
Transforming UML ‘Collaborating’ Statecharts for Verification and Simulation∗

Patrick O. Bobbie, Yiming Ji, and Lusheng Liang

School of Computing and Software Engineering
Southern Polytechnic State University (SPSU)

1100 S. Marietta Parkway, Marietta, GA 30060

[pbobbie, yji, llsh]@spsu.edu, Tel: 770-528-4284

Keywords: Model Checking, UML, XMI, database, Promela, SPIN

∗This work is supported by the Yamacraw Project[1]

ABSTRACT
Due to the increasing complexity of real world
problems, it is costly and difficult to validate
today’s software-intensive systems. The research
reported in the paper describes our experiences
in developing and applying a set of
methodologies for specifying, verifying, and
validating system temporal behavior expressed
as UML statecharts. The methods combine such
techniques/paradigms and technologies as UML,
XMI, database, model checking, and simulation.
The toolset we are developing accepts XMI input
files as an intermediate metadata format. The
metadata is then parsed and transformed into
databases and related syntax-driven data
structures. From the parsed data, we
subsequently generate Promela code, which
embodies the behavioral semantics and
properties of the statechart elements. Compiling
and executing Promela automatically invokes
SPIN, the underlying temporal logic-based tool
for checking the logical consistency of the
statecharts’ interactions and properties. We
validate and demonstrate our methodology by
modeling and simulation using both ArgoUML
and Rhapsody™ , respectively.

1. INTRODUCTION AND BACKGROUND

 Due to the increasing complexity of real
world problems, it is costly and difficult to
validate today’s software-intensive systems later
in the software development cycle. An early
validation requires extensive modeling,
verification, and simulation using a combination
of tools and techniques at the design stage of the

cycle. Among the COTS tools, which we are
using are SPIN and Promela. SPIN is a
verification tool, which is based on linear
temporal logic (LTL) and designed to analyze
the logical consistency of concurrent systems,
specifically for data communication protocols.
SPIN runs atop Promela as its verification
modeling language. Promela, an extended C-like
language, has constructs for specifying system
logical requirements and concurrent behavior.

 Statecharts are a variant of finite-state
machine models. The charts have one-to-one
correspondence or association with UML class
diagrams, and describe the dynamic behavior of
the objects in a given class. Also, a statechart
has modular, hierarchical, and structural
properties for specifying and modeling the
temporal and stimulus-response properties of real
world entities.

 We use ArgoUMLtm to specify and model our
target software systems. ArgoUML saves its files
in XMI format. Generally, using XMI as an
intermediate format to capture the structure of
the statecharts enables an easy interchange of
metadata between modeling tools (based on the
OMG UML) and sharing of metadata
repositories in distributed heterogeneous
environments. XMI integrates three key industry
standards: XML (eXtensible Markup Language,
a W3C standard), UML (Unified Modeling
Language, an OMG modeling standard), and
MOF (Meta Object Facility, an OMG
metamodeling and metadata repository standard).

 Because XMI is standardized, our tools
accept any XMI files (based on other OMG

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 258

modelers), as input, for subsequent verification
(model checking). The verification process
requires a transformation of the XMI files into
database models to facilitate the traversal and
development of an abstract syntax tree for code
generation and verification.

 There are a number of approaches for
mapping XMI data to Promela program. Our
solution is to take advantage of the provisions of
database technologies. First, we build several
relational tables corresponding to the UML
statecharts (expressed in the XMI files). We then
use different IDs as threads to represent the
interconnections of the collaborative statecharts.
One main advantage in using the tables is the
preservation of the hierarchical structure of the
model elements/statechart. Another advantage is
the technique we use for parsing the XMI files,
which, in the process, purges the redundancy
often inserted into the file using various
translators.

 By extracting static and structural information
from the tables, we dynamically embed SQL
queries into a ‘transformational’ program to
traverse all the states, transitions, and signal
events and generate an abstract syntax tree for
code generation. The resultant code from the
transformation process is in Promela.

 The rest of the paper is organized as follows:
Section 2 describes the relevant UML
statecharts. In section 3, we describe the overall
architectural framework of our project. In
section 4, we describe our experiences in parsing
XMI file and generating intermediate databases.
Section 5 is on the Promela-code generation and
verification using SPIN. We conclude in section
6.

2. UML STATECHARTS

 Figure 1 depicts a feedback system model for
illustrating the methodologies of the research.
The model is general enough for modeling
various components or modules of feedback
control, real-time systems. Thus, the model
shows the expandability of our methods for
modeling systems as statecharts, the analysis,
verification and simulation.

 Figure 1: Simple feedback system

 The model is expandable in that it can be
viewed as a single unit (as a part of a complex
system) or it can be viewed as a high-level
system, which hides the detail control or
behavioral logic inside each single state. For
example, we expanded this model by
incorporating hierarchy and concurrency into this
unit, as shown in Fig 2 and Fig 3.

Figure 2: Feedback system with hierarchy

Figure 3: A more complex feedback system

 In Figure 2, we expand the processing state as
another composite state, which contains a switch.
Figure 3 shows two stages of the model: the left
model shows a concurrency element (the fork)
and the two component subsystems – the On
state and the Monitor state. In addition to these
two states, the right model of Figure 3 includes a
condition-selection state and a history state.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 2 59

3. THE SYSTEM ARCHITECTURE

 As far as we know, there are two different
UML modeling tools, which generate XMI files
from statecharts: one is ArgoUML and the other
is Rhapsody™ 4.0. For availability and support
in our environment, we use ArgoUML from
Tigris [2]. We build the statecharts models in
ArgoUML, and the ArgoUML simply generates
the XMI file as an output to feed a DOM parser,
which we have tailored to create an intermediate
tabular representation between the XMI file and
our target code. Figure 4 depicts the structure of
the XMI files.

Figure 4: XMI structure for UML Statecharts

 We used java Dom parser to parse this XMI
file and store all the statecharts elements into set
of tables.

 Using the inherent definition of the
statechart model element (of UML) we built
tables for each state in the statechart in Figure 5
and used the ‘unified ID’ as a link-key to connect
the tables. The approach allowed the
preservation of the hierarchical structure of the
UML statecharts. (See Figure 5 below.) In
general, the leaf states, labeled ‘States’ in Figure
5, may represent either general or pseudo states.
Therefore, the tables contain all the information
specified in the underlying statechart.

Figure 5: Tabular structure of the statecharts

 We have built an SQL-based tool to extract
such information as the states, constraints,
protocols, properties, attributes, and data
specified in the original statecharts from the
tables. The extracted information is then used as
syntactic elements in the Promela code that we
eventually generate for verifying the correctness
of the original statechart. Finally, we built a
parser to generate the Promela code for the SPIN
verification tool.

 The whole process of our methodologies is
depicted in figure 6.

 Figure 6: System architecture

4. BUILDING TABLES

 As mentioned above, we build eight tables for
the UML statechart in Figure 5. The table
follows a “7+1” structure: one for each
corresponding box/state and one for the pseudo-
state. The root-table is the table for the top
Model, and its model ID is the overall key for
the whole system. All other elements are
constructed as sub-tables and are controlled by
this model ID. Thus these tables strictly

UML
Statecharts

No
Refine model

Yes

Simulation and
Target Code
Generation

System
Requirement

XMI Files

Tables

SPIN
verification Promela files

Consistency

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 260

preserve the hierarchical structure of the UML
statecharts.

 Since a statechart may contain many different
pseudo-states, like initial state, fork/join state,
history state, and etc, it is convenient to put all
these pseudo-states into one table. Figure 7
shows the pseudo-state table of our example
system model.

Figure 7: Pseudo-state table

 As indicated before, different pseudo-states
can be distinguished by their IDs, and the
composite-state they belong to.

 A composite-state is a state one level lower
than the state-machine state, and it is itself a unit
item that may contain sets of states or other
composite-states. Figure 8 shows an example
composite-table for a composite-state.

Figure 8: Composite-state table

 In general, a state may contain an entry,
activity and exit. Each of these elements of the
state embodies specific behavior. So the state
tables for these are usually complex and big.
Figure 9 shows an example state table.

 Figure 9: State table

 A transition corresponds to a transition
edge on the statecharts diagram. A transition
may contain items like trigger, guard and action,
which are contained in the corresponding
transition table. Figure 10 is an example
transition table.

Figure 10: Transition table

 A signal-event is always associated with or
related to a transition, and causes the triggering
of the transition. Figure 11 is an example of a
signal-event table.

Figure 11: Signal-event table

 The various tables described above serve
as the bridge between the XMI files and the
target code, which we generate for model
checking. The tables also serve as a filter, which
automatically eliminates the redundancies in the
XMI files. Our methodologies are general in
that, using the intermediate tables, we can
generate code for other implementations, e.g.,
SMV-based implementations. In this research,
we focused on Promela as the target language for
code generation and eventual verification using
the SPIN verification tool.

5. PROMELA FILE GENERATION AND
SPIN VERIFICATION

 Promela is a C-like language for specifying
system behavior for model checking. SPIN is a
tool for analyzing the logical consistency of
concurrent systems, specifically for data
communication protocols. Promela code is
compiled into an intermediate rule-based
program based on linear temporal logic (LTL).
The resultant logic program is then verified by
SPIN for correctness and consistency. Promela
program constructs for specifying concurrent
behaviors include processes, message channels,
and variables. The process construct specifies
the behavior of the system components.
Channels and global variables define the
environment in which the processes run.

 For test runs, we associate each state with one
process. The processes of the states run
concurrently depending on the trigger events and
condition guards. We also represent a fork

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 2 61

pseudo-state with a process, which retransmits
the event from its input state to its sub-states.

 To gain the hierarchical representation of the
statecharts, our Promela programs are also
constructed as set of blocks. Each composite-
state corresponds to one block of processes.
Only the top-level block can be initialized at the
beginning. As events are generated and
consumed, sub-blocks are triggered accordingly.

 Events in the Promela code are extracted from
the signal-event tables (see Figure 11). Events
from the tables are associated with one particular
ID number. Each event channel holds one
message at a time. Thus, all process states
communicate with each other by sending and
retrieving message from the channels. Below is
a typical Promela skeleton for the statecharts in
Figure 3.

#define Processing 0
#define state_machine_top 1
#define startCmd 2
…

/*this is channel definition*/
chan eventChannel = [1] of{int};
chan forkChannel1 = [1] of{int};
chan forkChannel2 = [1] of{int};

/*this is globle variable*/
/* .. */

proctype proc_Processing()
{

eventChannel?startCmd;
eventChannel!Processing;
run On();
run Off();
run Monitor();
run fork22();

}

proctype proc_state_machine_top()
{

eventChannel!state_machine_top;
run Initialized();
run Error();
run Uninitialized();
run proc_Processing()

}

proctype Initialized() {… }
proctype Error() {… }
proctype On() {… }
proctype Off() {… }
proctype Monitor() {… }
proctype Uninitialized() {… }

proctype fork22()
{

eventChannel?Processing;
forkChannel1!Processing;
forkChannel2!Processing;

}

init
{

run proc_state_machine_top()
}

 The flow of execution of the processes in the
above Promela program (automatically generated
based on the XMI representation of the statechart
in Figure 3) starts with the top-level init process,
which initializes the process
proc_state_machine_top, which is the outmost
layer of the statecharts. The
proc_state_machine_top further triggers all the
states, which it encloses. The enclosed process
states are the uninitialized process, initialized
process, error process and another composite-
state proc_Processing process. The
proc_Processing process also initializes states
inside it. The computation process permits a
hierarchy or chain of process activation and
execution. The root process,
proc_state_machine_top, is the initial entry for
the whole system. As a proof-of-concept, we
used SPIN to check the logical correctness and
the consistency of the specified constraints and
properties in the original statechart, and
expressed in the corresponding Promela
program. Figure 12 is a screen shot of the output
from using SPIN.

Figure 12: Screen shot for SPIN verification

 We also developed a GUI wrapper as an
interface to our system. (See Figure 13.)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 262

Figure 13: Screen shot for the GUI Interface

6. CONCLUSIONS

 In this paper, we describe a set of
methodologies for transforming UML
collaborative statecharts for verification and
simulation. (The simulation phase is currently
ongoing within the Rhapsody™ environment.)
In this paper, we focus on the techniques for
building database tables and a set of translation
tools for generating Promela programs from
XMI representation of statecharts. We used an
integrated development environment (IDE),
which comprises ArgoUML, XMI, Java Dom
parser, the Oracle™ database system, and SPIN.
The IDE provided the necessary tools for the
development of our parser and the Promela code
generator. Our approach is based on generalized
and expandable UML statechart models.
Another contribution of our work is the
introduction of concurrency among and within
statechart models, and the mapping of the
underlying behavioral structure into the
corresponding Promela code. In this way, the
correctness of the protocols (constraints/guards)
governing the communication among the states
of the statecharts can be verified.

 The capability for an automatic generation
of Promela program, coupled with the capability
for verifying distributed embedded software
systems in the early stages of the system design,
is promising. We are currently working on
additional plug-ins, which will interface with
systems like Rhapsody.

REFERENCES

[1] http://www.yamacraw.org;
[2] http://argouml.tigris.org/servlets/ProjectHome;
[3] Holzmann, G. J. 1997. “The Model Checker

SPIN”, IEEE Transactions on Software
Engineering, Vol. 23, No. 5 (May);

[4] OMG-2000. 2000. OMG Unified Modeling
Language Specification, Version 1.3 First
Edition. (http://www.omg.org);

[5] (OMG-XML 2000) OMG XML Metadata
Interchange (XMI) Specification, Version 1.0
June 2000. (http://www.omg.org);

[6] XML and the Document Object Model
(DOM),(http://java.sun.com/xml/jaxp/dist/1.1
/docs/tutorial/dom/);

[7] A Quick Introduction to XML,
(http://java.sun.com/xml/jaxp/dist/1.1/docs/tu
torial/overview/1_xml.html);

[8] The JavaTM Tutorial, A practical guide for
programmers,(http://java.sun.com/docs/books
/tutorial/index.html);

[9] ON-The-Fly, LTL MODEL CHECKING
with SPIN, (http://netlib.bell-
labs.com/netlib/spin/whatispin.html).

Biography: Dr. Patrick Otoo Bobbie is a
Professor in the School of Computing and
Software Engineering at Southern Poly State
Univ., Marietta, GA. He is currently working
with the Yamacraw Research group on
Embedded Software modeling at Southern
Polytechnic State University, Marietta, GA. He
is researching methods and techniques for
extending UML-based languages as well
methodologies for processing intermediate
model representations in XML/XMI to support
embedded real-time software model verification.
His focus is on mechanisms (temporal logic and
theorem proving) for specifying the properties or
constraints and model checking of distributed
embedded software.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 2 63

