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ABSTRACT 
Efforts have been underway for years to find more effective 
ways to retrieve information from large knowledge domains. 
This effort is now being driven particularly by the Internet and 
the vast amount of information that is available to 
unsophisticated users. In the early days of the Internet, some 
effort involved allowing users to enter Boolean equations of 
search terms into search engines, for example, rather than just a 
list of keywords. More recently, effort has focused on 
understanding a user’s desires from past search histories in order 
to narrow searches. Also there has been much effort to improve 
the ranking of results based on some measure of relevancy. This 
paper discusses using iterative filtering of retrieved information 
to focus in on useful information. This work was done for 
finding source code correlation and the author extends his 
findings to Internet searching and e-commerce. The paper 
presents specific information about a particular filtering 
application and then generalizes it to other forms of information 
retrieval. 
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1. INTRODUCTION 
Years ago I heard a story about the Department of Defense 
contracting a software company, in a time of war, to create a 
program to automatically translate from the enemy’s language to 
English. The software went through rigorous testing and 
numerous revisions, but because of idioms and slang and the 
usual ambiguities of human languages, the program could only 
correctly interpret about 80% of what was input. The DOD 
eventually gave up on the project because it couldn’t afford to 
misinterpret 20% of all enemy correspondences and so it 
continued to translate documents manually. That is until one 
clever person realized that a human reviewing automatically 
translated documents for errors was able to correct those errors 
in a fraction of the time it would take to translate entire 
documents manually. Just because the program was not 100% 
effective did not mean it was not effective at all. 

The lesson here is that human interaction should not be 
discounted. Sources of electronic information are becoming 
more widely available, and non-technical users are required to 
access that information. Sophisticated algorithms for 
automatically figuring out a user’s requirements and retrieving 

information are being developed and improved, but it is doubtful 
that these algorithms will ever be 100% effective. Filtering the 
information, as defined in this paper, refers to the process of 
refining retrieved information to eliminate less relevant results. 
Allowing a user to iteratively filter the information until the 
results are manageable is an important process. This paper 
defines the process and offers examples of current work and 
areas for future research. 

2. CODEMATCH 
I have been working for the past decade as an expert witness in 
intellectual property cases and have been asked on many 
occasions to examine software source code from a plaintiff and a 
defendant to determine whether one has plagiarized (stolen) 
code from the other. I found that the few existing tools for 
“plagiarism detection”1 were too inaccurate for a situation 
where hundreds of millions of dollars could be at stake. So I 
developed my own tool called Code TMMatch . 

                                                                

After using CodeMatch on a number of cases, I found that it 
shared a deficiency with the other tools. Once two sets of 
software source code files were compared, and results were 
presented to the user, those results could not be further refined. 
Because a large comparison could take up to a week to deliver 
results, it was impractical to rerun the comparison using new 
settings. It was practical however to filter the results to obtain a 
more manageable and more relevant set of results to examine. 

The operation of CodeMatch is briefly described below as well 
as the problems that arose and how those problems were solved 
using filtering. 

 

 

 

 
1 Prior to CodeMatch there were generally two categories of 

tools, “plagiarism detection” and “clone detection,” that each 
were looking for software similarities but with two different 
purposes. CodeMatch is actually a more general “Source code 
correlation tool” that can be used to find plagiarism or clones 
or other kinds of similarities. See Zeidman [1] for more 
information. 
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2.1 Source Code Correlation Algorithms 
CodeMatch compares a set of source code files, set 1, to another 
set of source code files, set 2, by first dividing the source code 
into elements defined in the following table. 

Software source 
code elements 

Description 

Statements Cause actions to occur. 
Sequence dependent. 

  Instructions Signify the actions to 
take place. 

    Control words Control the program flow 
(e.g. “if”, “case”, 
“goto”, “loop”). 

    Operators Manipulate data (e.g., +, 
-. *. /). 

Identifiers Reference code or data. 
  Variables Identify data. 
  Constants Identify constants. 
  Functions Identify code. 
  Labels Specify locations in the 

program. 
Comments For documentation. Cause 

no actions to occur. 
Table 1. Source code structure 

The program then compares these elements separately for each 
source code file and determines a correlation for each element 
and a source code correlation ρ according to the formula below: 

ρ = kiρi + ksρs + kcρc + kqρq (1) 

where 

• ρs = statement correlation 

• ks  = the weight given to the statement correlation 

• ρc = comment correlation 

• kc = the weight given to the comment correlation 

• ρi = identifier correlation 

• ki = the weight given to the identifier correlation 

• ρq = instruction sequence correlation 

• kq = the weight given to instruction sequence 
correlation 

CodeMatch uses five algorithms to determine the correlation for 
each of these correlations. These algorithms are: 

• Statement Matching: the number of identical 
statements after certain basic transformations have 
been made. Used to determine statement correlation. 

• Comment Matching: the number of identical 
comments after certain basic transformations have 
been made. Used to determine comment correlation. 

• Identifier Matching: the number of identical 
identifiers. Used to determine identifier correlation. 

• Partial Identifier Matching: the number of identical 
identifiers. Used to determine identifier correlation. 

• Instruction sequences: the longest sequence of 
identical instructions. Used to determine instruction 
sequence correlation. 

2.2 Presentation of Results 
For each file in set 1, the files in set 2 are listed along with their 
correlation scores in order of highest to lowest score as shown in 
Figure 1. By clicking on the correlation score for any pair of 
files, a detailed report is brought up showing the different 
algorithms that were run and which specific elements of each 
file had correlation. For example, if the comment correlation is 
nonzero, the detailed report would show all matching comments 
in the two files. 

D:\CodeSuite\Code Development\test\C\files 1\aaa.c 

Score Compared To File

100 D:\CodeSuite\Code Development\test\C\files 2\aaa.c

12 

D:\CodeSuite\Code Development\test\C\files 
2\bpf_dump_strings.c 

12 

D:\CodeSuite\Code Development\test\C\files 
2\semicolon_test.c 

12 D:\CodeSuite\Code Development\test\C\files 
2\test\bpf_image.c  

Figure 1. CodeMatch report 

2.3 Superfluous Results 
In reviewing the results of the comparison, often some specific 
files or specific source code elements would show up throughout 
the results, skewing the results and hiding the important 
correlation information. For example, open source files may 
have been used in one or both sets of files. In searching for 
plagiarized code, the open source files would be highly 
correlated with each other, but these correlations were not 
important. 

Similarly, there are specific statements, comments, and 
identifiers that can be found in files that increase the correlation 
but are not relevant to finding plagiarized code though they may 
be relevant to finding other kinds of correlation like code clones. 
A user searching for plagiarized code may find that two 
programs running on the Microsoft Windows operating system 
both use the same system calls. Thus files with these system 
calls will have a higher correlation but for reasons that are 
unimportant to finding plagiarism. 

Had these results been known up front, some of them could have 
been eliminated before the correlation was calculated. However, 
given the number of files and the number of source code 
elements, it was impractical to find these elements before 
performing the correlation. Also the correlation itself pointed 
out many of these superfluous elements. 

2.4 CodeMatch Post-Process Filtering 
In order to make examination of the correlation results more 
useful, and to allow the user to focus in on the kinds of 
correlation that is most important, I added the ability to filter the 
results. After CodeMatch produces a database of results, the 
following filtering can be performed on the database. 
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• Statement filtering: A list of statements is created by 
the user. Any correlation due to a statement on this list 
is eliminated and the statement correlation score is 
decremented appropriately and the overall correlation 
score is decremented appropriately. 

• Comment filtering: A list of comments is created by 
the user. Any correlation due to a comment on this list 
is eliminated and the comment correlation score is 
decremented appropriately and the overall correlation 
score is decremented appropriately. 

• Identifier filtering: A list of identifiers is created by 
the user. Any correlation due to an identifier on this 
list is eliminated and the identifier correlation score is 
decremented appropriately and the overall correlation 
score is decremented appropriately. 

• General file filtering: A list of file names is created by 
the user. Any correlation between any file whose 
name appears on the list and any other file is removed 
from the results database. 

• Specific file filtering: A list of file names with 
absolute folder paths is created by the user. Any 
correlation between a specific file on the list and any 
other file is removed from the results database. 

• Folder filtering: A list of folders is created by the user. 
Any correlation between a file in a folder on the list 
and any other file is removed from the results 
database. 

• Threshold filtering: The user can change threshold 
parameters, reducing the number of correlated file 
pairs that are displayed. The user can set minimum 
and maximum correlation scores to display and can set 
a maximum number of correlated files to display for 
each file in set 1. 

After the filtering is performed on the database, new correlation 
scores are computed between file pairs. This affects the 
displayed output because ranking can change after filtering. It 
was found that for large file sets this filtering reduced the 
manual process of reviewing the results in order to find 
plagiarized source code files from days to hours or even 
minutes. 

3. POST-PROCESS FILTERING 
My experience with CodeMatch can be generalized to any kind 
of information retrieval process. 

3.1 Information Retrieval Process 
Information retrieval starts with an information domain. This 
information domain can be a well-organized, categorized 
domain such as a database or it can be a disorganized, 
uncategorized domain such as the Internet. In all cases, 
information retrieval has been classified into two types – “exact 
match” and “best match.” 

3.1.1 Exact match 
The “exact match” type of information retrieval is represented 
by the Boolean retrieval method used by database queries and 
Internet search engines. In these cases, Boolean equations of 
keywords are entered by a user and all objects in the information 
domain (HTML pages in the case of the Web), that meet the 
criteria are retrieved for the user. Even the more sophisticated 

search engines that allow a user to input natural language 
queries are typically parsing the language to retrieve the 
keywords and Boolean equations. 

3.1.2 Best match 
The “best match” category of information retrieval uses vector 
space and probabilistic retrieval methods that essentially try to 
understand what information a user wants, sometimes based on 
past searches or other stored user parameters, then present the 
information to the user that is deemed closest to what the user 
desires. An example of this would be the book suggestions that 
Amazon.com presents to customers based on their search criteria 
and their past searches. A more detailed description of retrieval 
models and retrieval classification can be found in Salton & 
McGill [17]. 

O2

On 
O1

D 

DU 

R2 Rn 

R1n 

R12 R2n 

Q 
 

Figure 2. Information retrieval 

3.1.3 Query-object relationships 
A representation of information retrieval is shown in Figure 2 
where D is the information domain, and Q is the user’s query. 
DU is the subset of the domain that meets the user’s information 
need based on the retrieval process. Each arrow from an object 
to the query represents the relationship Ri between the query and 
the object. For all retrieval methods, DU is the set of all objects 
such that Ri > 0. 

DU = {Oi : Ri > 0 for all i} (1) 

Equation 1. User information domain 

For a Boolean retrieval method, the Ri is a scalar 1 for all i. In 
other words, a Boolean retrieval only retrieves objects that 
exactly match the query. 

Ri = 1 for all i (2) 

Equation 2. Query-object relationship for Boolean retrieval 

For a probabilistic retrieval method, Ri equals P(Q|Oi), which is 
the probability that a user’s query is met by retrieved object Oi.  
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Ri = P(Q|Oi) for all i (3) 

Equation 3. Query-object relationship for probabilistic 
retrieval 

For a vector space retrieval method, Ri equals ρ(Q,Oi), which is 
the correlation between a user’s query and object Oi. The 
correlation may be a dot product of vectors, representing the 
distance between the vectors in a multidimensional space, or it 
may be the cosine similarity measure, representing the angle 
between the vectors (see Letsche & Berry [10] for further 
details). Note that the correlation determined by CodeMatch is a 
form of vector space retrieval (a future paper will expound on 
that). 

Ri = ρ(Q,Oi) for all i (4) 

Equation 4. Query-object relationship for vector space 
retrieval 

In addition to relationships between a query and the retrieved 
objects, note that there are relationships between various 
retrieved objects, represented by the arrows Rik between objects 
Oi and Ok. We make use of this fact for post-process filtering, 
discussed later. 

3.2 Information Display Process 
Once the information objects are retrieved from the domain, 
they must be displayed to the user. There are two types of 
criteria that can be used for this display. “Internal criteria” are 
criteria derived from the relationships determined during the 
retrieval process. “External criteria” are criteria determined in a 
new step unrelated to the retrieval process. Of course, 
combinations of internal and external criteria can also be used. 

3.2.1 Internal display ranking criteria 
For best match retrieval methods, the objects can be displayed in 
order according to their relationship to the query. Objects with 
higher probabilities or higher correlation values are displayed 
first. The relationships are used as the criteria for displaying the 
objects. For exact match retrieval methods, internal criteria do 
not provide a way to display the results because all retrieved 
objects have a relationship of 1. 

3.2.2 External display ranking criteria 
External criteria are often used to display the results. Perhaps the 
best known example of external display criteria is the PageRank 
method used by Google (see Brin & Page [2]). 

Pi = (1-d) + d(Σ(Pk/Lk) for 1 ≤ k ≤ n, k ≠ i (5) 

Equation 5. Google PageRank algorithm 

Pi is the PageRank value of page Oi. Lk is the number of external 
links on page Ok that point to other pages. Pages O1 through On 
are all of the pages that have links to page Oi. The parameter d is 
a “damping factor” that Google claims to typically set to 0.85. 
The PageRanks effectively form a probability distribution such 
that the sum of all web page PageRanks will be 1. 

The Google ranking method is only one particular method. 
Other methods include the “Hub-Threshold Kleinberg” 
algorithm (see Kleinberg [10]). I represent ranking methods 
generally using the term Pi. 

3.2.3 Display threshold 
Regardless of which kind of ranking criteria is used, there is 
often also a display threshold. Retrieved objects that have a 

ranking below the display threshold are not shown to the user. 
An object with a very low ranking is thought to be irrelevant and 
its relationship with the query is thought to be random rather 
than due to any relationship that would be significant to the user. 

3.3 Post-retrieval Filtering 
What I propose is another step after retrieval and display to 
further refine the results and reduce the number of retrieved 
objects to one that is reasonable to examine. There are several 
ways this can be accomplished using combinations of “object 
filters,” “new query filters,” “negative query filters,” “threshold 
filters,” and “object relationship filters.” 

3.3.1 Object filter 
Object filtering is the process of allowing the user to eliminate 
individual objects or whole sets of objects from the user 
information domain DU. This can be done by allowing the user 
to specify objects to remove or categories of objects to remove. 
The removal process is dependent on the type of information 
being retrieved. When the retrieved objects are files, the criteria 
used to remove objects might be file name, location (path name), 
size, modification date, or creation date. With regard to 
CodeMatch, the general file filtering, specific file filtering, and 
folder filtering are examples of object filtering. 

3.3.2 New query filter 
New query filtering refers to using a new query on the retrieved 
user domain DU to create a new domain DU′ that is a subset of 
DU. Some search engines provide this kind of filtering by 
allowing the user to further search the retrieved results with a 
new Boolean expression of keywords. 

3.3.3 Negative query filter 
Negative query filtering refers to applying a query to the 
retrieved information in order to eliminate objects. For instance, 
suppose the original query is a Boolean query to find all 
documents with the phrases “software” “source code” and 
“correlation.” A query-based elimination filter would one where 
the user eliminates all objects within DU that contain the 
keyword “correlation.” This would be equivalent to an original 
query to find all documents with the phrases “software” and 
“source code” but not “correlation.” However, there are two 
reasons that negative query filtering is useful. First, retrieval of 
objects from the original domain D based on the new query will 
require more resources (compute power, storage space, network 
bandwidth) than a negative query filter performed on the much 
small domain DU. Second, if the query is a best match query 
rather than an exact match query, the query-based elimination 
filter can be used to get results that may be difficult for the user 
to define with a single query to the original domain. 

With regard to CodeMatch, the identifier filtering, statement 
filtering, and comment filtering are forms of negative query 
filters. 

3.3.4 Threshold filter 
Threshold filtering involves setting thresholds for displaying the 
retrieved objects to the user. I define three kinds of threshold 
filters, “relationship thresholds,” “ranking thresholds,” and 
“number thresholds.” Combinations of these thresholds are also 
possible. 

3.3.4.1 Relationship threshold 
With a relationship threshold the value used for determining the 
threshold is the Ri relationship between the query and the 
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objects. In other words, any object Oi with relationship Ri that is 
less then threshold T gets eliminated from user domain DU.  

3.3.4.2 Ranking threshold 
The threshold filtering can be based on the information display 
ranking. For example, the Google PageRank criteria can be used 
such that any object Oi with rank Pi that is less then threshold T 
gets eliminated from user domain DU. 

3.3.4.3 Number threshold 
Number filtering is the process of simply reducing the number 
of files in the user domain DU to one that is more manageable. It 
requires that the information retrieval method be a best match 
method or that the information display process uses a ranking 
method (otherwise, all retrieved objects have equal relationships 
to the query and eliminating a specific number of them would 
have to be arbitrary). Given a number threshold N, if the 
retrieval method is best match, the objects Oi are ordered from 
highest to lowest by their relationship Ri until the number of 
objects displayed is N. If the retrieval method is exact match but 
the display process uses a ranking method, the objects Oi are 
ordered from highest to lowest by their ranking Pi until the 
number of objects displayed is N. 

Note that thresholds need not be minimum thresholds. 
Maximum thresholds and combinations of minimum and 
maximum thresholds may be appropriate if the user wishes to 
study various aspects of the retrieved information such as 
statistical distributions of the information. 

With regard to CodeMatch, the threshold filtering is, obviously, 
a form of a threshold filter. 

3.3.5 Object relationship filter 
An object relationship filter allows the user to select an object Oi 
that the user feels is characteristic of an object that belongs in 
the user information domain DU or does not belong in the user 
domain DU. All similar objects are then removed, or all 
dissimilar objects are removed, depending on whether the filter 
is a “positive object relationship filter” or a “negative object 
relationship filter.” 

3.3.5.1 Positive object relationship filter 
The user selects an object Oi and specifies a minimum 
relationship value RM. Object Oi and all objects Ok such that the 
relationship Rik between objects Oi and Ok is greater than or 
equal to the minimum relationship value RM are eliminated from 
the user information domain DU. In this case, object Oi is 
selected as an example of an object that the user feels is not 
relevant. 

3.3.5.2 Negative object relationship filter 
The user selects an object Oi and specifies a minimum 
relationship value RM. All objects Ok such that the relationship 
Rik between objects Oi and Ok is less than the minimum 
relationship value RM are eliminated from the user information 
domain DU. In this case, object Oi is selected as an example of 
an object that the user feels is relevant. 

Object relationship filtering allows user to select objects to be 
included or excluded from the user information domain without 
understanding the details of why the object is relevant or is not 
relevant. 

4. APPLICATIONS 
I have now defined various kinds of post-retrieval filtering. This 
kind of filtering has worked very well for CodeMatch, a 

program that finds correlation amongst software source code 
files. There are many other applications to which post-retrieval 
filtering can be applied that will offer many advantages to a 
user. Obviously Web searching can be greatly improved. 
Particularly for users who are not technically savvy, post-
retrieval filtering can be used to narrow down search results that 
may have been produced from a query that was too broad and 
produced too many results. 

Another related area where post-retrieval filtering can be 
advantageous is e-commerce. Users can find a Web page 
offering an item for sale. The Web page can be used as a query 
employing a best match method of retrieval to find similar items 
for sale at other locations on the Web. At that point, the user can 
employ post-retrieval filtering to reduce the number of results to 
a selection of items that the user can examine and decide to 
purchase in a reasonable amount of time. In particular, object 
relationship filtering can be employed, allowing the user to filter 
the results without needing to specify the exact criteria used for 
the filtering. 

This paper refers to iterative filtering, because post-retrieval 
filtering should be an iterative process. It requires 
experimentation by the user. Some filters may turn out to 
eliminate too many results while other filters may not eliminate 
enough. 

5. CONCLUSION 
This paper has presented an example of post-retrieval filtering 
from work done on CodeMatch, a commercial tool for finding 
correlation between software source code files. Post-retrieval 
filtering for CodeMatch has improved the time to find 
plagiarized source code by an order of magnitude. The specific 
filtering employed in CodeMatch was presented and explained. 

The concept of post-retrieval filtering was then expanded, 
generalized, and categorized as applied to all forms of 
information retrieval. Some examples of applications of post-
retrieval filtering for Web searching and e-commerce were 
presented. 

In conclusion, better methods of information retrieval will 
always be needed and these methods are improving regularly. 
Better methods of information display are also useful and there 
is a great demand for it as evidenced by the success of Google, 
one of whose major innovations was in the area of information 
display. Automatic filtering of retrieved information is a great 
goal and research is going on in that area also. However, 
automatic filtering may never be 100% accurate and manual 
filtering has many great benefits that have yet to be fully 
exploited. 
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