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ABSTRACT 
 

Multicore platforms are such that have one physical 
processor chip with multiple cores interconnected via a 
chip level bus. Because they deliver a greater 
computing power through concurrency, offer greater 
system density multicore platforms provide best 
qualifications to address the performance bottleneck 
encountered in PC-based control systems for parallel 
kinematic robots with heavy CPU-load. Heavy load 
control tasks are generated by new control approaches 
that include features like singularity prediction, 
structure control algorithms, vision data integration and 
similar tasks. In this paper we introduce the parallel 
task scheduling extension of a communication 
architecture specially tailored for the development of 
PC-based control of parallel kinematics. The Sche-
duling is specially designed for the processing on a 
multicore platform. It breaks down the serial task 
processing of the robot control cycle and extends it 
with parallel task processing paths in order to enhance 
the overall control performance. 
 
Keywords: Multicore, parallel processing, PC-based 
control, parallel kinematics 
 
 

1. INTRODUCTION 
 
Due to their structure, parallel kinematics enable the 
achievement of high velocities and accelerations (up to 
10 g) and provide structural stiffness and repeating 
accuracy. Generally, their structure consists of a closed 
kinematic chain with more than one link connected 
over joint elements to the manipulator on the one hand 
and to a stationary based platform on the other hand. 
Serial kinematics however consist of an opened chain 
of links and joints connecting the base platform to the 

manipulator. Compared to serial kinematics, all the 
active joints in a parallel kinematic structure are fixed 
to the stationary platform, so that the mass of the 
drives has no significant influence to the energy 
balance of the manipulator movements and thus enable 
high dynamic movements. Some examples of parallel 
kinematics are depicted in Figure 1. The major 
drawback of parallel kinematics is the relative limited 
workspace, so applications with high dynamic 
requirements in a restricted environment will be more 
appropriate for this environment. 
 

 
Figure 1: Structural variety and application 
diversity of parallel robots 

The development of fundamental concepts to handle 
parallel kinematics is one of the focuses of the 
Collaborative Research Center 562 (SFB562) [1] at the 
technical university Braunschweig. In this context, we 
have designed a unified robot control system [2] [3] 
that easily adapts to the specific robot and application. 
The control system is built on the top of a 
communication architecture [3] [4] that supports the 
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development chain of the control application from the 
PC-software up to the drive controllers.  
In the first section of this paper, we will give a brief 
description of the communication architecture. We will 
particularly consider the task scheduling component of 
the communication middleware MiRPA-X. The second 
section of the paper will describe the structure of the 
robot control software and discuss performance 
limitation related to the implementation on a single 
core PC. We will insist on the realized serial control 
cycle. In the third section we introduce the 
parallelization strategy of the task processing in the 
control cycle, specially tailored for the deployment on 
multicore platform. 

 
 
2. ROBOT CONTROL SOFTWARE 

ARCHITECTURE 
 
The design of the control system relies on a PC-based 
approach [2] [5]. The advantages are obvious: The 
choice of a PC as control hardware guarantees that the 
robot control system will always be based on the state-
of-the-art computer architecture, i.e., the robot control 
system will keep pace with the development of the PC 
technology. The latest achievements in the multicore 
processor technology open the way to more robust and 
complex control applications by providing the 
necessary processing power.  

 
Communication Architecture 
Figure 2 depicts the PC-based communication architec-
ture [3] [4] we deployed for the control of parallel 
kinematics. It consists of control software running on a 
single PC under the real-time operating system QNX. 
The control software is connected to the external robot 
communication nodes (sensor/actuator) via the 
IEEE1394 bus. In order to support developers in 
designing modular control software the application of a 
communication middleware (MiRPA-X, Figure 2) is a 
key feature. It supports the designer by straightforward 
implementation of communication issues within the 
system to concentrate on the algorithmic part of the 
software. To guarantee a fixed control cycle and assure 
a deterministic communication between the control 
software and the external robot node, the dedicated 
protocol IAP (Industrial Automation Protocol) is 
applied. The protocol is implemented on both the 
control PC and the external communication nodes of 
the robot. 
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Figure 2: Software and communication architecture 
of the parallel robot control system. 

 
Control Software 
In this section, the robot control architecture and its 
design principles are described. The key technology to 
facilitate the development of a control framework is 
the usage of the flexible and highly efficient 
communication and synchronization middleware 
MiRPA-X [3] [4]. It uses QNX [6] internal message 
passing as the basic mechanism for putting 
synchronous and asynchronous communication 
services into reality. According to this, the control 
architecture can be ported to any realtime operating 
system that supports this kind of mechanism. 
Application processes providing control level services 
are regarded as servers, while service requesters are 
regarded as clients. According to these roles, servers 
block on the reception of specific queries and 
instructions. Alongside the message-based communica-
tion, MiRPA-X provides a communication mechanism 
based on shared memory usage. As for messages, the 
shared memory mechanism uses the MiRPA-X name 
service. The usage of shared memory facilitates a high-
speed, non-blocking data transfer between application 
processes, without the object server being involved in 
the actual communication task. After registration, 
application processes directly read and write inter-
process data using memory pointers provided by the 
middleware. If multiple application processes access 
the same shared memory region, data integrity has to 
be ensured at any time. As shared memory access is 
neither blocking nor synchronized by itself, MiRPA-X 
provides a token-passing scheduler. These features 
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allow the control architecture to be designed in a 
runtime-evolvable layered structure, as described in the 
following subsection. 
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Figure 3: Information flow in the layered control 
architecture 

 
Layered design 
An overview of the control implementation is given in 
Figure 3. The architecture consists of three layers, the 
very right section representing the hard real-time layer 
of application processes. They operate in a token-
passing context in a strictly serial and deterministic 
manner within a high-speed cycle frequency. Hard-
real-time processes always run at high priority without 
becoming re-scheduled. This leads to extremely low 
jitter [7] and the subordinated drive controller benefits 
significantly thereof, compared to pure soft real-time 
approaches. The token cycle features a field bus 
communication process, which is the master 
synchronization source. It transmits the sensor data 
from the robot via the IAP [3] communication protocol 
to a shared memory area. After the process has 
released its token, it is received by the Hardware 
Monitoring and Control process. This process is 
responsible for activation and shutdown sequences of 
the robot next to monitoring and surveillance 
functionality. Moreover, it activates the control core in 
the adjacent layer according to an adjustable ratio of 
cycles. The token is passed subsequently to two 
processes that encapsulate robot specific controllers: 
one for control of the drives and one for smart structure 
control, which is applied to parallel kinematic 
machines to reduce vibrations induced by high-speed 
motion. Then the token returns to the Field Bus 
Communication process and the output values are 
transmitted to the actuators of the robot. The cycle 
described above starts each time the Field Bus 
Communication process is triggered by a hardware 
clock generated interrupt. In the remaining CPU time, 

the middle layer of the architecture is executed, which 
is described in the following. The middle layer is 
responsible for generating a Cartesian space trajectory 
with respect to the actual manipulation primitive that is 
executed. A Cartesian trajectory is required, since it 
provides abstraction from a particular robot by defining 
the motion of the end-effector in distinction from 
defining the motion of the drives. The layer is operated 
in a message-based soft-realtime environment. When a 
synchronization event from the Token Cycle layer 
occurs, the sensor module processes are notified by a 
multicast message in order to read data from the shared 
memory where the sensor data is stored. As the sensor 
modules encapsulate signal processing algorithms, 
such as filtering or coordinate transformations into the 
task frame, they pass the processed information to the 
motion module processes. The motion modules 
encapsulate the trajectory generation algorithms and 
are explained in detail in the next section. They are 
activated by the control core by a point-to-point 
message using the highly efficient name-service of the 
middleware only if required for the execution of the 
actual manipulation primitive. Detail information on 
control engineering aspects is provided in [7]. After a 
configurable number of token cycles has passed, the 
Hardware Monitoring and Control process 
synchronizes the control core again and the data from 
the motion modules is fusioned to a valid set of 
Cartesian trajectory data. This information is passed to 
the drive controller via the shared memory area located 
in the right layer by a mutex-synchronized mechanism. 
The upper layer features relaxed reaction-time 
requirements. As a result, the robot program interpreter 
and the GUI link server are located in an event-driven 
message-passing environment located on the left side 
of Figure 3. 
 
 

3. PERFORMANCE ENHANCEMENT 
THROUGH MULTICORE PLATFORM 

 
Although the control software has been successfully 
deployed for the control of parallel kinematics, the 
current implementation based on a single core platform 
comes to its performance limits, when new and 
complex control paradigms are realized. Indeed, state-
of-the-art and future control algorithms for parallel 
kinematics are quite demanding in terms of 
computational efforts. Representative examples are a) 
singularity prediction [8] in order to safely operate 
parallel kinematics machines, b) incorporation of 
vision data [9] in general and c) the latest approaches 
using force-torque maps for the execution of assembly 
sequences [10]. Multicore systems offer a suitable 
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platform to address this performance bottleneck. Since 
the software architecture obeys a modular design and 
both motion and sensor modules are autarkic 
components that can be run concurrently, they are 
offhand distributed on a multicore platform for parallel 
processing. Although the performance is gained 
through parallel processing, one important design 
factor of the control limits the achievable performance 
on a multicore architecture: the token scheduler that 
activates the cyclic processing of the software 
components involved in the token cycle (Figure 3). In 
order to synchronize the inter-process communication 
over shared memory regions, the token scheduler was 
originally designed to automatically realize a serial 
scheduling, i.e. to schedule the processes successively 
and according to an adjustable order. The serial 
scheduling represents a performance limitation on a 
multicore platform, because it does not support parallel 
processing. In the next section, we present the 
extension of the scheduler for the execution that 
supports parallel task execution. 
 
 
Extension of the Token scheduler 
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Figure 4: Extension of the token scheduler for 
parallel task execution in a token cycle 

To get additional performance from the multicore 
platform in the MiRPA-X environment, we extended 
the functionality of the MiRPA-X scheduler from a 
sequential (serial) to a parallel scheduling. In Figure 4a 
an abstract view of the sequential scheduling on the 

single core processor is depicted. The tasks are 
successively scheduled and no additional synchro-
nisation mechanism is necessary. At the beginning, all 
the tasks are in a wait-for-token state, waiting to 
receive a token and to start processing. To schedule a 
task, the scheduler sends a token (based on blocking 
message passing) and waits in a blocked state for reply. 
This way, two tasks cannot be scheduled in parallel 
and the shared memory data exchange between two 
tasks is secure. 
On multicore systems, the idea is to classify tasks with 
no shared memory data dependency in modules which 
will be scheduled on different CPUs (Figure 4b, 
encircled tasks). In this context, the scheduler activates 
the different modules by dispatching multiple tokens, 
one token for each module, and thus executing the 
parallel processing of the modules. The token passing 
may not be based on a blocking mechanism; otherwise 
the token dispatching feature will not succeed. For this 
reason it has been implemented with a non blocking 
pulse message. To preserve synchronisation, a token 
collecting point is provided. Subsequent tasks (i.e. 
Figure 4b, task T7) can only be scheduled after all 
parallel processing modules complete. The parallel 
scheduling of the modules running on different CPUs 
reduces the processing time in the token cycle und thus 
improve the performance of the control system. The 
processing time of the token cycle can theoretically be 
reduced up to n times (n number of CPU on the 
system).  
In Figure 5 a trace of the system events on a dual core 
platform is depicted. The trace recording is a feature of 
the QNX instrumented kernel. The trace shows the 
activation and the processing of two tasks running on 
different CPUs. In the figure, the token scheduler is 
displayed as the third thread (Thread 3) of the object 
server process (observ). The scheduler first activates 
the IAP module. After completion of the IAP, It 
activates the Modules Hardware_Control and 
Drive_Control simultaneously. The latter are 
beforehand configured to run each on a different CPU. 
The scheduler latency for the activation of the parallel 
processing is about 6µs.The extended functionality of 
the MIRPA-X scheduler is operational on systems with 
up to 32 cores under the QNX Neutrino operating 
system. On a dual core system a performance 
enhancement of 45% was measured for the token 
cycle. 
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Figure 5: trace event of the parallel scheduling of two tasks on a multicore platform 

 
Configuration and design restriction 
To simplify the use of this feature, we introduce a 
central configuration space which parameters are 
depicted in Table 1. It enables a static mapping of tasks 
on the available CPUs, the configuration of the 
modules that will be processed in parallel and the task 
processing order.  The column “token name” defines 
the token cycle. It contains a symbolic reference to the 
tasks which will be executed within the token cycle. 
According to the token cycle depicted in Figure 3, the 
symbolic references IAP, HW_Ctrl, DRIVE_Ctrl, and 
SM_Ctrl are respectively set for tasks “Field Bus 
Communication”, “HW Monitoring & Control”, 
“Drive Controller” and “Smart Material Controller”. 
The order of the settings also defines the task execution 
sequence. The token cycle is limited by the special key 
words _START and _REPEAT. To specify which 
tasks should be scheduled in parallel we defined a 
parallelization index that is associated to every task. 
Tasks that should not be parallelized get the index 0.  
All successive tasks with an associated index 1 will be 
processed in parallel. In this case, the tasks should be 
mapped on different CPU cores for parallel processing. 
This CPU mapping is set in the column “Cpu mask”. 
The settings in Table 1 consider a platform with at 
least 2 CPU cores and correspond to a parallel 
execution of the tasks “HW_Ctrl” and “DRIVE_Ctrl” 
on the CPU-Cores 1 and 2, respectively.  
 

Token name Parallelization index Cpu mask
_START

IAP 0 1
HW _Ctrl 1 1

DRIVE_Ctrl 1 2
SM_Ctrl 0 2

_REPEAT
 Table 1: static configuration of the parallel task 
scheduling 

The only design restriction of the parallel 
scheduling extension is that the parallel processed 
modules are not allowed to have any shared memory 
data dependency, since data inconsistency could occur. 
But this restriction is not relevant, compared to the 
overall performance gained. 

 
 

4. CONCLUSION 
 
In this paper we presented a PC-based control 

system for parallel kinematics. We described the 
layered robot control software based on the top of a 
real time communication architecture. To solve the 
performance bottleneck occurring on single core 
platform we introduced the multicore platform 
approach. Then, we discussed the design related 
performance limitation, due to the serial task 
scheduling in the token cycle. After this, we introduced 
the parallel task scheduling approach specially tailored 
for multicore platforms. It consists in classifying tasks 
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with no shared memory data dependency in modules 
which will be scheduled on different CPUs. In this 
context, the token scheduler uses a non blocking 
communication mechanism to activate the different 
modules by dispatching multiple tokens and such 
enabling a parallel task processing. For synchroni-
zation purposes, additional dispatching and collecting 
points are introduced. Finally, we gave some 
performance data and introduced some software design 
restrictions. Up to 45% of performance enhancement 
on a dual core platform could be achieved for a token 
cycle. The parallel scheduling and the additional 
performance gained open the door to the realization of 
more complex and robust control approaches. 
 

5. ACKNOWLEDGMENT 
 

The authors highly appreciate the support given by 
the German Research Foundation (DFG) within 
SFB562 and by QNX Software Systems providing free 
software licenses. 
 

6. REFERENCES 
 
[1] P. Last, C. Budde, F. M. Wahl, proceedings of the 
second international colloquium of the collaborative 
research center 562, Braunschweig, Germany, may 2005. 
 
[2] J. Maaß, N. Kohn and J. Hesselbach, “Open modular 
robot control architecture for assembly using the task frame 
formalism”, International Journal of Advanced Robotic 
Systems, vol 3-1, pp. 001-010, 2006. 
 
[3] N. Kohn, J.-U. Varchmin, J. Steiner, U. Golz, “Universal 
communication architecture for high-dynamic robot systems 
using QNX”, 8th International Conference on Control, 
Automation Robotics and Vision, Kunming, China, pp. 
205- 210, 2004. 
 
[4] Y. Dadji, H. Michalik, T. Moeglich, J. Steiner, “ 
Performance optimized Communication system for high-
dynamic and real-time Robot Control Systems, CD-ROM 
proceedings of the 16th. International Workshop on 
Robotic in Alpe-Adria-Danube Region, 7-9 June 2007, 
Ljubljana, Slovenia. 
 
 [5] G. Pritschow, T.L Tran, “Parallel kinematics and PC-
based control system for machine and tools“, proceedings of 
the 37th IEEE Conference on Control, Tampa, Florida 
USA, pp. 2605-2610, 1998. 
 
[6] The QNX operating system, http://www.qnx.com, April 
2008 
 
[7] J. Maaß, J. Hesselbach, N. Kohn, “Open modular robot 
control architecture for assembly using the task frame 
formalism“, International Journal of advanced robotic 
systems, 3, pp. 001-010 

 
[8] J. Hesselbach, J. Maaß and C. Bier, “Singularity 
prediction for parallel robots for improvement of sensor 
integrated assembly”, Annals of the CIRP, pp. 349-352, 
2005 
 
[9] S. Hutchinson, G. Hager, P. Corke, “A tutorial on visual 
servo control”, Transactions on Robotics and Automation, 
vol. 12, pp. 651-670, 1996 
 
[10] S. R. Chhatpar and M. S. Branicky, “Localization for 
Robotic Assemblies Using Probing and Particle Filtering”, 
IEEE/ASME International Conference on Advanced 
Intelligent Mechatronics, pp. 1379-1384, 2005 

 

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 1 - YEAR 2009 65ISSN: 1690-4524

http://www.qnx.com/

	ZT742HE

