains. In 

particular, track 3 in Figure 1 (b) and track 2 in Figure 1 (c) are 

usually used by trains of both directions. In practice, the 

minimum headway between the consecutive trains that use these 

tracks depends on whether the two trains travel in the same 

direction or not. 

Planners often have priorities when selecting tracks for services. 

For example, a higher priority service might prefer to use tracks 

that have fewer switches, or a cargo train might prefer to avoid 

tracks with platform access. For this purpose, we define a cost 

for every possible track of every service, with more preferred 

tracks having smaller costs. The cost of a path is the summation 

of the costs associated with all tracks that path uses. Other 

methods to define the costs are possible and can be easily

incorporated into this model if needed. 

When more than one train uses the same track, they have to do 

so one at a time. The relative order among the train services at 

the tracks is critical to train timetables. Consider two train paths 

i and j of different services, and consider two tracks a and b
being used by both paths. The order in which i and j use track a,

can be different from that of track b when they meet (if i and j

travel in opposite directions) or overtake (if i and j travel in the 

same direction). If a and b are consecutive tracks, and the order 

in which i and j is using them is different, then i and j will 

conflict. For example, consider the railroad layout in Figure 2. 

There are four tracks belonging to the three links in the figure, 

named a to d. Suppose that there are two train paths i and j of 

two different services that use all three links. Since tracks a and 

b are consecutive, i and j should use the two tracks in the same 

order, i.e., if path i uses track a before path j does, then path i

should also use track b before path j does, and vice versa. If i
and j maintains the same order on all consecutive pairs of tracks 

they share, the two paths will not conflict. However, tracks a

and d are not consecutive, therefore the orders i and j using 

these two tracks cannot determine if the pair will conflict. In 

principal, two train paths can reverse orders multiple times 

when trains re-overtake, but this is prohibited in practice, and 

we define this case as a conflict as well. If two paths do not 

conflict, the two paths are compatible.

Figure 2. A railroad with 3 links and 4 tracks. 

The train pathing problem studied in this research can be 

described as follows. Given a railroad system and a set of 

services, the problem aims to solve for a timetable as well as a 

track assignment plan for these services. Because the dwell 

times of individual trains as well as the required clearance time 

between consecutive trains depends on the track assignment, 

train paths have to be considered simultaneously as timetables 

are developed to obtain realistic results.  

3. THE HEURISTIC 

Consider a set of train paths F. If F contains exactly one path 

for each service, and the paths are mutually compatible, F is a 

feasible path set. Within a feasible path set, the exact paths of 

all services are known. Therefore, for any block, the services 

that use it are also known, and the order in which these services 

use this block can be determined according to the services’ 

pseudo time. Based on this information, one can solve for the 

optimum schedule that corresponds to a given feasible path set 

with a linear programming (LP) model. Now we introduce the 

model, starting from a definition of the symbols used in this 

paper. Given information like sets and parameters are 

represented by upper case letters, and decision variables are in 

lower case letters. 

P  the set of all services 

B the set of all blocks 

I the set of blocks that are crossing points 

jG  target departure time for service j

iD  the maximum allowed delay of any service at block i

jTrip  the minimum time for service j to finish its trip 

min

ijT  the minimum dwell time of service j at block i

max

ijT  the maximum dwell time of service j at block i

jB  the set of all blocks used by service j

0

jB  the first block used by service j

F

jB  the final block used by service j

jiP ,-  the service that uses block i immediately before 

service j does 

ijB  the block that service j uses right before it uses block i

jW  the weight of service j, which represents the relative 

importance of the service as conceived by the planner. 

ijkC  the minimum clearance time between services j and k

when they occupy block i consecutively 

jdelay  the total delay time of service j

ija  the scheduled time service j enters block i

ijd
 the scheduled time service j leaves block i

ijy
 the delay of service j at block i

jr
 the absolute value of the difference between Gj and 

the scheduled departure time of service j

The LP model is listed below. The objective function (1) aims to 

minimize the weighted sum of anomalies in time that occurred 

with all services, including the delays at each block, and the 

deviation of the scheduled departure times from the target 

departure times. 

Minimize 

Pj

jjj drW elay0.005  (1) 

The model has nine constraints as listed below. Constraint (2) 

ensures that every train j occupies block i for at least min

ijT  time, 

except for the blocks that are crossing points. 

min

ijijij Tad IBi j \ Pj  (2) 

Constraints (3) and (4) are also related to the length of the time 

a train occupies a block. According to constraint (3), if service j

occupies block i for more than 
max

ijT  time, the excess time 

will be regarded as a delay, which is limited by constraint (4) to 

no more than iD .

max

ijijijij Tyad IBi j \ Pj  (3) 

iij Dy IBi j \ Pj  (4) 

Constraints (5) and (6) together makes jr  equal to the 

absolute value of the difference between Gj and the scheduled 

arrival time of service j at its initial station. 

jjBj Gar
j
0

Pj  (5) 

a
b

c

d

Link Link Link 
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jjBj Gar
j
0

Pj  (6) 

Constraint (7) ensures that there is at least 
jjiPi

C
,,,

 clearance 

time at block i, where j is a service that uses block i, and 

jiP ,-  is the service that uses the block immediately before j

does. The clearance time needed can depend on whether the 

block resides in a station, or is located between stations, or is a 

crossing point between tracks. 

jjiPijiPiij Cda
,,,,, jBi Pj  (7) 

Constraint (8) ensures that any service will enter the next block 

as soon as it leaves the previous block. This constraint prevents 

any train from disappearing for any length of time. 

ijjB
ad

ij , jBi Pj (8)

Constraint (9) makes the variable 
jdelay  equal to the total 

delay time of service j.

jjjBjB
Tripdelayad

j
F
j

0
Pj  (9) 

Finally, constraint (10) limits the delay term ijy  to 

non-negative values. 

0ijy jBi Pj  (10) 

This LP model has several important properties. First, because 

the choice of tracks at each link of each train service is given in 

this model, the dwell time of each individual train at each link is 

known and can be reflected explicitly in constraints (2) to (4). 

Therefore, the requirement that the dwell times of trains should 

depend on the tracks assigned can be correctly considered. 

Second, the crossing points are modeled as blocks, enabling 

constraint (7) to maintain proper headway between crossing 

trains even when they use entirely different tracks. Third, 

because constraint (7) is based on blocks instead of links, and 

because the train paths are known, the requirement that 

headways between trains depend on the trains’ relative status 

can be explicitly included by using the correct 
jjiPi

C
,,,

 value 

in constraint (7). Finally, the model does not contain any integer 

variables, thus it can be solved with the highly efficient simplex 

algorithm using commercial software (for example, CPLEX). 

We are now ready to present the proposed heuristic by piecing 

together the components introduced above. The basic concept is 

as follows. First, we generate a number of possible alternate 

train paths for each service as well as an initial feasible path set. 

At the beginning of each iteration, the heuristic randomly 

replaces one of the paths in the current feasible path set F with 

another train path selected from the alternate paths, to reach 

another slightly different feasible path set F’. The new feasible 

path set F’ can be evaluated with the LP model above according 

to the paths it contains. The objective function value of the LP 

model (regarded as a large number if the model is infeasible), 

together with the costs of each path in F’, is regarded as the 

weight of the set F’, which represents its quality. Then, a 

threshold accepting rule[17] accepts or rejects F’ based on its 

quality. If F’ is accepted, it will replace F. Otherwise, F’ will be 

abandoned. In either case, the heuristic proceeds to the next 

iteration and repeats. When the heuristic ends, the best feasible 

solution ever encountered is used as the final output. Details of 

the heuristic are provided below. 

The initialization phase of the heuristic involves generating the 

initial feasible path set and generating a number of alternate 

paths for each service. The initial feasible path set is generated 

by the following method. First, generate one path for each 

service, and then arrange the paths consecutively so that one 

service will depart its origination station after the previous 

service has arrived at its destination station. It is unlikely that 

the set generated by this method will have good quality, but it is 

always feasible. After creating the initial feasible path set, the 

heuristic generates a number of alternate paths for each service. 

The set of links used by each service is fixed, but the tracks 

within the links are selected randomly when the paths are 

generated. Let ps be the set of alternate paths of service s. The 

pseudo target departure times of the paths in ps are evenly 

spaced and distributed around the target departure time of s.

Computational experiments indicate that the CPU time as well 

as the quality of the final solution is insensitive to the size of ps,

should ps remain within the range of 100 to 1500. 

Following the initialization phase, the heuristic attempts to 

improve F through iterations. Recall that the initialization phase 

generated a set of alternate paths ps for each train service. At the 

beginning of each iteration, the heuristic generates a new set F’

by slightly altering F. To do this, it first randomly selects one 

service s and replaces its path in F with another path in ps. This 

is done by repeatedly selecting alternate train paths from ps at 

random until a path that is compatible with all other paths in F

is found. After obtaining a new feasible set F’, the new set is 

evaluated to determine its quality. The quality of a feasible set is 

represented by its weight, which is the sum of the objective 

function value of the corresponding LP model and the costs of 

each path in the set. For every block in the railway, one can 

determine the set of services that use the block according to the 

paths in F’, and can also determine the order by which they use 

the block based on the paths’ pseudo time. This information is 

sufficient for developing the LP model corresponding to F’.

Solving the LP models consumes the most CPU time among all 

components of the heuristic. 

A threshold accepting rule determines if F’ should be accepted 

according to its weight. The heuristic maintains a threshold 

value T, which starts at one-fifth of the weight of the initial set, 

then gradually decreases along the process. If the weight of F’ is 

less than that of F, or if it is higher yet still within the threshold 

T, the new set F’ replaces F. Otherwise, F’ is abandoned and 

the heuristic continues on to find the next possible set. The 

heuristic also keeps record of the best set found. The T value 

decreases by 1% whenever the best solution is not improved for 

30 consecutive iterations. Also, if it happens that the weight of 

the best known solution drops below 5T, T is lowered to 20% of 

that weight. The heuristic terminates when T drops below 1.0, 

or when the best solution cannot be improved for 300 

consecutive iterations after a minimum of 5000 iterations are 

completed. One can also set an upper bound on the total number 

of iterations if desired. Figure 3 presents a simple flowchart of 

the entire solution process. 
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Figure 3. The solution heuristic flowchart. 

4. COMPUTATIONAL RESULTS 

This section presents some computational experiences. The two 

examples are prepared based on a stretch of railroad operated by 

TRA. The total length is 189.2 Km and has 40 stations. The 

stations have four types of track layouts, including the three 

types shown in Figure 1 and a simple, 2-track type. The railroad 

is double-tracked between all stations unless stated otherwise. 

Most of the tracks between stations have only one block, but 

some are composed of two blocks, allowing two trains of the 

same direction to pass between the two stations simultaneously. 

Details of the railroad configuration are presented in Table 1. 

Both examples are solved with a C++ language code using the 

CPLEX 9.0 callable library. They are tested on a computer 

equipped with a Pentium Pro central processing unit running at 

3.2 GHz clock speed and 1 gigabytes of random access memory. 

The operating system is Windows XP. 

Table 1. Railroad configuration used in the examples. 

Station 

ID 

Tracks 

in

station 

Distance to 

next station 

(km) 

Blocks

between 

next station

1 2 6.6 2 

2 2 4.6 1 

3 2 3.5 1 

4 3 3.4 1 

5 2 3.8 1 

6 2 4.3 1 

7 3 5.8 1 

8 3 8.2 2 

9 2 4.7 1 

10 2 4.8 1 

11 3 7.7 2 

12 3 3.9 1 

13 2 4.6 1 

14 2 5.8 1 

15 3 6.7 1 

16 2 2.6 1 

17  3 6.5 1 

18 2 2.7 1 

19 2 6.1 1 

20 2 7.7 2 

21  3 3.4 1 

22 2 3.8 1 

23 3 5.5 1 

24 2 2.3 1 

25 2 4.6 1 

26  2 7.5 2 

27 3 5.0 1 

28 2 3.6 1 

29 2 2.8 1 

30 3 7.6 2 

31 2 4.0 1 

32 2 2.9 1 

33 2 3.0 1 

34 2 7.3 2 

35 4 4.0 1 

36 2 4.1 1 

37 3 7.0 2 

38 3 3.4 1 

39 2 3.4 1 

40 -- -- -- 

The two examples have 20 services each, with equal number of 

them starting from either end. All services cover the entire 

railroad, and their target departing times are separated by one 

hour starting from 6 am. Not all trains stop at all stations, and 

the stopping patterns differ as well. For both examples, the LP 

model has approximately 6000 variables and 10000 constraints. 

Figure 4 displays the resulting train diagram for Example 1. The 

train diagram represents the trajectory of trains in time-space, 

where the horizontal axis represents time, and the vertical axis 

is associated with space. The horizontal lines mark the locations 

of the stations. The CPU time taken to solve this example is 

3373 seconds. 

Figure 4. The train diagram for Example 1. 

Example 2 differs from the previous example in that one section 

of the railroad between two stations is assumed to be 

single-tracked. The train diagram is shown in Figure 5, with the 

single-tracked segment pointed out. The same segment is also 

marked in Figure 4. By comparing the two figures one can see 

the effect of the difference in track configuration. In Figure 4 

some trains meet at the marked segment, during which the trains 

use both tracks at the same time. All these meetings are 

Time

Distance

6 7 8 9 10 11 12 13 14 15 16 17

Start 

Generate initial set F

Generate alternate paths 

Select a service s from F’

Select a path i from ps

Yes 

No

F’ F

Evaluate F’ 

Accept? 

Yes 

No

F F’ 

Terminate? 

Output 

Yes 

No

Is i compatible with all 

other paths in F?

Replace the path of s in F’ with i
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non-existent in Figure 5. Example 2 was solved in 3662 seconds. 

In both examples all trains departed at their target departure 

times. 

Figure 5. The train diagram for Example 2. 

5. CONCLUSION 

In this research, we developed a heuristic to solve the train 

pathing problem. In the initialization phase, the heuristic 

generates a number of alternate paths for each train service. The 

iteration phase that follows uses a neighborhood search process 

to search for a good combination of these paths. The heuristic 

uses a linear program to evaluate the quality of every feasible 

path set encountered, and uses a threshold accepting rule to 

determine if the new set should replace the current set. Several 

important practical requirements are explicitly modeled, 

including different train dwelling times on different tracks of the 

same link, correct separation of trains using tracks that cross 

each other, and the dependence of a minimum clearance time 

between two consecutive trains on their relationship. The model 

also arranges appropriate clearance time for trains using 

crossing tracks. Examples of up to 40 stations and 20 train 

services are solved. 
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