
Fraction-Integer Method (FIM) for Calculating Multiplicative Inverse 
 

Sattar J Aboud 
Department o f Computers Science, Philadelphia University  

Jordan – Amman 
E-mail: sattar_aboud@yahoo.com 

 
 

 
          

ABSTRACT  
 

Multiplicative inverse is a crucial operation in public key 
cryptography. Public key cryptography has given rise to such 
a need, in which we need to generate a related public/private 
pair of numbers, each of which is the inverse of the other. One 
of the best methods for calculating the multiplicative inverse 
is Extended-Euclidean method. In this paper we will propose 
a new algorithm for calculating the inverse, based on 
continuous adding of two fraction numbers until an integer is 
obtained. 
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1. INTRODUCTION 
 
The multiplicative inverse of (e) modulus (n) is an integer (d) 
∈ Zn such that e * d ≡ 1 mod n, d is called the inverse of e and 
denoted e-1 [5]. The study of inverse calculation was a 
stubborn science due to lack of real improvement, due to [1] 
the modulus inverse problem is a lot more difficult to solve. 
However, there were only a couple of methods. One is trivial 
and lengthy in calculating the inverse, because it is a 
sequential search. (i.e. start by d = 1, keep on adding 1 to d 
until e * d ≡ 1 mod n). Euclidean (the oldest, yet) the most 
powerful one, which is based on finding the greater common 
divisor between e and n, such that gcd (e, n) = gcd (e, n mod 
e). The algorithm solves x * y such that e * x + n * y = 1. 
Stein method [7] [3] which improve Euclidean method by 
testing for odd and even numbers of e,  n, and divide e and/or 
n by 2 if needed before calculating the inverse. Gordon 
method [2] is based on using shifts to avoid lengthy 
multiplication and division. Baghdad method [6] is based on 
continuous adding of two integer numbers until an integer is 
obtained. The description, the storage requirements and the 
complexity of each method is discussed in the following 
sections. 
 

 
2. EUCLIDEAN METHOD 

 
This method is based on the idea that if n > e then gcd (e, n) = 
1, also on finding e * x + y * n = 1 in which x is the 
multiplicative inverse of e [3, 4]. 
 
Algorithm  
Input:   a ∈ Zn such that gcd (a, n) = 1 
Output: e-1 mod n, where e-1 = i provided that it exists  

1. Set g ← n, u ← e, i ← 0, v ← 1. 

2. while u > 0 do the following: 
2.1 q ← g/u, t ←g - q * u,  
2.2 g ← u, u ← t, t ← i – q * v 
2.3 I ← v. 
2.4 v ← t. 

3. if i < 0 then i ←n + i.  
        4.     e-1 ← i 
 
Example 
Let a←7, n←60 
g u i v q t 
60 7 0 1 0 0 
7 4 1 -8 8             -8 
4 3 -8 9 1 9 
3 1 9 -17 1 -17 
1 0 -17 -52 3 -52 
 
e-1 ← n + i = 60 + (-17) = 43 
 
The method needs around 6 variables, and used subtraction, 
multiplication division, and comparison as operations with 
complexity of O(log2 n) . 
 
  

3. STEIN METHOD 
 
This algorithm was described by [7] and improved by penk 
[3] which avoids multiplications. It is based on the 
observation that gcd (x, y) = gcd (x/2, y) if x is even, also gcd 
(x, y) = 2, gcd (x/2, y/2) if both x, y are even, and gcd (x, y) = 
gcd ((x - y) / 2, y) if x, y are both odd. 
 
 
Algorithm  
Input:   e ∈ Zn such that gcd (e, n) =1 
Output: e-1 mod n, provided that it exists 

1. while e and n is even do 
1.1 e ← e/2, n ← n/2. 

2. u1←1, u2 ← 0, u3← e, v1← n, v2 ←1-e, v3 ← n. 
3. if e is odd then t1← 0, t2 ← -1, t3 ← -n  
4. else t1←1, t2←0, t3← e 
5. repeat  

5.1 while t3 is even do 
5.1.1 t3 ← t3/2. 
5.1.2 if t1 and t2 is even then    
5.1.3    t1← t1/2, t2 ← t2/2  
5.1.4 else t1 ← (t1 + n)/2,  
5.1.5        t2 ← (t2 - e)/2. 

5.2 if (t3 > 0) then u1←t1, u2 ← t2, u3 ← t3  
5.3 else v1 ← n - t1, v2 ← - (e + t2), v3 ← -t3 
5.4 t1 ← u1 - v1, t2←u2 - v2, t3← u3 - v3. 
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5.5 If (t1 < 0) then t1←t1+ n, t2 ← t2 -e. 
6. until t3 = 0. 
7. e-1 ← u1. 

 
Example 
Let e ← 7, n ← 60. 
e      n      u1      u2      u3      v1      v2      v3      t1      t2      t3 
7     60     1         0       7        60      -6       60      0       -1     -60 
                                                                            30     -4     -30 
                                                                            15     -2     -15 
                                              45       -5      15 
                                                                            -44     5       -8 
                                                                              16    -2 
                                                                               8     -1      -4 
                                                                              34    -4      -2 
                                                                              17    -2      -1 
                                               43                 1 
                                                                             -42     5       6 
                                                                              18    -2 
                                                                                9    -1       3 
                9      -1       3 
                                                                             -43     4       2 
                                                                              26    -3 
                                                                              43    -5       1 
               43     -5        1 
                                                                                0     0       0 
 
e-1 ← u1 = 43 
 
The algorithm needs around 11 variables, and uses addition, 
subtraction, multiplication, division by 2, and comparison 
with complexity of O(log2 n). 
 

 
4. GORDON METHOD 

 
This algorithm is based on the observation that (q) at 
Euclidian algorithm does not need to be the remainder of n / e 
but it can be any power of 2 up to that limit [2]. 
 
Algorithm 
Input:   e ∈ Zn   such that gcd (e, n) = 1 
Output: e-1 mod n, provided that it exists 

1. g ← n, i ← 0, v ← 1, u ← e. 
2. repeat 

2.1 s ← -1, p ← 0. 
2.2 If u > g then  

2.2.1 t ← 0 
2.3 else 

2.3.1 p ← 1, t ← u. 
2.3.2 while (t ≤ g) do 

2.3.2.1 s ← s + 1. 
2.3.2.2  t ← left shift t by 1. 

2.3.3 t ← right shift t by 1. 
2.4 t ← g - t, g ← u, u ← t, t ← i, i ← v. 
2.5 if p =1 then 

2.5.1 v ← left shift v by s. 
2.5.2 t ← t - v.         

2.6 v ← t. 
3. until u = 0 or u = g. 
4. if i < 0 then i ← n + i. 
5. e-1 ← i. 

 
Example 
Let e←7, n ← 60. 
g u i v s p t 
60 7 0 1 0 1 14 
    1  28 
    2  58 
    3               112 
      56 
7 4     4 
  1    0 
   8   -8 
   -8 
    -1 0 
     1 4 
    0  8 
      4 
4 3     3 
  -8    1 
      9 
   9 
    -1 0 
     1 3 
    0  6 
      3 
1 1     1 
  9    -8 
                   -17 
   -17 
    -1 0 
     1 1 
    0  2 
    1  4 
      2 
1      1 
  -17    9 
   -3   43 
   43 
e-1 ← 60 – 17 = 43 
 
The algorithm needs around 7 variables, and uses addition, 
subtraction, comparison, and shifts with complexity of O(log 
n) 
 
 

5. FRACTION-INTEGER METHOD (FIM) 
 
The idea behind the proposed method is very simple. Start 
with divide 1 by e, and divide n by e, then keep on adding the 
two results in any variable until an integer obtain. 
 
Algorithm  
Input:   e ∈ Zn such that gcd (e, n) =1 
Output: e-1 mod n, provided that it exists 

1. Let d ←1.0 / e 
2. err ← 1.0 / 2.0 * n) 
3. Let def ← (double) n / e 
4. cout << showpoint << fixed << setprecision(15) 
5. do{ 

5.1 d ← (d + def). 
5.2 cout << d << endl 

6. while (d – (int) (d + err) > err) 
7. cout << "The multiplicative inverse of ("<<e<<") % 

(" << (int) (d + err) << endl 
8. e-1 ← d. 
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Example: 
Let e ← 7, n ← 60. 
 
d    def 
0.1429    8.5714 
8.7143 
17.2857 
25.8571 
34.4286 
43.0000 
 
e-1 ← d = 43 
 
The algorithm needs only 2 variables, and uses addition and 
division only, and comparison with complexity of O(log2 n) ) 
 
 
Proof of FIM  
In order to prove the algorithm, we need to prove that the 
algorithm will give integer number only when d is the inverse 
of e. 
 
As we know that if d is the inverse of e then 

1. Both e, d are positive integer numbers between 
[1,n] ……. …………………………………(1) 

2. gcd(e,n)=1. …………………..……...……...(2) 
3. e * d ≡ 1 mod n, i.e. e * d = 1 + k * n ( for k ∈ 

Z ), ………………………………………....(3) 
so 
d = (1+ k * n) / e =1/ e + k * n / e………………..…... (4) 
 
From the algorithm we see that  
 
d =1/ e + (def + def +…+ def) i times until d is integer. 
 
d = 1/ e + i * def = 1/ e + i * n / e…………………...... (5) 
 
From that we know that the algorithm above is correct for i = 
k, but if this is the case we need to prove that (5) will give a 
none integer for all values of i < k, and the only integer value 
is when i = k, so we know d is an integer so (1+ k *n) / e is 
also an integer for an integer value of k. Assume that this is 
true for some value k (by equations (3, 4)  
 
Then we need to proof that (1+ i * n) / e is never an integer 
for all values of i between [1, k - 1]. Assume that there is 
another value of i, 1 < i < k such that d = (1+ i * n) / e is also 
an integer, i.e.   
i = k - 1 -------------------------------------------------- (6) 
Then d = (1+ (k.-.1) * n) / e will be integer.  So 
         d = (1+ k * n - n) / e  
            = (1+ k * n) / e – n / e  
            = 1/ e + k *n / e – n / e 
 
But by definition (1, 3, 4) we know that 1/ e + k * n / e is 
integer, also that gcd(e, n) should be 1 (2) so if there is no 
greater common divisor between e and n except 1, that mean 
n / e is a non integer value. So subtracting a non integer value 
form an integer value will yield d is not an integer. Which 
contradicts our assumption (that d is an integer)……… (6). 
 
Now assume that there exist an i = k - q such that d is an 
integer for q between [1, k - 1]. Then d = (1+ (k - q) * n) / e = 
1 / e + k * n / e – q * n / e, and if this to be integer then q * n / 

e must be integer, but since gcd (e, n) =1 then q must be a 
multiple of e so 
d = 1/ e + k *n / e – x * n ……………………………… (5) 
This will lead to d being a negative number d < 0 but from 
definition we know that both e, d must be positive (1) so there 
is no values for x that satisfy the definition. So the only value 
for q that satisfy the conditions is when q=0 and that i = k 
(done).  
 
 
Problem of FIM method: 
We have proved that FIM algorithm is correct, but the 
question is that is it implemental? Yes i.e. the algorithm will 
terminate giving the correct answer when implemented using 
the computer programming languages? 
 
Let dm be the mathematical value of d where d = dm. 
Let dc be the calculated value of d in the computer memory 
and registers. 
Let ζ be the error in calculating, between the mathematical 
value and the computer value (round off error). So 
 
dm = ( 1m+ km* nm ) / em so 

= 1m / em + km * nm / em  
= (1 / e)m + (k * n / e)m 
 

But we know that the calculated value of fractions is never 
exactly as the mathematical value for big values of e that 
when used to divide 1 and n will give a cyclic fraction 
number, so (1 / e)m = (1 / e)c + ζ1 and (n / e)m = (n / e)c + ζ2     
where   ζ1<< (1 / e)c and ζ2 << (n / e)c, and  dc = (1 / e)c + (k * 
n / e)c + ζ1 + k*ζ2  such errors will yield that either dm ≤ dc  or 

dm ≥ dc, dm = dc if and only if ζ1 + k*ζ2 = 0 i.e. (1 / e)m = (1 / 
e)c and (n / e)m = (n / e)c. We know that the error ζ1,ζ2 is small, 
but multiplying ζ2 with  k will give big value to the error and 
the error will multiply by k, so as k is increasing the error also 
will increase so the best approach is to use small  values for e.  
 
 
Timing: 
Figures (1 and 2) show the comparison between the proposed. 
The FIM algorithm with some of known algorithms, Extended 
Euclid, Stein, and Gordon methods, and are shown in 
Appendix A. We have implemented the algorithm for 
different numbers from one digit to 6 digits for e numbers and 
the result are shown in the figures below. We noticed that the 
time for Extended Euclid algorithm is approximately 
irrelevant to e or n, but other algorithms are affected by e and 
n. The proposed FIM algorithm outperform the other methods 
for small number of e and irrelevant to n. As we can see that 
FIM algorithm is based only on addition which is the fastest 
operation, and that is why it outperform the other methods 
except Euclid for big numbers of e. 
 
 

 
7. CONCLUSION 

 
For security reasons, cryptography recommends smaller 
values for public keys and bigger values for private keys [4]. 
The suggested algorithm needs lower values for public keys 
(lower value of e) and higher values for private key, which is 
fully compatible with the preferred cryptographic algorithm. 
The method is simple, fast and needs less storage, and its 
complexity is also less. 
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Appendix A. 
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