

 Building an Agent-Based Laboratory Infrastructure for Higher Education

Hong LIN, Khoi NGUYEN, Muna SAQER
Department of Computer and Mathematical Sciences

University of Houston-Downtown
1 Main Street, Houston, Texas 77002, USA

ABSTRACT

We present an ongoing project at the University of Houston-
Downtown (UHD) that aims to build a grid as a laboratory
environment to support undergraduate education. We intend to
use this PC clusters centered grid to allow students to perform
laboratory exercises through web interfaces. In order to
accommodate lab packages of a growing number of courses,
we design the system as a modular system using multi-agent
modeling. Students are recruited to implement the units of the
system as senior student project topics or research activities
sponsored by the Scholar’s Academy of UHD. Through these
projects, we geared our research toward higher education and
provided students with opportunities to participate in building a
computational infrastructure for curriculum improvement. This
is very important for a minority-serving institution (MSI) with
limited resources such as UHD.

Keywords: Undergraduate Education, Education
Infrastructure, Laboratory, Grid, Multi-Agent Systems,
Computer Cluster.

1. INTRODUCTION AND BACKGROUND

Agent-oriented design has become one of the most active areas
in the field of software engineering. The agent concept
provides a focal point for accountability and responsibility for
coping with the complexity of software systems both during
design and execution [1]. It is deemed that software
engineering challenges in developing large scale distributed
systems can be overcome by an agent-based approach [2]. In
this approach, a distributed system can be modeled as a set of
autonomous, cooperating agents that communicate intelligently
with one another, automate or semi-automate functional
operations, and interact with human users at the right time with
the right information.

A distributed learning system typically involves many
dynamically interacting educational components, each with its
own goals and needs for resources while engaged in complex
coordination. It is very difficult to develop a system that could
meet all the requirements for every level of educational
hierarchy since no single designer of such a complex system can
have full knowledge and control of the system. In addition,
these systems have to be scalable and accommodate networking,
computing and software facilities that support many thousands
of simultaneous users concurrently working and communicating
with one another [3].

We have studied the implementation of Collaborative Agent
System Architecture (CASA) [4] with Chemical Reaction
Model (CRM) [5-6]. CASA is a model that can catch the

interactive and dynamic nature of e-learning systems. Our
research results are published in [7-8]. Following our existing
work on the design methodology of multi-agent systems, we
exploit this methodology in a project that aims at a grid system
for laboratory use in undergraduate education. The new method
will provide a solution to current problems in design of
comprehensive environments to support lab activities in
teaching courses on parallel/distributed systems and networks,
to respond the increasing need for effective convey of the
knowledge of current technology to students to equip them for a
career in the modern fast-changing computer industry. One of
the most important parts of this project is designing labs that can
be performed through the Internets. Our first step is
implementing lab packages for our parallel computing and
computer networking courses in a grid that encompass lab
facilities centered at a Beowulf cluster. We will then extend our
lab environment to include other CS and Mathematical courses.

The challenge we are facing, however, is that we need to build
an infrastructure that will accommodate multiple courses in
different disciplines. The problem we are solving include: (1)
an interface that is extensible to incorporate more lab modules
and customizable to different course structures; and (2) an
computational backbone that provides services for various lab
activities, such as testing a parallel program, production of
network phenomena, performance analysis. Performing these
activities requires coordination among multiple nodes. Also,
the architecture of the system requires extensibility and
scalability to accommodate multiple course modules. To
address the first problem, we follow the practice we had when
we built the lab package for our CSI course. Outstanding
features of this package include a lab explorer that allows
students to browse through lab activities and the ability to
invoke programs through the interface. We adopt the same
structure in the lab package we designed for our parallel
computing and networking courses. To address the second
problem, we need to build an array of servers that run on a
computational grid. A grid is a system of networked computing
and storage sources (see Grid.org) that allows the sharing of
information and computational powers. The grid is also a
platform on which experiments of distributed data processing
and computation can be exercised. Services are provided by
different nodes of the grid system. The design of the grid must
meet certain criteria so that the incorporation of any unit fits
into our long term blueprint. For example, as aforementioned,
the underlying infrastructure must support incremental and
dynamic addition of lab exercises into the lab package. This is
to support our ongoing construction of closed labs for our
courses in parallel computing, computer networking, and other
courses [9]. On the other hand, however, the complexity of the
system makes the design of its infrastructure difficult. Our
existing research results suggest that the agent model is a
powerful tool to solve problems in a distributed system.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 4 - YEAR 2009 17ISSN: 1690-4524

Therefore, we use agent technology to build the architecture of
the grid system to manage the coordination and communication
among the nodes and handle the load balancing issues. We
envision that our practice will provide a solution to the problem
of immersing current technologies into educational efforts
which have been continuously made at UHD through the
development of a comprehensive lab environment.

2. THE PROJECT

As described above, agent system provides an architectural
model for distributed networking system. As an active research
area, the study in agent technology strives to apply intelligent
information processing technologies to complex software
systems. Features of an agent system have been summarized in
the literatures, for example, according to Griss and Pour [10],
an agent shows a combination of a number of the following
characteristics: autonomy, adaptability, knowledge, mobility,
collaboration, and persistence. These features exist in different
types of agent systems such as collaborative agents, interface
agents, reactive agents, mobile agents, information agents,
heterogeneous agents, and economic agents. Because of the
Gamma language’s higher-order operations and its closedness
to specifications (no artificial sequentiality), these features can
be described directly without being adapted to fit into
proprietary frameworks. Since this paper focuses on the
architectural design of the grid system, we omit some technical
details about CRM. Interested readers can refer to our
publications for explanations of our methods. In [7], a sequence
of case studies shows that features of various agent systems can
be grasped by the Gamma language succinctly. In [8], we give
a comprehensive example of specifying a course material
maintenance system using the Gamma language. In addition,
part of our work in constructing the cluster is presented at the
16th IASTED International Conference on Modeling and
Simulation (MS 2005) [9].

The Design
The project includes a sequence of major steps: grid
construction, lab design, client/server model definition,
definition of the interface of functional units, agent-based
architecture construction, a module language for program
refinement, and architecture specification in the Chemical
Reaction Model. Our plan can be described as a pyramid-
shaped model illustrated in Figure 1.

The system will be designed using a bottom-up strategy (the
Design Theme). We construct the grid and design lab modules
using existing toolkits, such as Globus Toolkit 3, Java, and
Apache Server. The services provided by the system are
implemented in client/server architecture. A Java based user
interface delivers the services on the web. Servers run on the
clusters. Multiple servers interact with one another in the agent
based infrastructure. A formal definition of the interfaces of
functional units of the system forms the basis for multi-agent
system design. Each agent is then designed in the Module
Language we have proposed for specifying multi-agent systems
[8]. The overall system is specified in the Chemical Reaction
Model. In Figure 1, we can see the multi-agent system is the
conceptual model for implementing grid services, and the
interfaces of functional units define the interaction among
functional units and are the central part of the agent system.
The interface also separates the architectural design from the
design of individual functional units.

Adding/deleting services or features in the grid can be done in
a top-down strategy (the Application Theme). If a service of a
new type is to be added into the system, for example, it is
added into the architectural specification. Through an
automatic transformation procedure, the specification is re-
written into a multi-agent system in the module language. The
actual program that codes the services is then incorporated into
the system through the standard interface. Therefore, updating
services or lab exercises in the system will not cause any
change in other parts of the system and correctness and
reliability of the system can be ensured to the maximum extent.

Figure 1 The pyramid model of the project

A Show Case
The following is a list of labs we are using in our parallel
computing and networking courses. These labs are carefully
designed based on the goals of the course set forth in its
syllabus and pursuit in our teaching experience. Lab topics are
either typical topics of the area or problems we tackle within
the course projects. Our lab design emphasizes the operability
and vividness as well as the manifestation of the basic concepts
and typical technologies. We also address the role played by
the cluster when we design the labs.

• Topology: Circuiting messages in a ring
• Collective communications: Matrix transpose
• Group management: Matrix multiplication with Fox’s

algorithm
• Scientific computation: Solving linear systems with

Jacobi’s algorithm
• Combinatorial search: Traveling salesman problem
• Parallel I/O: Vector processing - Summation
• Performance analysis: Visualization with Upshot –

Trapezoidal rule problem
• Parallel library: Solving linear system with ScaLapack
• Scalability analysis: Bitonic sorting
• LAN configuration: The use of NICs and hubs
• Network analysis: Monitoring a chat room
• Address resolution: Experiment with ARP burst
• IP masquerading: Clustered web servers
• WAN configuration: The use of routers
• Performance tuning: Deal with congestion
• Service configuration: The configuration of a networked

file system:

Here we show one example lab we have designed. This lab
allows students to use standard metrics to analyze the
performance of a parallel program. The students predict the
performance of the parallel program they choose, load the

Interface of
functional

Client/server
model

Lab
modules

Module
language

Architecture
specification

Design theme

Application theme

Multi-agent
system

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 4 - YEAR 200918 ISSN: 1690-4524

program onto the cluster, compile and run the program, and
then compare the predicted results to the experimental results.
As illustrated in Figure 2, one lab session is organized in a
series of tasks and each task a series of activities. In this lab,
students study some standard measurement criteria, viz.
speedup and efficiency, for performance analysis of parallel
algorithms in Task Activity 1 and 2, and predict the speedup
and efficiency of the chosen program given the size of the
problem input and the number of nodes in Activity 3. Task 2
requires the students to load the chosen program onto the
cluster and then compile the code. The students can click on the
C++ Compiler button in the bottom of the page to compile the
code once the loading is finished. Task 2 Activity 1 walks the
students through the program loading process. Activity 2 asks
the students to compile the code. The code is then checked in
Activity 3 by a program to ensure its correctness. Erroneous
code causes the students to be asked to correct the code till it is
errorless. In Task 3, the students can analyze the experimental
performance of the program by using MPICH JumpShot
profiling software and compare the experimental results to the
theoretical predicts, which have been done in Task 1. In
Activity 1, the students are required to insert profiling
commands into the program and obtain a profile of the program
by running it. In Activity 2, the students start up the JumpShot
program from the program menu to obtain a Gantt chart of the
program. The students then calculate the actual performance
data by using the logged timing data and compare the
experimental results to the predicted. This is done in Activity 3.
Figure 3 shows some snapshots of the lab activities. Figure 3(a)
shows the window that takes the student’s response to
performance prediction questions. Figure 3(b) shows the
moment when the student opens a program through a dialog
window and monitor the execution of the program through a
popup window. Figure 3(c) shows a text window in which the
student adds profiling statements into the program.

Figure 2 The Main Window of the Lab platform

Figure 3 Snapshots of Lab – Performance Analysis

3. STUDENT PROJECTS

Research at UHD is tightly coupled with its educational
programs. Student involvement is an indispensable part of our
research. For years, UHD’s Scholar’s Academy (SA) has been
pairing up faculty and students and hosting organized research.
Outstanding students are invited to present their work at the
annual Student Research Conference (SRC). The Department
of Computer and Mathematical Sciences has also widely
recruited students in building the Labs and developing lab
software. Senior student projects have been carried out
throughout the design of the laboratory. Also, volunteering
student research assistants constantly work in the UHD Grid
Computing Lab to configure the clusters and implement
research modules. With the limited resources of an
undergraduate institution such as UHD, it is very important to
involve students in research programs, not only to create
activities for students to obtain hands-on experiences, but to
couple research and education seamlessly. In the following, we
present three student projects that are directly related to the
project of building an integrated lab environment.

A Pioneer Work: Cluster Configuration and Testing
Parallel Computing course is an important part of Computer
Science curriculum. We teach students to use Message Passing
Interface (MPI) to design and test parallel programs. Since the
Parallel Computing course is a writing course, students are also
given a writing project which requests the students to write a
report about applications of parallel programming. We are
building a lab environment which can give the students hand-
on experience in solving real-world large scale applications so
that the students can get an image of the real performance of
the parallel programs. To this end, a Beowulf cluster is
constructed, configured, and tested using 15 similar computers
and 1 newer, faster server using the MPI. The operating
platform is Fedora 2 (Linux Red-Hat).

The Beowulf cluster is a rather simple architecture that many
could recognize. There are two different configurations for the
Beowulf: Class I and Class II. The Class I Beowulf is built
entirely of commodity hardware and software. This type of
cluster is usually less expensive than the Class II clusters that

a. Performance Prediction b. Compilation and execution

c. Profiling

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 4 - YEAR 2009 19ISSN: 1690-4524

use specialized hardware to achieve higher performance.
Intuitively, this project is geared towards a Class I Beowulf
cluster. As shown in Figure 4, it consists of 15 nodes
(computers) and 1 server. The server operates as the master
node, and the 15 nodes serve as computational slaves. They
are connected via a high-speed Ethernet and switch. All day-
to-day operations and coding are done on the server.

This project focuses on the MPICH implementation on a Class
I Beowulf cluster running on Fedora 2. Since MPICH is
mirrored across the cluster, users can send MPI commands
such as mpirun on the cluster. Packets of data are sent to a
desired number of nodes on the cluster that are in turn sent
back to the server to accomplish a given task.

The whole purpose of this Class I cluster is to achieve
equivalent or greater processing compared to specialized
computers and/or scalable parallel machines. Due to limited
resources, a performance comparison to a Class II cluster or a
scalable parallel computer (SPC) could not be made.
Benchmarks on this cluster were made using MPI programs on
a time-based analysis. Whatever program ran on the cluster,
timings from start to finish of calculations were recorded.

Design of Lab Interface
The project goal is to design a layout interface for performing
lab activities on a cluster of PCs. The main program is stored
on the root node of the cluster. Students can upload a program
onto the cluster, run it, and monitor the result. The lab allows
students to use existing parallel computers, high-performance
workstations, and vector computers to experiment using Linux
operating system and java interface program. Simple parallel
architecture ideas and basic analytical models of parallelism
will be presented. The students will be able to run sample C++
program and see and analyze the result.

For this project, the first step was to carefully and manually
design the lab layout and sketch the main menu layout. The
second step was to add the lab’s tasks and lab’s activities to the
main menu. The following step was to add activities such as
print, close, open, save for the labs. The next step was to start
thinking about how to automate the process. Java introduced
the layout for the GUI (Graphical User Interfaces). It allows
fields to automatically grow and shrink depending on how
much screen is available. In this project some of the features of
great quantity objects are combined with features from Java
Layouts to create labs layouts.

The targeted versatility of the use of the lab package is ensured
by the following criteria in our development plan:

• Scalability: We can add new nodes into the grid or delete

nodes from the grid.
• Extensibility: The design of the lab environment makes it

possible to incorporate other software packages to
enhance the functionality.

• Customizability: Object-oriented design of the
architecture and standardized interfaces of objects make
the lab composition easy.

• Accessibility: The lab software creates an interface for the
users to control node activities through the web browser.

• Robustness: The client-side component of the lab
software ensures the correctness of the program before
loading it onto the grid for execution.

The architecture of the lab package is an extension of the
framework of the labs designed for our CSI course. The overall
design for this GUI was that it would be simple, reliable, and
portable. Although currently the software package developed
is merely a prototype, it allows for further extension in
accordance with our architectural design depicted as above.
The GUI was developed with Java. Java is well known for its
stability and portability. The GUI was developed with the Java
2 SDK with netBeans by Sun Microsystems. The main points
for the flow of the GUI are:

• Card/Tab-Layout style Window

o Menu bar with options
o exit, help

• Tabs will contain:
o Introduction (background information on

clusters/MPI)
o User window for loading, compiling/building, and

running their MPI programs
• Demonstration Programs

o Sorting Algorithms & sample distribution programs

Layout manager is an abstract class which handles constraints
and simplifies implementation of new layouts. It's used as the
super class for most of the other layouts. It provides a
configurable horizontal and vertical margin around all
components. In addition, it has an option to allow the layout to
include invisible components in its layout policy. The main
menu is designed in a way that it contains all other layouts
screens. The main menu frame obtains the tree, the panel, and
the upper and lower toolbars. Each toolbar has some action
activity provide by the menus or buttons. The panel obtains the
lab tasks and activities. The screens cards are controlled by the
tree, the panel or the toolbars items (Figure 5).

Figure 4 Class I Beowulf Cluster

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 4 - YEAR 200920 ISSN: 1690-4524

The GUI was coded utilizing the JSwing packages and forms.
All layouts were created as NULL layouts, for it offered more
flexibility in placing items such as text windows and action
buttons. The GUI was built upon a Frame form. Frames are
typically used as stand-alone top-level windows as the main
user interface to the application. Therefore, it was the optimal
choice for the GUI.

The Introduction window/tab has general information on the
cluster, MPI, and the GUI. A simple JTextpane was added to
the base frame that contained the text. Figure 6 is the actual
screen shot of the Introduction window.

For a user to load, compile/build, and run MPI programs on the
cluster, a separate window, called Your MPI, was created.
Here users can open their MPI program source code, compile
& build it, and execute it. This window was added as a JPanel.
JPanels are used to place other objects such as buttons and text
areas on. On this panel, Open, Build, and Run it! buttons were
added. Actions were assigned to each button to execute the
said tasks. Also, a JTextArea was also added to display
important messages and instructions. Mouse event listeners
were added as reminders for the action buttons. Figure 7(a)
shows the window displaying instructions. Figure 7(b), (c), and
(d) show actual screenshots of a “Open File”, “Build”, and
“Run it!” action, respectively, in the Your MPI window:

The “build” action button builds the opened file. Hence, the
“Run it!” button executes the program. Also added was the
Demo window for users to run sample programs. Within this
window are a set of more tabs – one for each sample program.
The sorting programs, Mergesort and Quicksort are located
here to sample. Also included are the Cpi and a basic I/O
program. This GUI offers the bare minimum features for

running MPI programs on the cluster. Further development can
be made on the GUI in areas of graphics and content.

Both the student projects have been presented at the Student
Research Conference of the University of Houston-Downtown
(Figure 8).

4. CONCLUSIONS

We present a method for designing a computational grid that
supports online lab exercises, as part of our Information
Technology track of curriculum design. A lab package is
designed to support the learning process in courses of parallel
computing and networking. The grid is centered at a Beowulf
cluster, which provides a computational backbone of the grid,
and services are deployed in distributed nodes of the computing
networks and organized by a multi-agent system. To address
high level architectural design issues, such as scalability,
extensibility, and modularity, we use Chemical Reaction Model
to formally specify the architecture and we facilitate a
transformational method for implementing the system to the
module interface level. We have developed the lab with an
interface that accommodates different lab activities in different
courses and demonstrated the design by show cases. Students
have been involved in the implementation of the laboratory in
forms of senior student projects and SA sponsored research
projects. This makes our research coupled with education
tightly.

The Main Menu
Frame

End

Screens
Cards

Tree Panel Upper Toolbar Lower Toolbar

Save

Open

Print

Next

Previou

Last

Help First

Figure 5 Interface Layout Design

Figure 6 The Introduction

(a) The Instruction Window (b) The “Open file” Window

(c) The “Build” Window (d) The “Run it” Window

Figure 7 Interface to Run a Program

Figure 8 Student Posters

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 4 - YEAR 2009 21ISSN: 1690-4524

5. ACKNOWLEDGEMENT

This research is partially supported by NSF grant “Acquisition
of a Computational Cluster Grid for Research and Education in
Science and Mathematics” (#0619312). Some of the student
research projects are supported by U.S. Army Research Office
Award #W911NF-04-1-0024 through Scholars Academy of
UHD.

6. REFERENCES

[1] E. Yu, “Agent-oriented modelling: software versus the

world”. Agent-Oriented Software Engineering AOSE-
2001 Workshop Proceedings, Montreal, Canada, May
2001. LNCS 2222. Springer-Verlag, Berlin, Germany, 2001,
pp. 206-225.

[2] G. Paquette, “Designing Virtual Learning Centers”. In H.
Adelsberger, B. Collis, J. Pawlowski (Eds). Handbook on
Information Technologies for Education & Training,
Springer-Verlag, Berlin et al, 2001, pp. 249-272.

[3] M.A. Vouk,, D.L. Bitzer, and R.L. Klevans, “Workflow and
end-user quality of service issues in web-based education”.
IEEE Trans. on Knowledge and Data Engineering, 11(4),
1999, pp. 673-687.

[4] R.A. Flores, R.C. Kremer, and D.H. Norrie, “An
architecture for modeling internet-based collaborative agent
systems”. in T. Wagner & O.F. Rana (Eds.), Infrastructure
for Agents, Multi-Agent Systems, and Scalable Multi-
Agent Systems, LNCS1887, Springer-Verlag, London, UK,
2001, pp. 56-63.

[5] J.-P. Banâtre, and D. Le Metayer, “The Gamma model and
its discipline of programming”. Science of Computer
Programming, 15, 1990, pp. 55-77.

[6] J.-P. Banâtre, and D. Le Metayer, “Programming by
multiset transformation”. CACM, 36(1), 1993, pp. 98-111.

[7] H. Lin, “A language for specifying agent systems in E-
Learning environments”. in: F.O. Lin (ed.), Designing
Distributed Learning Environments with Intelligent
Software Agents, IGI Global, Hershey, PA, USA, 2004, pp.
242-272.

[8] H. Lin, and C. Yang, “Specifying Distributed Multi-Agent
Systems in Chemical Reaction Metaphor”. The
International Journal of Artificial Intelligence, Neural
Networks, and Complex Problem Solving Technologies,
Springer-Verlag, 24(2), 2006, pp. 155-168.

[9] H. Lin, and K. Nguyen, “Classroom simulation of massive
parallel computing”. Proc. The 16th IASTED
International Conference on Modeling and Simulation
(MS 2005), Cancun, Mexico, May 18-20, ACTA Press,
Calgary, AB, Canada, 2005, pp. 45-50.

[10] M. Griss, and G. Pour, “Accelerating development with
agent components”. 34(5), Computer, IEEE, 2001, pp. 37-
43.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 4 - YEAR 200922 ISSN: 1690-4524

	ZT209AH

