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ABSTRACT 

 

Development teams and programmers must retain critical 

information about their work during work intervals and gaps in 

order to improve future performance when work resumes. 

Despite time lapses, project managers want to maximize coding 

efficiency and effectiveness. By developing a mathematically 

justified, practically useful, and computationally tractable 

quantitative and cognitive model of learning and memory 

retention, this study establishes calculations designed to 

maximize scheduling payoff and optimize developer efficiency 

and effectiveness. 
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1.  INTRODUCTION 

 

An interesting and classical quantitative law of cognitive 

psychology is that forgetting curves are well described by 

power functions (e.g., [1], [2], [3]). For example, Wixted and 

Ebbesen (1991) [3] and Wixted and Carpenter (2007) [4] show 

that diverse measures of forgetting various items such as words, 

faces, and nonsensical syllables can be well described as power 

functions of a retention interval.  

 

In one seminal and classic article, Wickelgren (1974) [4] 

derived an equation that is robust in several respects, including 

in its ability to characterize the previously famous Ebbinghaus 

(1885, 1913) [5] memory savings function. With most typical 

conditions, the Wickelgren power law is reduced to: 

 
  m = (1 + t)  (1) 

 

where m is memory strength, and t is time (i.e., the retention 

interval). The equation has three parameters:  is the state of 

long-term memory at t = 0 (i.e., the degree of learning),  is the 

rate of forgetting, and  is a scaling parameter. 

 

Wixted (2004) [6] also substantiated that Equation 1 provides a 

very accurate description of forgetting data that have been 

averaged over many subjects. It therefore not only fits the data 

well in terms of the percentage of variance, a relatively weak 

test, but also accurately predicts where future points will fall as 

the retention interval increases, which is a relatively stronger 

test. As a result of these averaging of artifacts in the group data, 

a possible stronger tests would be to accurately predict the 

degree of forgetfulness for individual learning subjects. One 

practical problem with averaging the testing artifacts is that 

such data are usually quite noisy. However, the eight measured 

data points of the classic Ebbinghaus (1885, 1913) [5] savings 

function have offered one possible rare and well-known 

exception. Previous research work has shown that the 

Ebbinghaus data can be reasonably well characterized by a two 

parameter power function of the form: 

  
 m = t  (2) 

 

This power function has been considered an approximation of 

Equation 1 (Anderson & Schooler, 1991 [1]; Wixted & 

Ebbesen, 1991 [3]). Although Equation 2 offers a much better 

fit of the savings function than many other two-parameter 

candidates, it is undefined at t = 0, which is theoretically 

unsatisfying and limits the equation’s practical utility.  As one 

example, it could not be used to estimate the degree of learning. 

Typical memory decay rates based on measured experimental 

results from Equation 2 are shown below in Figure 1. 

 

 

2.  RETENTION EFFECT 

 

 
Figure 1. Typical retention decay rates ( = 1.286) from 

Donkin, 2012 [7].  

 

Another study suggests that the probability that a previously 

learned memory item can be correctly recalled decreases at an 

exponential rate over time like radioactive decay. However, a 

so-called “spacing effect”, defined as the repeated exposures to 

the same information, substantially boosts future retention 

probability and reduces the rate of memory loss. Individuals 

who have experienced two or more learning sessions of the 

same item will remember more when the sessions are separated 

by time. The degree of memory retention directly correlates to 

the size of the time gap (or spacing) between sessions—the 

greater the spacing, the more likely that a subject will retain the 
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memory. For experimentally measured results and worthwhile 

discussions of these spacing effects, see Bahrick (1987 and 

1993) [8], [9], Cepeda (2008 and 2009) [10], [11], Goverover 

(2009) [12], Pavlik (2003 and 2008) [13], [14], and Rohrer 

(2010) [15]. 

 

Bailey [16] reports a laboratory study with a learning curve in a 

logarithmic curve amounting to essentially the same equation as 

(2), albeit with different parameters ( = 3.11 and  = 0.41), 

with marginal time to complete the task is the dependent 

variable and the number of iterations it took a worker to 

complete the task as the dependent variable. Bailey [16] and 

others in the literature emphasize that the learning curve 

parameters are different from relearning curve or forgetting 

curve. 

 

 

3.  APPLICATION TO SOFTWARE ENGINEERING 

 

A Work Breakdown Structure (WBS) is a hierarchical 

decomposition of the work activities in a software project.  The 

lowest level activities in the WBS hierarchy are tasks. Each 

element of a WBS is named using a verb phrase to denote the 

process-oriented nature of a WBS. Another technique, the 

“architecture decomposition view” technique is normally used 

in close cooperation with the WBS technique to assemble WBS 

packages into larger groupings. 

 

A WBS specifies work packages for tasks. Work packages for 

activities aggregate the work packages for subordinate activities 

and tasks. A WBS decomposes large work activities such as 

analysis, development, design, coding, and testing, into smaller 

tasks of 40 to 80 staff-hours each using the “augmented rolling 

wave” approach to planning. The WBS documents each task in 

a work package and each work package becomes a negotiated 

contract between the team leader and the teams or individuals 

assigned to that work package. 

 

Each specific work package describes a task as follows: the 

order of precedence for the task.  For example the magnitude of 

importance for that task in comparison to other activities and 

tasks, the planned duration of the task, a description of 

resources needed to accomplish the task, the work products to 

be produced, the risk factors associated with completing the 

task, and the acceptance criteria for the resulting product. Each 

work package must produce one or more tangible work 

products that satisfy some objective acceptance criterion. 

 

The project manager estimates the time durations needed to 

complete each task and will negotiate resource allocation with 

each team member, and then assign work packages to teams or 

individuals subject to overall resource and scheduling 

constraints. Assignment of a work package from a team leader 

to a team member is analogous a contract for completion of one 

or more work products that meet an acceptance criteria within a 

specified time duration. By choosing the most qualified team or 

individual to complete a specific work package, a project 

manager can mitigate project risks, improve effectiveness, 

reduce defect levels, and speed completion. 

 

 

 

 

 

 

4.  EXAMPLES 

 

How can knowledge of the Ebbinghaus [5] memory retention 

decay rate curve help to improve the effectiveness of project 

managers who allocate resources for work projects?  This 

knowledge can help by allowing the project manager to 

schedule the work team with the greatest memory retention of 

prior programming work to specific work packages and 

maintenance following completion of the project. The project 

manager can predict the likely code retention of different teams 

of programmers, and make decisions based on these 

quantitative memory retention metrics. The conducted research 

provides two examples worthy of further exploration: using 

memory retention metrics for scheduling work packages for a 

large software project, and using the metrics for software 

maintenance by individual programmers. 

 

A. Work Package Scheduling Example 

 

Assume a large software development project is progressing as 

shown in Figure 2 below. Work packages are scheduled using 

the PERT analysis technique as shown in the chart, with two 

teams A and B performing the development of work packages 1 

through 8, upon which work package number 9 depends.  

 

 
Figure 2. Sample work scheduling PERT chart. 

 

Under our scenario, Team A has completed work packages 1 

through 4, and Team B has completed work packages 5 through 

8. The scheduling and completion of these various work 

packages is shown in the above PERT chart, as well as starting 

completion time in weeks prior to the scheduled start of work 

package number 9. The “thousands of lines of code” (KLOC) 

for each work package appears above the respective work 

packages. 

 

A description of the work completed is shown below in Table I 

for work packages 1 through 8. Team A has completed 90,000 

lines of code, and Team B has completed 70,000 lines of code 

for the various work packages. However, notice in Figure 2 that 

Team A's experience started at least four weeks prior to the start 

of Team B's work, and ended two weeks prior to the end of 

Team B's most recent effort on work package 8: 
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TABLE I.  TEAM WORK PACKAGE HISTORY 

Work Package KLOC Team Tot. KLOC 

1 30 A  

2 20 A  

3 10 A  

4 30 A 90 

5 10 B  

6 10 B  

7 30 B  

8 20 B 70 

 

This poses the question—which of these two teams should the 

project manager schedule to begin work on work package 

number 9?  Team A's greater experience in terms of lines of 

code (90,000 versus 70,000) suggests that Team A would have 

a greater knowledge of the existing code that will be used to 

help complete work package 9. However, according to the 

Ebbinghaus [5] decay rate equation, it turns out Team B's 

knowledge of the code through memory retention is expected to 

be nearly double that of Team A's. 

 

Table II outlines how the likelihood of memory retention for 

both Team A and Team B could be calculated. The retention 

rate is calculated according to the decay rate function ( = 

1.286 and  = 1, from Donkin, 2012 [7]), using as the time 

variable interval the number of periods a work package ended 

prior to the start of an impending work package (such as work 

package number 9).  

 

This retention rate is then multiplied by the number of 

thousands of lines of code in the respective work package. The 

result is a weighted retention rate that takes into consideration 

the quantity of code written, as well as its recency. After adding 

the weighted retention rates together for each work package for 

both teams, Team B's weighted retention comes in at nearly 

double that of Team A, at 14.525 versus 8.290, respectively. 

TABLE II.  TEAM WEIGHTED RETENTION CALCULATION 

Work 
Package KLOC Team Periods Retention W. Ret. Total 

1 30 A 11 0.0458 1.373  

2 20 A 9 0.0592 1.185  

3 10 A 8 0.0689 0.689  

4 30 A 4 0.1681 5.043 8.290 

5 10 B 9 0.0592 0.592  

6 10 B 8 0.0689 0.689  

7 30 B 4 0.1681 5.043  

8 20 B 2 0.4100 8.200 14.525 

 

Although the PERT chart seems to indicate that the teams have 

nearly identical experience and would assumedly maintain the 

same memory retention, the calculated memory decay rate 

suggests that Team B is a much better choice in terms of current 

code familiarity and should therefore be more efficient at 

completing work package number 9 than Team A.  

 

This result suggests that a calculated quantitative metric 

contrasts sharply with typical intuitive and subjective 

judgments. Since Team B's familiarity is nearly double that of 

Team A's, this degree of memory retention could result in 

significantly higher productivity and more efficient code 

development with less defects introduced due to lapses of 

knowledge. 

 

B. Software  Maintenance Scheduling Example 

 

The proposed technique can be applied to software maintenance 

as well. Given a choice between two programmers, programmer 

X and programmer Y, which should be assigned to perform 

maintenance on a large software program? Assume programmer 

X was initially responsible for writing the program, although 

this development took place ending approximately one year, or 

52 weeks, ago. Another programmer, programmer Y, was 

brought in relatively recently to modify 10,000 lines of code, 

and this project ended approximately 8 weeks ago. Also, 

programmer Y added 2,000 lines of new code, and this effort 

ended five weeks prior to the scheduled start of maintenance. At 

first glance, it would seem programmer X, having written 

100,000 lines of code on the software, would be the better 

choice in terms of code familiarity. However, when applying 

the memory decay calculation, programmer Y actually has a 

better memory of the code. 

 

The weighted retention of programmer X turns out to be 0.620, 

based on 52 time periods and 100,000 lines of code. The 

weighted retention of programmer Y is 0.942, based on the 

10,000 lines of code ending eight weeks ago, and 2,000 lines of 

code ending five weeks ago. These results are shown below in 

Table III. 

TABLE III.  PROGRAMMER EXPERIENCE 

Work KLOC Prog Periods Retention W. Ret. Total 

1 100 X 52 0.0062 0.620 0.620 

2 10 Y 8 0.0689 0.689  

3 2 Y 5 0.1262 0.252 0.942 

 

This analysis demonstrates that programmer Y is a better choice 

than programmer X for maintenance work—which once again 

contrasts with the likely human subjective judgment as to which 

of the two programmers would be more familiar with the code 

and would perform more efficient maintenance as a result. 

 

C. Staffing Scenario 

 

Now, consider a staffing scenario where a new team is being 

put together for a software engineering project. We are now 

going to employ equation (2) again to estimate the learning it 

would take for a new team member to achieve acceptable level 

of performance. 

 

Since equation (2) is an ever decreasing function, thus no one 

can achieve perfection; we assume that after a certain amount of 

practice, a team member achieves an ‘optimum’ stage. Suppose 

team member A has already achieved the ‘optimum’ stage. We 

ask, how long it is going to take a new team member B to come 

a certain percentage close to team member A? 

 

We can rewrite equation (2) with time as the dependent 

variable: 

 
 

𝑡 =  √


𝑚



 

(3) 
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Barring personal factors, we rewrite equation (2) for the two 

team members. 

 
 

𝑡𝐴 =  √


𝑚𝐴



 

(3) 

 

𝑡𝐵 =  √


𝑚𝑩



 

(4) 

 

Thus, the time it would take for a new team member B to come 

to the level of A would be: 

 
 𝑡 = 𝑡𝐴 −  𝑡𝐵  

=  √


𝑚𝐴



 −   √


𝑚𝑩



 

 

(5) 

 

Since multiple skills are utilized in any given software project, 

and that equation parameters  and  are going to be different 

for each of those skills, the combined competency level of a 

team member be a max function of all the t’s at best and a 

summation of all the t’s as a worse case situation. 

 

 

 

 

5.  CONCLUSION 

 

A novel technique has been shown for scheduling more 

efficient work teams and programmers to perform software 

development and project maintenance. Calculating likely code 

retention is a relatively simple and straightforward technique 

using the Ebbinghaus [5] decay rate function.  

 

The technique could be expanded to many different areas of 

software engineering, as well as to project management in 

general. Being able to calculate ahead of time how much people 

will remember can be useful in identifying the most efficient 

programmers.  

 

This technique could possibly be combined with the 

aforementioned “spacing effect”, which postulates that an 

increased length in time in between reinforcement sessions 

increases the likelihood of memory retention. For more on this 

“spacing effects” phenomenon, see the reference for the 2008 

article by Cepeda [10]. 
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