
Low-energy Scheduling Algorithms for Wearable Fall Pre-impact
Detection System

MN Nyana; Francis EH Taya,b; D Guoa ; L Xua; KL Yapa

aDepartment of Mechanical Engineering, National University of Singapore, Singapore
bMedical Devices Group, Institute of Bioengineering and Nanotechnology, Singapore

 LK Gohc; B Veeravallid;
cCommunication system department, Institute for Infocomm Research, Singapore

dDepartment of Electrical Engineering, National University of Singapore, Singapore

ABSTRACT

In this paper, novel low-energy static and dynamic
scheduling algorithms with low computational
complexities for heterogeneous multiprocessor systems
are proposed. Since battery life of the system plays a
critical role in wearable embedded systems, the
algorithms are useful for energy consumption reduction in
Body Area Network (BAN)-based wearable
multiprocessor systems in healthcare applications. Our
developed BAN-based fall pre-impact detection system is
used in this investigation. Based on simulation results
using the algorithms, it is found that the battery life can be
extended up to 41.6 percent more of its normal life
without the algorithms.

Keywords: Energy-aware scheduling, embedded systems,
heterogeneous multiprocessor system

1. INTRODUCTION

 Falls are a major care and cost burden to health and
social services world-wide. Falls have traditionally been
recognized as one of the “giants” for geriatric medicine
[1]. In this scenario, one of the key concerns in preventing
or reducing the severity of injury in the elderly is to detect
fall in its descending phase before the impact (pre-impact
fall detection). A few groups have attempted to detect
falls prior to impact [2-4]. Efficient feedback approaches
such as inflatable hip protector are also investigated for
fall injury minimization [5-6]. Our aim is to develop a
wearable faint fall pre-impact detection system that can
detect fall in its inception [4]. For the comfort of the user,
the whole system is based on the Body Area Network
(BAN).
 The BAN comprises a central processing unit (CPU)
and two wireless sensor sets (thigh sensor set (TS), and
waist sensor set (WS)) located on thigh and waist (Fig.1)
[4]. Each sensor set has its own processor for front-end
data processing such as data sampling, filtration and
wireless data transmission and the CPU has a more
powerful processor to process the data received from
sensor sets. The BAN is a heterogeneous multiprocessor

Fig.1. BAN-based wearable faint fall pre-impact
detection system

system as processors have different characteristics such
as processing capability and power consumption. Every
unit is battery-operated with its own battery. Since the
battery life of the system plays a critical role in battery-
operated embedded systems, energy consumption
minimization has become a major concern. Nowadays,
modern embedded processors enable the dynamic
voltage/frequency scaling (DVS) technique, which
allows slowing down the processor speed to lower
down the energy consumption. Therefore, specially
designed energy-aware multiprocessor scheduling
algorithms select different running speeds for different
tasks (different parts of the algorithm for different
purposes) of the pre-impact detection algorithm such
that the total energy consumption on processors is
minimized. Along this line of work, there has been no
work specifically addressing the task scheduling
problem for the heterogeneous BAN systems. Only few
algorithms that address a model of application with
multiple deadlines for heterogeneous systems [7], and
slack reclamation algorithm for homogeneous systems
[8] were developed. In [9,10], efficient static scheduling
algorithms are proposed for reducing energy
consumption in heterogeneous multiprocessor systems
during the design-time phase. However, they are not
suitable for dynamic slack reclamation during runtime.
In this paper, novel critical-path based low-energy and
low-complexity scheduling algorithms are presented for
use in heterogeneous multiprocessor system during both
design-time phase and runtime to reduce energy
consumption.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 3 - YEAR 2013 1ISSN: 1690-4524

 2. METHODS

2.1 BAN-based fall pre-impact detection algorithm
 In BAN-based wearable faint fall pre-impact
detection system, each sensor set (TS and WS) contains
one TI MSP430 processor, one MMA7260Q (±4g,
300mV/g) tri-axial micro-machined accelerometer and
two ADXRS150 (±150°/sec) yaw rate gyroscopes
measuring in lateral and sagittal directions. Data are
sampled at 47samples/sec sampling rate (sampling
interval: 21276.6us). Intel® PXA255 Processor
(400MHz) is used in the CPU. Chipcon CC2420 Zigbee
transceivers are applied for data communication between
sensor sets and the CPU. The process flow of pre-impact
detection algorithm is shown in Fig. 2 [4].

2.2 Critical-path based low-energy scheduling
algorithms
 Critical-path based low-energy scheduling algorithms
are developed assuming that the system may have
embedded processors with dynamic voltage/frequency
scaling (DVS) features [11].
 Scheduling algorithms are written in C++
programming. Steps implemented in scheduling
algorithms are listed as follows.

(i) Directed acyclic graph (DAG)
 The target algorithm (Fig. 2) run on the
multiprocessor system can be considered as a set of tasks.
Table 1 lists the abstracted tasks and their functionalities.
Certain tasks also have precedence relations. For
example, the filtering can be done only after sampling of

the signals. There are also deadline constraints imposed
on the tasks. As the target algorithm runs periodically,
it needs to be completed within the sampling period.
Including precedence relations and deadline constraints,
the algorithm is specified as a directed acyclic graph
(DAG) Gs = (T,E), called task graph, which consists of
a set of dependent tasks (τ ∈T) connected by edges
(ε ∈E) (Fig.3).

Table 1. Tasks and their functionalities

Tasks Functionality Explanation
Taτ1 , Waτ1 , Tgτ1 , Wgτ1 Analog to

digital
conversion

Taτ 2 , Waτ 2 , Tgτ 2 , Wgτ 2 Filter

Taτ3 , Waτ3 Accelerometer
calibration

Taτ 4 , Waτ 4 Degree
conversion

5τ Correlate
acceleration
data

6τ Correlate
gyroscope data

7τ Fall pre-
impact
detection

T: thigh,
W: waist,
a:acceleromete
r,
g: gyroscope

 A node τ ∈T in the task graph denotes a task. The
precedence constraints between tasks are represented by
the edges ε ∈E. If there exists an edgeε :: iτ → jτ , it

means that jτ can only be executed by after iτ
completes its execution. Each node τ is associated
with a tuple),(aw for each processor, where w and a
denote the worst-case execution time (WCET) and
average-case execution time (ACET) for the
corresponding

 Fig. 3. Task graph Gs for fall pre-impact detection

Fig. 2. Fall pre-impact detection algorithm

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 3 - YEAR 20132 ISSN: 1690-4524

processor respectively. WCET is the maximum possible
execution time of a task while ACET is the average
execution time of a task over a period of time. We can
obtain the WCET by determining the longest execution
time in a certain number of runs, e.g., 100 runs. Similarly,
the ACET can be obtained by averaging the execution
times of these runs. Table 2 shows the WCET and ACET
of all tasks in Gs. Both the WCET and ACET for a task
are measured at the maximum speed of the processor.
Each edge ε is associated with a weight l (worst-case
communication time, WCCT) representing a
communication link between two dependent tasks when
they are scheduled on two different processors.

 Table 2. Tasks with their WCET and ACET

Tasks WCET (us) ACET (us)
Taτ1 , Waτ1 , Tgτ1 , Wgτ1 7.88 7.88

Taτ 2 , Waτ 2 , Tgτ 2 , Wgτ 2 123 111

Taτ3 , Waτ3 141 141

Taτ 4 , Waτ 4 1493 1285

5τ 3839 1417

6τ 3667 1509

7τ 1861 748

 There is no communication cost if tasks are executed
on the same processor. Each root node is associated with
an arrival time r (for which it can begin its execution) and
each sink node is associated with a deadline d (the time
by which it must complete its execution). But in this
application, it is considered that all tasks share a common
deadline (d1). In our application, d1 is the period of the
task graph which is 21276.6 us.

(ii) Initial tightest schedule and development of a new
DAG graph

Fig. 4. Initial tightest schedule for the task graph in Fig. 3

 In the original DAG graph Gs, tasks are not allocated
on the processors (MSP430T,W and
PXA255). After allocating the tasks to the processors, an
initial tightest schedule with minimum schedule length is
obtained by readjusting and allocating the execution order

of tasks on each processor and communication events
for wireless channels. In this initial tightest schedule,
tasks are scheduled as tight as possible so that d, which
is the end time of the last task 7τ , is minimized. In our

application, the data from Taτ 2 to 5τ and from Tgτ 2 to

6τ are sent together. Similarly, the data from Waτ 2 to

5τ and from Wgτ 2 to 6τ are sent together. The resulting
initial tightest schedule is shown in Fig. 4. In this paper,
the initial tightest schedule is generated using a list
scheduling method. Based on the originally specified
task graph Gs and the initial tightest schedule, a new
DAG graph G = (V,E) is constructed. The set of
vertices V contains all the tasks as in the original task
graph Gs and the communication events allocated to the
communication links in the tightest schedule. If an
edgeε ::vi→vj∈E exists between vi and vj, it means that
vi is a direct predecessor of vj in the original task graph,
or vi is scheduled just ahead of vj on the same processor.
Arrival time associated with root nodes and deadlines
associated with sink nodes in Gs are still kept with the
corresponding nodes in the newly constructed DAG
(Fig. 5).

Fig. 5. DAG graph G constructed based on the tightest
schedule (a) and identified critical paths (b)

(iii) Critical-path identification
 In DAG graph, a path always starts from a root
node with arrival time rroot (r1,2=0) and ends at a sink
node with deadline dsink.(d1=21276.6us) Scaling factor
for a path k is defined as

(a) (b)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 3 - YEAR 2013 3ISSN: 1690-4524

∑
∑ ∑

∈

∈ ∈
+−−

=
kpathi i

kpathi kpathi iirootk

k w

lwrd
S

)()(sin

 (4) where
w, l represent WCET, WCCT and total available slack
(the amount of unused or available time in a path) on the
path k is given by

∑ ∑∈ ∈
+−−

kpathi kpathi iirootk lwrd)()(sin .

Therefore, the scaling factor Sk then represents the ratio of
allocated slack for a task over its WCET, i.e., distributing
the total slack on path k evenly among all tasks along the
path. Scaling factors, using Eqn. 4, i.e.,

,712.0
76.11262

76.132626.21276

1

1 1sin
1

=
−

=

∑ ∈

∑ ∈ ∑ ∈+−−
=

pathi iw

pathi pathi)iliw()rootrk(d
S

,800.0
76.11262

76.122626.21276

2

2 2sin
2

=
−

=

∑ ∈

∑ ∈ ∑ ∈+−−
=

pathi iw

pathi pathi)iliw()rootrk(d
S

(based on the WCETs shown in Table 2) on each path are
shown in Fig. 5b. A critical path for a pair of nodes (vi,vl)
is defined as the one that has minimum scaling factor
among all paths that pass through vi and ends at vl. For
example, if two paths (5211 τεετ →→→ with

S0=0.4 and 51 ττ → with S1=0.8) are available between

two tasks 1τ and 5τ , the path with minimum scaling
factor is taken (Fig. 6). In our case, the set of critical paths
P is shown in Fig. 5b.

Fig. 6. Another task graph example is used to clarify the
critical path

(iv) Static scheduling algorithm
 The critical-path based static scheduling (CPSS)
algorithm (Algorithm 1) uses the path information track-
and-update scheme to distribute slack over tasks, based on
the identified set of critical paths. By evenly distributing
slack over tasks, the slack time that can be allocated to a
task iτ along the path k is then computed by Sk · wi and
the speed reduction ratio (compared to the maximum

speed of the processor) for this task can be set to

i
Sτ =1.0+ Sk. In each iteration, the most critical path m

with minimum scaling factor is identified. The speed
reduction ratios for all unallocated tasks along the path
m are computed and allocated to every task on the path.
If a task kτ on path m is located on multiple paths, it
does not use up the slack available from the rest of
unallocated paths. The remaining slack time not used
by task kτ for such a path j is (Sj - Sm) · wk . The scaling
factor for each such path j should be updated according
to equation

∑ ∈

⋅−
+=

allocatednotijpathi iw
kwmSjS

jSjS
&

)('

 (5)
such that this remaining slack can be reclaimed by other
unallocated tasks along path j. The most critical path m
will be exempted from the set P afterwards. The same
process of identifying most critical path and updating
scaling factors of associated paths continues until all the
tasks are allocated. In this way, speed reduction ratio is
figured out for every task on each processor and the
least amount of energy is consumed. In CPSS
scheduling, it is assumed that all tasks consume their
WCETs.

 (v) Dynamic scheduling algorithm
 During runtime, the tasks do not always consume
their WCET. Unused time can be used to reduce the
energy consumption further. The critical-path based
dynamic scheduling algorithm (CPDS) is therefore used
to reclaim the unused time during runtime. To reduce
the runtime complexity, we use a two-phase
framework. During the design-time phase, i.e., CPSS,
the initial tightest schedule is obtained and then the set

Algorithm 1. Critical-path based static scheduling
algorithm
Compute the scaling factor Sk for each path k∈P using
Eqn. 4.
while P is not empty do
 Identify the path m with minimum scaling factor Sm;
 for each unallocated task kτ on path m do

 Task kτ is allocated slack time Sm.wk and

 The speed reduction ratio
k

S
τ

is set to be

1.0+Sm;
 for each path j∈P that kτ is also located on do
 Update scaling factor of path j using Eqn. 5
 Remove path j from P if Sj is equal to zero;
 end for
 end for
 Remove path m from Pi
end while

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 3 - YEAR 20134 ISSN: 1690-4524

of critical paths is identified. During the runtime phase,
we apply dynamic CPDS to determine the running clock
speed for each scheduled task using the critical-path
information track-and-update scheme. The CPDS
algorithm uses the static schedule results obtained from
the CPSS algorithm assuming every task takes its ACET.
When a task is due to be scheduled during runtime, it

Algorithm 2. Critical-path based dynamic scheduling
algorithm
function before schedule kτ ;
 Identify the path m with minimum total slack
among associated paths with kτ , i.e.,

;min iLipathk
mL ∈= τ

 if (mLkw
kavgS ≤−− *)0.1τ then

 ;
kavgS

k
S ττ −=

 else
 ;0.1 kwmL

k
S +=τ

 end if
 for each path j that kτ is located on do
 Update the total slack Lj using Eqn. 6
 end for
end function

function after schedule kτ

 for each path j that kτ is located on do
 Update the total slack of path j using Eqn. 7;
 end for
end function

aggressively runs at the statically computed average-case
speed, under the condition that the deadlines are met even
when all the subsequent tasks consume their WCETs. The
path information track-and-update scheme keeps track of
the minimum total available slack from the task’s
associated critical paths and guarantees that the task does
not use more than that, which therefore satisfies the
various constraints at all times. The pseudo code for the
CPDS algorithm is given in Algorithm 2. Initially each
path j is assigned with the total available slack Lj = (dsink -
rroot) - (∑∑ ∈∈

+
jpathi ijpathi i lw). Before and after a

task completes its execution, the total slack of its
associated paths are updated and tracked. When task kτ is
due to be scheduled, the path m with minimum total slack
Lm is identified from all paths associated with kτ .

Task kτ is constrained to utilize a maximum slack of Lm.
From this, the maximum allowable speed for the task

kτ is computed, in order to guarantee that the execution

for the subsequent tasks can be completed before their
deadlines even if they take their WCETs. Suppose that
the statically computed average-case speed reduction
ratio for task kτ is denoted as

k
avg

S
τ−

. If the

statically allocated average-case slack time
(

k
avg

S
τ−

-1.0) · wk is less than or equal to Lm, kτ can

take the speed reduction ratio of
k

avg
S

τ−
and is

allocated with slack time
k

Lτ = (
k

avg
S

τ−
-1.0) · wk,

or else it can only aggressively use up the slack time

k
Lτ = Lm and its speed reduction ratio is set

to kwmL
k

S /0.1 +=
τ

. After the execution speed for

kτ is allocated, the total available slack on each path j

that kτ is located on will be updated by

k

L
j

L
j

L
τ

−=' . (6)

After kτ completes its execution, a slack of
k

S
τ

· (wk -

ak) is generated and it shall be distributed over its
associated paths. The total available slack on these
paths are updated by

k

S
j

L
j

L
τ

+=' · (wk - ak). (7)

 The information on the total available slack on paths
is carried from one node to another with the
communication events between these two nodes. It can
be guaranteed that each task to be scheduled always
gets the latest path information, due to the precedence
relationship between tasks.

3. EXPERIMENTAL RESULTS

 We conducted a simulation study to evaluate the
performance of applying DVS to the fall pre-impact
detection system using the CPSS and CPDS algorithms.
We measure the worst-case (WCET) and average case
execution times (ACET) of all the tasks as shown in
Table 2. We use the values that are reported in [12] for
the power consumption of the MSP430 microcontroller
at different voltages and frequencies. For the PXA255
processor, we obtained the values for the combined
power consumption of the processor and the gumstix
motherboard from [13]. First we present the CPSS
algorithm. As shown in Fig. 5b, the scaling factors for
all critical paths are

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 3 - YEAR 2013 5ISSN: 1690-4524

Fig. 7. Update of paths’ scaling factors during the
execution of the CPSS algorithm

computed and we identify that path 1 has the minimum
scaling factor. In Fig. 5b, each task kτ located on path 1
is allocated a slack of 0.712·wk. The scaling factor of path
2 is then updated to 1.239 using Eqn. 5 since the tasks

5τ , 6τ and 7τ also lie on path 2 (Fig. 7). Each task kτ
on path 2 that is yet to be allocated is allocated a slack of
each 1.239·wk. (Fig. 7). Based on the slack that are
allocated to the tasks, the computational frequencies and
voltage levels at which to execute the tasks are known.
However, since the voltage levels and frequencies are
continuous and real processors support only discrete
voltages and frequencies; we apply the method in [14] to
map the continuous voltage levels and frequencies to the
two neighboring discrete levels. Assuming that all tasks
always execute at their WCET, the total energy
consumption of the system (three processors) in one
iteration of the pre-impact detection algorithm is 12770 uJ
if no DVS is applied and 10843 uJ if DVS is applied
using CPSS.
 For the dynamic case, we generate the execution times
of each task in the DAG for 500 cycles assuming that the
execution times are normally distributed around the
ACET. In CPDS, we first obtain a static schedule using
CPSS assuming that the tasks execute at their ACET. We
then apply the CPDS algorithm as described in Section
2.2(v) to the system. The results are as follows. For the
case when no DVS is used, the total energy consumption
for three processors (MSP430T, MSP430W, and PXA255)
is 4.35 J (0.37+0.37+4.28 J). On the other hand, when
CPDS is used, the total energy consumption is 3.08 J
(0.032+0.032+3.02 J). Table 3 shows the battery life
extension of 1000mAh battery using CPDS algorithm for
gumstix motherboard with the PXA255 processor. From
the results we see that CPDS is able to reduce the energy
consumption of the system significantly by using DVS.

Table 3. Battery life extension of 1000mAh battery
using CPDS algorithm on the gumstix motherboard
with the PXA255 processor

 Voltage
(V)

Average Current
(mA)

Battery
life
(hours)

Gumstix
motherboard
with PXA255

4.5

mA
sV

J

4.89
0212766.05005.4

28.4

=
××

11.19

DVS with
CPDS

4.5

mA
sV

J

1.63
0212766.05005.4

02.3

=
××

15.85

Note: 0.0212766s is one iteration execution time of the
detection algorithm using DVS processor with the CPDS
algorithm

4. CONCLUSIONS

 In this paper, we propose low-energy static and
dynamic scheduling algorithms. Our algorithms are
based on the analysis of critical paths that represent all
the timing and precedence constraints imposed. We
designed a track-and-update scheme to keep track of
and to update the scaling factor (or available slack) for
each critical path. By using this new scheme, our static
(CPSS) and dynamic (CPDS) algorithms exhibited a
low computational complexity compared to other
scheduling algorithms [8]. The timing and precedence
constraints are also guaranteed to be satisfied. The
simulation results conclusively demonstrated that our
proposed scheduling algorithms save considerably
energy compared to the real execution on the
heterogeneous multiprocessor systems.

Acknowledgement: The authors would like to
acknowledge the support for the projects “MEMSWear
II: Mission critical wearable embedded systems for
elderly care” (grant-R265000229305) and “Design of
Adaptive and Hybrid Energy-&-QoS Aware
Heterogeneous Multiprocessor Scheduling Strategies
for Embedded Systems” (grant-R263000375305) by
A*STAR (Agency for Science, Technology and
Research) SERC, Singapore, under EHS-II Programme.

REFERENCES

[1]Marks, R., Allegrante, J.P., Ronald MacKenzie,
C., Lane, J.M., Hip fractures among the elderly: causes,
consequences and control. Ageing Research Reviews
2(1), 2003, 57-93.
[2]Bourke, A.K., Lyons, G.M., A threshold-based fall-
detection algorithm using a bi-axial gyroscope sensor.
Medical Engineering & Physics, In Press, Corrected
Proof, Available online 11 January 2007.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 3 - YEAR 20136 ISSN: 1690-4524

[3]Wu, G., Distinguishing fall activities from normal
activities by velocity characteristics. Journal of
Biomechanics 33(11), 2000, 1497-1500.
[4]Nyan, M.N., Tay, E.H.F., Murugasu, E.. Faint Fall
Onset Detection System. United State Patent Office
Document (Provisional Patent), No. 60/885,956, 2007.
[5]Davidson, M.E., System for protection from falls.
United States Patent Office Document, US2004/0003455,
2004.
[6]Ulert, I.A., Hip Protector. United States Patent Office
Document, US2002/0078484, 2002.
[7]Luo, J and Jha, N. K., Static and dynamic variable
voltage scheduling algorithms for real-time heterogeneous
distributed embedded systems. Proceedings of the 2002
conference on Asia South Pacific design
automation/VLSI Design, 2002, 719.
[8]Hua, S., Qu, Q., Power minimization techniques on
distributed real-time systems by global and local slack
management. In IEEE/ACM Asia South Pacific Design
Automation Conference (ASP-DAC), 2005.
[9]Lee Kee Goh, Bharadwaj Veeravalli, and Sivakumar
Viswanathan, An Energy-aware Gradient-based
Scheduling Heuristic for Heterogeneous Multiprocessor
Embedded Systems,” Proceedings of International
Conference on High Performance Computing (HiPC),
Lecture Notes in Computer Science 4873, 2007, pp. 331-
341.

[10]Lee Kee Goh, Bharadwaj Veeravalli, and
Sivakumar Viswanathan, Design of Fast and Efficient
Energy-aware Gradient-based Scheduling Algorithms
for Heterogeneous Embedded Multiprocessor
Systems,” To appear in IEEE Transactions on Parallel
and Distributed Systems, 2008.
[11]Yanhong Liu, Bharadwaj Veeravalli, and
Sivakumar Viswanathan, “Novel Critical-Path based
Low-Energy Scheduling Algorithms for Heterogeneous
Multiprocessor Real-Time Embedded Systems,”
Proceedings of International Conference on Parallel and
Distributed Systems (ICPADS), December 2007.
[12]Cho, Y., Kim, Y., Chang, N., PVS: Passive Voltage
Scaling for Wireless Sensor Networks. Proceedings of
2007 International Symposium on Low Power
Electronics and Design, 2007, 135-140.
[13]http://docwiki.gumstix.org/Power_spec/.
[14]Ishihara, T., Yasuura, H., Voltage Scheduling
Problem for Dynamically Variable Voltage Processors.
Proceedings of International Symposium on Low Power
Electrionics and Design. 1998.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 3 - YEAR 2013 7ISSN: 1690-4524

	8B067QA

