

Efficient Work Team Scheduling: Using Psychological Models of

Knowledge Retention to Improve Code Writing Efficiency

Michael J Pelosi, Michael Scott Brown,

Henry Dirska, and Mir Mohammed Assadullah

University of Maryland University College

Largo, Maryland, United States

ABSTRACT

Development teams and programmers must retain critical

information about their work during work intervals and gaps in

order to improve future performance when work resumes.

Despite time lapses, project managers want to maximize coding

efficiency and effectiveness. By developing a mathematically

justified, practically useful, and computationally tractable

quantitative and cognitive model of learning and memory

retention, this study establishes calculations designed to

maximize scheduling payoff and optimize developer efficiency

and effectiveness.

Keywords: WBS; scheduling; team; knowledge; retention.

1. INTRODUCTION

An interesting and classical quantitative law of cognitive

psychology is that forgetting curves are well described by

power functions (e.g., [1], [2], [3]). For example, Wixted and

Ebbesen (1991) [3] and Wixted and Carpenter (2007) [4] show

that diverse measures of forgetting various items such as words,

faces, and nonsensical syllables can be well described as power

functions of a retention interval.

In one seminal and classic article, Wickelgren (1974) [4]

derived an equation that is robust in several respects, including

in its ability to characterize the previously famous Ebbinghaus

(1885, 1913) [5] memory savings function. With most typical

conditions, the Wickelgren power law is reduced to:

 m = (1 + t)  (1)

where m is memory strength, and t is time (i.e., the retention

interval). The equation has three parameters:  is the state of

long-term memory at t = 0 (i.e., the degree of learning),  is the

rate of forgetting, and  is a scaling parameter.

Wixted (2004) [6] also substantiated that Equation 1 provides a

very accurate description of forgetting data that have been

averaged over many subjects. It therefore not only fits the data

well in terms of the percentage of variance, a relatively weak

test, but also accurately predicts where future points will fall as

the retention interval increases, which is a relatively stronger

test. As a result of these averaging of artifacts in the group data,

a possible stronger tests would be to accurately predict the

degree of forgetfulness for individual learning subjects. One

practical problem with averaging the testing artifacts is that

such data are usually quite noisy. However, the eight measured

data points of the classic Ebbinghaus (1885, 1913) [5] savings

function have offered one possible rare and well-known

exception. Previous research work has shown that the

Ebbinghaus data can be reasonably well characterized by a two

parameter power function of the form:

 m = t  (2)

This power function has been considered an approximation of

Equation 1 (Anderson & Schooler, 1991 [1]; Wixted &

Ebbesen, 1991 [3]). Although Equation 2 offers a much better

fit of the savings function than many other two-parameter

candidates, it is undefined at t = 0, which is theoretically

unsatisfying and limits the equation’s practical utility. As one

example, it could not be used to estimate the degree of learning.

Typical memory decay rates based on measured experimental

results from Equation 2 are shown below in Figure 1.

2. RETENTION EFFECT

Figure 1. Typical retention decay rates ( = 1.286) from

Donkin, 2012 [7].

Another study suggests that the probability that a previously

learned memory item can be correctly recalled decreases at an

exponential rate over time like radioactive decay. However, a

so-called “spacing effect”, defined as the repeated exposures to

the same information, substantially boosts future retention

probability and reduces the rate of memory loss. Individuals

who have experienced two or more learning sessions of the

same item will remember more when the sessions are separated

by time. The degree of memory retention directly correlates to

the size of the time gap (or spacing) between sessions—the

greater the spacing, the more likely that a subject will retain the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

M
em

o
ry

 S
tr

en
g
th

Time Period

62 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 12 - NUMBER 7 - YEAR 2014 ISSN: 1690-4524

memory. For experimentally measured results and worthwhile

discussions of these spacing effects, see Bahrick (1987 and

1993) [8], [9], Cepeda (2008 and 2009) [10], [11], Goverover

(2009) [12], Pavlik (2003 and 2008) [13], [14], and Rohrer

(2010) [15].

Bailey [16] reports a laboratory study with a learning curve in a

logarithmic curve amounting to essentially the same equation as

(2), albeit with different parameters ( = 3.11 and  = 0.41),

with marginal time to complete the task is the dependent

variable and the number of iterations it took a worker to

complete the task as the dependent variable. Bailey [16] and

others in the literature emphasize that the learning curve

parameters are different from relearning curve or forgetting

curve.

3. APPLICATION TO SOFTWARE ENGINEERING

A Work Breakdown Structure (WBS) is a hierarchical

decomposition of the work activities in a software project. The

lowest level activities in the WBS hierarchy are tasks. Each

element of a WBS is named using a verb phrase to denote the

process-oriented nature of a WBS. Another technique, the

“architecture decomposition view” technique is normally used

in close cooperation with the WBS technique to assemble WBS

packages into larger groupings.

A WBS specifies work packages for tasks. Work packages for

activities aggregate the work packages for subordinate activities

and tasks. A WBS decomposes large work activities such as

analysis, development, design, coding, and testing, into smaller

tasks of 40 to 80 staff-hours each using the “augmented rolling

wave” approach to planning. The WBS documents each task in

a work package and each work package becomes a negotiated

contract between the team leader and the teams or individuals

assigned to that work package.

Each specific work package describes a task as follows: the

order of precedence for the task. For example the magnitude of

importance for that task in comparison to other activities and

tasks, the planned duration of the task, a description of

resources needed to accomplish the task, the work products to

be produced, the risk factors associated with completing the

task, and the acceptance criteria for the resulting product. Each

work package must produce one or more tangible work

products that satisfy some objective acceptance criterion.

The project manager estimates the time durations needed to

complete each task and will negotiate resource allocation with

each team member, and then assign work packages to teams or

individuals subject to overall resource and scheduling

constraints. Assignment of a work package from a team leader

to a team member is analogous a contract for completion of one

or more work products that meet an acceptance criteria within a

specified time duration. By choosing the most qualified team or

individual to complete a specific work package, a project

manager can mitigate project risks, improve effectiveness,

reduce defect levels, and speed completion.

4. EXAMPLES

How can knowledge of the Ebbinghaus [5] memory retention

decay rate curve help to improve the effectiveness of project

managers who allocate resources for work projects? This

knowledge can help by allowing the project manager to

schedule the work team with the greatest memory retention of

prior programming work to specific work packages and

maintenance following completion of the project. The project

manager can predict the likely code retention of different teams

of programmers, and make decisions based on these

quantitative memory retention metrics. The conducted research

provides two examples worthy of further exploration: using

memory retention metrics for scheduling work packages for a

large software project, and using the metrics for software

maintenance by individual programmers.

A. Work Package Scheduling Example

Assume a large software development project is progressing as

shown in Figure 2 below. Work packages are scheduled using

the PERT analysis technique as shown in the chart, with two

teams A and B performing the development of work packages 1

through 8, upon which work package number 9 depends.

Figure 2. Sample work scheduling PERT chart.

Under our scenario, Team A has completed work packages 1

through 4, and Team B has completed work packages 5 through

8. The scheduling and completion of these various work

packages is shown in the above PERT chart, as well as starting

completion time in weeks prior to the scheduled start of work

package number 9. The “thousands of lines of code” (KLOC)

for each work package appears above the respective work

packages.

A description of the work completed is shown below in Table I

for work packages 1 through 8. Team A has completed 90,000

lines of code, and Team B has completed 70,000 lines of code

for the various work packages. However, notice in Figure 2 that

Team A's experience started at least four weeks prior to the start

of Team B's work, and ended two weeks prior to the end of

Team B's most recent effort on work package 8:

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 12 - NUMBER 7 - YEAR 2014 63

TABLE I. TEAM WORK PACKAGE HISTORY

Work Package KLOC Team Tot. KLOC

1 30 A

2 20 A

3 10 A

4 30 A 90

5 10 B

6 10 B

7 30 B

8 20 B 70

This poses the question—which of these two teams should the

project manager schedule to begin work on work package

number 9? Team A's greater experience in terms of lines of

code (90,000 versus 70,000) suggests that Team A would have

a greater knowledge of the existing code that will be used to

help complete work package 9. However, according to the

Ebbinghaus [5] decay rate equation, it turns out Team B's

knowledge of the code through memory retention is expected to

be nearly double that of Team A's.

Table II outlines how the likelihood of memory retention for

both Team A and Team B could be calculated. The retention

rate is calculated according to the decay rate function ( =

1.286 and  = 1, from Donkin, 2012 [7]), using as the time

variable interval the number of periods a work package ended

prior to the start of an impending work package (such as work

package number 9).

This retention rate is then multiplied by the number of

thousands of lines of code in the respective work package. The

result is a weighted retention rate that takes into consideration

the quantity of code written, as well as its recency. After adding

the weighted retention rates together for each work package for

both teams, Team B's weighted retention comes in at nearly

double that of Team A, at 14.525 versus 8.290, respectively.

TABLE II. TEAM WEIGHTED RETENTION CALCULATION

Work
Package KLOC Team Periods Retention W. Ret. Total

1 30 A 11 0.0458 1.373

2 20 A 9 0.0592 1.185

3 10 A 8 0.0689 0.689

4 30 A 4 0.1681 5.043 8.290

5 10 B 9 0.0592 0.592

6 10 B 8 0.0689 0.689

7 30 B 4 0.1681 5.043

8 20 B 2 0.4100 8.200 14.525

Although the PERT chart seems to indicate that the teams have

nearly identical experience and would assumedly maintain the

same memory retention, the calculated memory decay rate

suggests that Team B is a much better choice in terms of current

code familiarity and should therefore be more efficient at

completing work package number 9 than Team A.

This result suggests that a calculated quantitative metric

contrasts sharply with typical intuitive and subjective

judgments. Since Team B's familiarity is nearly double that of

Team A's, this degree of memory retention could result in

significantly higher productivity and more efficient code

development with less defects introduced due to lapses of

knowledge.

B. Software Maintenance Scheduling Example

The proposed technique can be applied to software maintenance

as well. Given a choice between two programmers, programmer

X and programmer Y, which should be assigned to perform

maintenance on a large software program? Assume programmer

X was initially responsible for writing the program, although

this development took place ending approximately one year, or

52 weeks, ago. Another programmer, programmer Y, was

brought in relatively recently to modify 10,000 lines of code,

and this project ended approximately 8 weeks ago. Also,

programmer Y added 2,000 lines of new code, and this effort

ended five weeks prior to the scheduled start of maintenance. At

first glance, it would seem programmer X, having written

100,000 lines of code on the software, would be the better

choice in terms of code familiarity. However, when applying

the memory decay calculation, programmer Y actually has a

better memory of the code.

The weighted retention of programmer X turns out to be 0.620,

based on 52 time periods and 100,000 lines of code. The

weighted retention of programmer Y is 0.942, based on the

10,000 lines of code ending eight weeks ago, and 2,000 lines of

code ending five weeks ago. These results are shown below in

Table III.

TABLE III. PROGRAMMER EXPERIENCE

Work KLOC Prog Periods Retention W. Ret. Total

1 100 X 52 0.0062 0.620 0.620

2 10 Y 8 0.0689 0.689

3 2 Y 5 0.1262 0.252 0.942

This analysis demonstrates that programmer Y is a better choice

than programmer X for maintenance work—which once again

contrasts with the likely human subjective judgment as to which

of the two programmers would be more familiar with the code

and would perform more efficient maintenance as a result.

C. Staffing Scenario

Now, consider a staffing scenario where a new team is being

put together for a software engineering project. We are now

going to employ equation (2) again to estimate the learning it

would take for a new team member to achieve acceptable level

of performance.

Since equation (2) is an ever decreasing function, thus no one

can achieve perfection; we assume that after a certain amount of

practice, a team member achieves an ‘optimum’ stage. Suppose

team member A has already achieved the ‘optimum’ stage. We

ask, how long it is going to take a new team member B to come

a certain percentage close to team member A?

We can rewrite equation (2) with time as the dependent

variable:

𝑡 = √


𝑚



(3)

64 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 12 - NUMBER 7 - YEAR 2014 ISSN: 1690-4524

Barring personal factors, we rewrite equation (2) for the two

team members.

𝑡𝐴 = √


𝑚𝐴



(3)

𝑡𝐵 = √


𝑚𝑩



(4)

Thus, the time it would take for a new team member B to come

to the level of A would be:

 𝑡 = 𝑡𝐴 − 𝑡𝐵

= √


𝑚𝐴



 − √


𝑚𝑩



(5)

Since multiple skills are utilized in any given software project,

and that equation parameters  and  are going to be different

for each of those skills, the combined competency level of a

team member be a max function of all the t’s at best and a

summation of all the t’s as a worse case situation.

5. CONCLUSION

A novel technique has been shown for scheduling more

efficient work teams and programmers to perform software

development and project maintenance. Calculating likely code

retention is a relatively simple and straightforward technique

using the Ebbinghaus [5] decay rate function.

The technique could be expanded to many different areas of

software engineering, as well as to project management in

general. Being able to calculate ahead of time how much people

will remember can be useful in identifying the most efficient

programmers.

This technique could possibly be combined with the

aforementioned “spacing effect”, which postulates that an

increased length in time in between reinforcement sessions

increases the likelihood of memory retention. For more on this

“spacing effects” phenomenon, see the reference for the 2008

article by Cepeda [10].

6. REFERENCES

[1] Anderson, J. R., & Schooler, L. J. (1991). Reflections of the

environment in memory. Psychological Science, 2, 396–

408.

[2] Wickelgren, W. A. (1974). Single-trace fragility theory of

memory dynamics. Memory & Cognition, 2, 775–780.

[3] Wixted, J. T., & Ebbesen, E. B. (1991). On the form of

forgetting. Psychological Science, 2, 409–415.

[4] Wixted, J. T., & Carpenter, S. K. (2007). The Wickelgren

power law and the Ebbinghaus savings function.

Psychological Science, 18, 133–134.

[5] Ebbinghaus, H. (1913). Memory: A contribution to

experimental psychology. New York: Teachers College,

Columbia University. (Original work published 1885).

[6] Wixted, J.T. (2004). On common ground: Jost’s (1897) law

of forgetting and Ribot’s (1881) law of retrograde amnesia.

Psychological Review, 111, 864–879.

[7] Donkin C., & Nosofsky M. (2012). A Power-Law Model of

Psychological Memory Strength in Short- and Long-Term

Recognition. Psychological Science, 23(6) 625–634.

[8] Bahrick, Harry P.; Phelphs, Elizabeth. Retention of Spanish

Vocabulary Over 8 Years. (1987) Journal of Experimental

Psychology: Learning, Memory, and Cognition, Vol 13(2),

Apr 1987, 344-349

[9] Bahrick, H. P., Bahrick, L. E., Bahrick, A. S., & Bahrick, P.

E. (1993). Maintenance of foreign language vocabulary and

the spacing effect. Psychological Science, 4, 316–321.

[10] Cepeda NJ, Vul E, Rohrer D, Wixted JT, Pashler H.

(2008). Spacing effects in learning: a temporal ridgeline of

optimal retention. Psychological Science.

2008;19(11):1095–102.

[11] Cepeda, N.J., Coburn, N., Rohrer, D., Wixted, J.T., Mozer,

M.C., Pashler, H. (2009). Optimizing distributed practice:

Theoretical analysis and practical implications.

Experimental Psychology.

[12] Goverover Y., Arango-Lasprilla J. C., Hillary F. G.,

Chiaravalloti N., Deluca J. (2009). Application of the

spacing effect to improve learning and memory for

functional tasks in traumatic brain injury: A pilot study.

American Journal of Occupational Therapy 63:543–548.

[13] Pavlik, P. I., Anderson, J. R. (2003). An ACT-R model of

the spacing effect. In F. Detje, D. Dorner, & H. Schaub

(Eds.), Proceedings of the Fifth International Conference of

Cognitive Modeling (pp. 177–182). Bamberg, Germany:

Universitats-Verlag Bamberg.

[14] Pavlik Jr., P. I., & Anderson, J. R. (2008). Using a model

to compute the optimal schedule of practice. Journal of

Experimental Psychology: Applied.

[15] Rohrer, D. and H. Pashler (2010). Recent Research on

Human Learning Challenges Conventional Instructional

Strategies. Educational Researcher, 39(5), 406

[16] Bailey, Charles D. (1989). Forgetting and the Learning

Curve: A Laboratory Study, Management Science, Vol. 35,

No. 3, March 1989.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 12 - NUMBER 7 - YEAR 2014 65

