
Fraction-Integer Method (FIM) for Calculating Multiplicative Inverse

Sattar J Aboud
Department o f Computers Science, Philadelphia University

Jordan – Amman
E-mail: sattar_aboud@yahoo.com

ABSTRACT

Multiplicative inverse is a crucial operation in public key
cryptography. Public key cryptography has given rise to such
a need, in which we need to generate a related public/private
pair of numbers, each of which is the inverse of the other. One
of the best methods for calculating the multiplicative inverse
is Extended-Euclidean method. In this paper we will propose
a new algorithm for calculating the inverse, based on
continuous adding of two fraction numbers until an integer is
obtained.

Key words: Cryptography, Fraction-Integer Method,
Multiplicative Inverse, Greater Common Divisor.

1. INTRODUCTION

The multiplicative inverse of (e) modulus (n) is an integer (d)
∈ Zn such that e * d ≡ 1 mod n, d is called the inverse of e and
denoted e-1 [5]. The study of inverse calculation was a
stubborn science due to lack of real improvement, due to [1]
the modulus inverse problem is a lot more difficult to solve.
However, there were only a couple of methods. One is trivial
and lengthy in calculating the inverse, because it is a
sequential search. (i.e. start by d = 1, keep on adding 1 to d
until e * d ≡ 1 mod n). Euclidean (the oldest, yet) the most
powerful one, which is based on finding the greater common
divisor between e and n, such that gcd (e, n) = gcd (e, n mod
e). The algorithm solves x * y such that e * x + n * y = 1.
Stein method [7] [3] which improve Euclidean method by
testing for odd and even numbers of e, n, and divide e and/or
n by 2 if needed before calculating the inverse. Gordon
method [2] is based on using shifts to avoid lengthy
multiplication and division. Baghdad method [6] is based on
continuous adding of two integer numbers until an integer is
obtained. The description, the storage requirements and the
complexity of each method is discussed in the following
sections.

2. EUCLIDEAN METHOD

This method is based on the idea that if n > e then gcd (e, n) =
1, also on finding e * x + y * n = 1 in which x is the
multiplicative inverse of e [3, 4].

Algorithm
Input: a ∈ Zn such that gcd (a, n) = 1
Output: e-1 mod n, where e-1 = i provided that it exists

1. Set g ← n, u ← e, i ← 0, v ← 1.

2. while u > 0 do the following:
2.1 q ← g/u, t ←g - q * u,
2.2 g ← u, u ← t, t ← i – q * v
2.3 I ← v.
2.4 v ← t.

3. if i < 0 then i ←n + i.
 4. e-1 ← i

Example
Let a←7, n←60
g u i v q t
60 7 0 1 0 0
7 4 1 -8 8 -8
4 3 -8 9 1 9
3 1 9 -17 1 -17
1 0 -17 -52 3 -52

e-1 ← n + i = 60 + (-17) = 43

The method needs around 6 variables, and used subtraction,
multiplication division, and comparison as operations with
complexity of O(log2 n) .

3. STEIN METHOD

This algorithm was described by [7] and improved by penk
[3] which avoids multiplications. It is based on the
observation that gcd (x, y) = gcd (x/2, y) if x is even, also gcd
(x, y) = 2, gcd (x/2, y/2) if both x, y are even, and gcd (x, y) =
gcd ((x - y) / 2, y) if x, y are both odd.

Algorithm
Input: e ∈ Zn such that gcd (e, n) =1
Output: e-1 mod n, provided that it exists

1. while e and n is even do
1.1 e ← e/2, n ← n/2.

2. u1←1, u2 ← 0, u3← e, v1← n, v2 ←1-e, v3 ← n.
3. if e is odd then t1← 0, t2 ← -1, t3 ← -n
4. else t1←1, t2←0, t3← e
5. repeat

5.1 while t3 is even do
5.1.1 t3 ← t3/2.
5.1.2 if t1 and t2 is even then
5.1.3 t1← t1/2, t2 ← t2/2
5.1.4 else t1 ← (t1 + n)/2,
5.1.5 t2 ← (t2 - e)/2.

5.2 if (t3 > 0) then u1←t1, u2 ← t2, u3 ← t3
5.3 else v1 ← n - t1, v2 ← - (e + t2), v3 ← -t3
5.4 t1 ← u1 - v1, t2←u2 - v2, t3← u3 - v3.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 39

5.5 If (t1 < 0) then t1←t1+ n, t2 ← t2 -e.
6. until t3 = 0.
7. e-1 ← u1.

Example
Let e ← 7, n ← 60.
e n u1 u2 u3 v1 v2 v3 t1 t2 t3
7 60 1 0 7 60 -6 60 0 -1 -60
 30 -4 -30
 15 -2 -15
 45 -5 15
 -44 5 -8
 16 -2
 8 -1 -4
 34 -4 -2
 17 -2 -1
 43 1
 -42 5 6
 18 -2
 9 -1 3
 9 -1 3
 -43 4 2
 26 -3
 43 -5 1
 43 -5 1
 0 0 0

e-1 ← u1 = 43

The algorithm needs around 11 variables, and uses addition,
subtraction, multiplication, division by 2, and comparison
with complexity of O(log2 n).

4. GORDON METHOD

This algorithm is based on the observation that (q) at
Euclidian algorithm does not need to be the remainder of n / e
but it can be any power of 2 up to that limit [2].

Algorithm
Input: e ∈ Zn such that gcd (e, n) = 1
Output: e-1 mod n, provided that it exists

1. g ← n, i ← 0, v ← 1, u ← e.
2. repeat

2.1 s ← -1, p ← 0.
2.2 If u > g then

2.2.1 t ← 0
2.3 else

2.3.1 p ← 1, t ← u.
2.3.2 while (t ≤ g) do

2.3.2.1 s ← s + 1.
2.3.2.2 t ← left shift t by 1.

2.3.3 t ← right shift t by 1.
2.4 t ← g - t, g ← u, u ← t, t ← i, i ← v.
2.5 if p =1 then

2.5.1 v ← left shift v by s.
2.5.2 t ← t - v.

2.6 v ← t.
3. until u = 0 or u = g.
4. if i < 0 then i ← n + i.
5. e-1 ← i.

Example
Let e←7, n ← 60.
g u i v s p t
60 7 0 1 0 1 14
 1 28
 2 58
 3 112
 56
7 4 4
 1 0
 8 -8
 -8
 -1 0
 1 4
 0 8
 4
4 3 3
 -8 1
 9
 9
 -1 0
 1 3
 0 6
 3
1 1 1
 9 -8
 -17
 -17
 -1 0
 1 1
 0 2
 1 4
 2
1 1
 -17 9
 -3 43
 43
e-1 ← 60 – 17 = 43

The algorithm needs around 7 variables, and uses addition,
subtraction, comparison, and shifts with complexity of O(log
n)

5. FRACTION-INTEGER METHOD (FIM)

The idea behind the proposed method is very simple. Start
with divide 1 by e, and divide n by e, then keep on adding the
two results in any variable until an integer obtain.

Algorithm
Input: e ∈ Zn such that gcd (e, n) =1
Output: e-1 mod n, provided that it exists

1. Let d ←1.0 / e
2. err ← 1.0 / 2.0 * n)
3. Let def ← (double) n / e
4. cout << showpoint << fixed << setprecision(15)
5. do{

5.1 d ← (d + def).
5.2 cout << d << endl

6. while (d – (int) (d + err) > err)
7. cout << "The multiplicative inverse of ("<<e<<") %

(" << (int) (d + err) << endl
8. e-1 ← d.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 540

Example:
Let e ← 7, n ← 60.

d def
0.1429 8.5714
8.7143
17.2857
25.8571
34.4286
43.0000

e-1 ← d = 43

The algorithm needs only 2 variables, and uses addition and
division only, and comparison with complexity of O(log2 n))

Proof of FIM
In order to prove the algorithm, we need to prove that the
algorithm will give integer number only when d is the inverse
of e.

As we know that if d is the inverse of e then

1. Both e, d are positive integer numbers between
[1,n] ……. …………………………………(1)

2. gcd(e,n)=1. …………………..……...……...(2)
3. e * d ≡ 1 mod n, i.e. e * d = 1 + k * n (for k ∈

Z), ………………………………………....(3)
so
d = (1+ k * n) / e =1/ e + k * n / e………………..…... (4)

From the algorithm we see that

d =1/ e + (def + def +…+ def) i times until d is integer.

d = 1/ e + i * def = 1/ e + i * n / e…………………...... (5)

From that we know that the algorithm above is correct for i =
k, but if this is the case we need to prove that (5) will give a
none integer for all values of i < k, and the only integer value
is when i = k, so we know d is an integer so (1+ k *n) / e is
also an integer for an integer value of k. Assume that this is
true for some value k (by equations (3, 4)

Then we need to proof that (1+ i * n) / e is never an integer
for all values of i between [1, k - 1]. Assume that there is
another value of i, 1 < i < k such that d = (1+ i * n) / e is also
an integer, i.e.
i = k - 1 -- (6)
Then d = (1+ (k.-.1) * n) / e will be integer. So
 d = (1+ k * n - n) / e
 = (1+ k * n) / e – n / e
 = 1/ e + k *n / e – n / e

But by definition (1, 3, 4) we know that 1/ e + k * n / e is
integer, also that gcd(e, n) should be 1 (2) so if there is no
greater common divisor between e and n except 1, that mean
n / e is a non integer value. So subtracting a non integer value
form an integer value will yield d is not an integer. Which
contradicts our assumption (that d is an integer)……… (6).

Now assume that there exist an i = k - q such that d is an
integer for q between [1, k - 1]. Then d = (1+ (k - q) * n) / e =
1 / e + k * n / e – q * n / e, and if this to be integer then q * n /

e must be integer, but since gcd (e, n) =1 then q must be a
multiple of e so
d = 1/ e + k *n / e – x * n ……………………………… (5)
This will lead to d being a negative number d < 0 but from
definition we know that both e, d must be positive (1) so there
is no values for x that satisfy the definition. So the only value
for q that satisfy the conditions is when q=0 and that i = k
(done).

Problem of FIM method:
We have proved that FIM algorithm is correct, but the
question is that is it implemental? Yes i.e. the algorithm will
terminate giving the correct answer when implemented using
the computer programming languages?

Let dm be the mathematical value of d where d = dm.
Let dc be the calculated value of d in the computer memory
and registers.
Let ζ be the error in calculating, between the mathematical
value and the computer value (round off error). So

dm = (1m+ km* nm) / em so

= 1m / em + km * nm / em
= (1 / e)m + (k * n / e)m

But we know that the calculated value of fractions is never
exactly as the mathematical value for big values of e that
when used to divide 1 and n will give a cyclic fraction
number, so (1 / e)m = (1 / e)c + ζ1 and (n / e)m = (n / e)c + ζ2
where ζ1<< (1 / e)c and ζ2 << (n / e)c, and dc = (1 / e)c + (k *
n / e)c + ζ1 + k*ζ2 such errors will yield that either dm ≤ dc or

dm ≥ dc, dm = dc if and only if ζ1 + k*ζ2 = 0 i.e. (1 / e)m = (1 /
e)c and (n / e)m = (n / e)c. We know that the error ζ1,ζ2 is small,
but multiplying ζ2 with k will give big value to the error and
the error will multiply by k, so as k is increasing the error also
will increase so the best approach is to use small values for e.

Timing:
Figures (1 and 2) show the comparison between the proposed.
The FIM algorithm with some of known algorithms, Extended
Euclid, Stein, and Gordon methods, and are shown in
Appendix A. We have implemented the algorithm for
different numbers from one digit to 6 digits for e numbers and
the result are shown in the figures below. We noticed that the
time for Extended Euclid algorithm is approximately
irrelevant to e or n, but other algorithms are affected by e and
n. The proposed FIM algorithm outperform the other methods
for small number of e and irrelevant to n. As we can see that
FIM algorithm is based only on addition which is the fastest
operation, and that is why it outperform the other methods
except Euclid for big numbers of e.

7. CONCLUSION

For security reasons, cryptography recommends smaller
values for public keys and bigger values for private keys [4].
The suggested algorithm needs lower values for public keys
(lower value of e) and higher values for private key, which is
fully compatible with the preferred cryptographic algorithm.
The method is simple, fast and needs less storage, and its
complexity is also less.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 41

8. REFRENCES

1. B. Schneier, applied Cryptography, Second
Edition, John Wiley and sons, 1996, p 246.

2. J. Gordon, Fast Multiplicative inverse in modular

arithmetic, Cryptography and Coding, Clarendon
Press Oxford, 1989, .pp 269 - 279.

3. D. E. Knuth, The art of computer programming,

2nd Ed., Addison - Wesley, Vol. 2, 1981, pp 319,
321, 339, 599.

4. A. Menezes. et al, Handbook of applied

cryptography, CRT Press, 1996, p 67, p 71.

5. R. Rivest, A. Shamir., and L. Adlemen, A method
for obtaining digital signatures and public key
cryptosystems, ACM, 1978, pp 120-126.

6. S. Aboud, Baghdad Method for calculating

Multiplicative Inverse, The International
Conference on Information Technology (ITCC
2004), IEEE, 5 -7 April 2004, Las Vegas, U .S. A..

7. J. Stein, Comp. Phys, 1, (1967), p 397-405.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 542

Appendix A.

0.00E+00

2.00E+02

4.00E+02

6.00E+02

8.00E+02

1.00E+03

1.20E+03

1.40E+03

1.60E+03

19172533414957657381

euc

bag

gor

stn

mph

0.00E+00
5.00E+00
1.00E+01
1.50E+01
2.00E+01
2.50E+01
3.00E+01
3.50E+01
4.00E+01
4.50E+01
5.00E+01

19172533414957657381

euc
bag
gor
stn
mph

0.00E+00
1.00E-01
2.00E-01
3.00E-01
4.00E-01
5.00E-01
6.00E-01
7.00E-01
8.00E-01
9.00E-01
1.00E+00

181522293643505764717885

euc
bag
gor
stn
mph

0.00E+00
1.00E+00
2.00E+00
3.00E+00
4.00E+00
5.00E+00
6.00E+00
7.00E+00
8.00E+00
9.00E+00
1.00E+01

11121314151617181

euc
bag
gor
stn
mph

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

8.00E-01

9.00E-01

1.00E+00

19172533414957657381

euc
bag
gor
stn
mph

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 43

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 544

