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ABSTRACT 

 
In this paper, novel low-energy static and dynamic 
scheduling algorithms with low computational 
complexities for heterogeneous multiprocessor systems 
are proposed. Since battery life of the system plays a 
critical role in wearable embedded systems, the 
algorithms are useful for energy consumption reduction in 
Body Area Network (BAN)-based wearable 
multiprocessor systems in healthcare applications. Our 
developed BAN-based fall pre-impact detection system is 
used in this investigation. Based on simulation results 
using the algorithms, it is found that the battery life can be 
extended up to 41.6 percent more of its normal life 
without the algorithms. 
 
Keywords: Energy-aware scheduling, embedded systems, 
heterogeneous multiprocessor system   
 

1. INTRODUCTION 
 
       Falls are a major care and cost burden to health and 
social services world-wide. Falls have traditionally been 
recognized as one of the “giants” for geriatric medicine 
[1]. In this scenario, one of the key concerns in preventing 
or reducing the severity of injury in the elderly is to detect 
fall in its descending phase before the impact (pre-impact 
fall detection). A few groups have attempted to detect 
falls prior to impact [2-4]. Efficient feedback approaches 
such as inflatable hip protector are also investigated for 
fall injury minimization [5-6]. Our aim is to develop a 
wearable faint fall pre-impact detection system that can 
detect fall in its inception [4]. For the comfort of the user, 
the whole system is based on the Body Area Network 
(BAN). 
         The BAN comprises a central processing unit (CPU) 
and two wireless sensor sets (thigh sensor set (TS), and 
waist sensor set (WS)) located on thigh and waist (Fig.1) 
[4]. Each sensor set has its own processor for front-end 
data processing such as data sampling, filtration and 
wireless data transmission and the CPU has a more 
powerful processor to process the data received from 
sensor sets. The BAN is a heterogeneous multiprocessor  

 
Fig.1. BAN-based wearable faint fall pre-impact 
detection system 
 
system as processors have different characteristics such 
as processing capability and power consumption. Every 
unit is battery-operated with its own battery. Since the 
battery life of the system plays a critical role in battery-
operated embedded systems, energy consumption 
minimization has become a major concern. Nowadays, 
modern embedded processors enable the dynamic 
voltage/frequency scaling (DVS) technique, which 
allows slowing down the processor speed to lower 
down the energy consumption. Therefore, specially 
designed energy-aware multiprocessor scheduling 
algorithms select different running speeds for different 
tasks (different parts of the algorithm for different 
purposes) of the pre-impact detection algorithm such 
that the total energy consumption on processors is 
minimized. Along this line of work, there has been no 
work specifically addressing the task scheduling 
problem for the heterogeneous BAN systems. Only few 
algorithms that address a model of application with 
multiple deadlines for heterogeneous systems [7], and 
slack reclamation algorithm for homogeneous systems 
[8] were developed. In [9,10], efficient static scheduling 
algorithms are proposed for reducing energy 
consumption in heterogeneous multiprocessor systems 
during the design-time phase. However, they are not 
suitable for dynamic slack reclamation during runtime. 
In this paper, novel critical-path based low-energy and 
low-complexity scheduling algorithms are presented for 
use in heterogeneous multiprocessor system during both 
design-time phase and runtime to reduce energy 
consumption.  
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                             2. METHODS 
 
2.1 BAN-based fall pre-impact detection algorithm 
        In BAN-based wearable faint fall pre-impact 
detection system, each sensor set (TS and WS) contains 
one TI MSP430 processor, one MMA7260Q (±4g, 
300mV/g) tri-axial micro-machined accelerometer and 
two ADXRS150 (±150°/sec) yaw rate gyroscopes 
measuring in lateral and sagittal directions. Data are 
sampled at 47samples/sec sampling rate (sampling 
interval:  21276.6us). Intel® PXA255 Processor 
(400MHz) is used in the CPU. Chipcon CC2420 Zigbee 
transceivers are applied for data communication between 
sensor sets and the CPU. The process flow of pre-impact 
detection algorithm is shown in Fig. 2 [4].  

 
 
 
2.2 Critical-path based low-energy scheduling 
algorithms 
      Critical-path based low-energy scheduling algorithms 
are developed assuming that the system may have 
embedded processors with dynamic voltage/frequency 
scaling (DVS) features [11].  
       Scheduling algorithms are written in C++ 
programming. Steps implemented in scheduling 
algorithms are listed as follows. 
 
(i) Directed acyclic graph (DAG) 
        The target algorithm (Fig. 2) run on the 
multiprocessor system can be considered as a set of tasks. 
Table 1 lists the abstracted tasks and their functionalities. 
Certain tasks also have precedence relations. For 
example, the filtering can be done only after sampling of 

the signals. There are also deadline constraints imposed 
on the tasks. As the target algorithm runs periodically, 
it needs to be completed within the sampling period. 
Including precedence relations and deadline constraints, 
the algorithm is specified as a directed acyclic graph 
(DAG) Gs = (T,E), called task graph,  which consists of 
a set of dependent tasks ( τ ∈T) connected by edges 
(ε ∈E) (Fig.3).   
 
Table 1. Tasks and their functionalities 

Tasks Functionality Explanation 
Taτ1 , Waτ1 , Tgτ1 , Wgτ1  Analog to 

digital 
conversion 

Taτ 2 , Waτ 2 , Tgτ 2 , Wgτ 2  Filter 

Taτ3 , Waτ3  Accelerometer 
calibration 

Taτ 4 , Waτ 4  Degree 
conversion 

5τ  Correlate 
acceleration 
data 

6τ  Correlate 
gyroscope data 

7τ  Fall pre-
impact 
detection 

T: thigh,  
W: waist, 
a:acceleromete
r,  
g: gyroscope 

 
    A node τ ∈T in the task graph denotes a task. The 
precedence constraints between tasks are represented by 
the edges ε ∈E. If there exists an edgeε :: iτ → jτ , it 

means that jτ  can only be executed by after iτ  
completes its execution. Each node τ  is associated 
with a tuple ),( aw  for each processor, where w and a 
denote the worst-case execution time (WCET) and 
average-case execution  time  (ACET)  for  the  
corresponding  

                  
 Fig. 3. Task graph Gs for fall pre-impact detection 

Fig. 2. Fall pre-impact detection algorithm 
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processor respectively. WCET is the maximum possible 
execution time of a task while ACET is the average 
execution time of a task over a period of time. We can 
obtain the WCET by determining the longest execution 
time in a certain number of runs, e.g., 100 runs. Similarly, 
the ACET can be obtained by averaging the execution 
times of these runs. Table 2 shows the WCET and ACET 
of all tasks in Gs. Both the WCET and ACET for a task 
are measured at the maximum speed of the processor. 
Each edge ε  is associated with a weight l (worst-case 
communication time, WCCT) representing a 
communication link between two dependent tasks when 
they are scheduled on two different processors. 
 
      Table 2. Tasks with their WCET and ACET 

Tasks WCET (us) ACET (us) 
Taτ1 , Waτ1 , Tgτ1 , Wgτ1  7.88 7.88 

Taτ 2 , Waτ 2 , Tgτ 2 , Wgτ 2  123 111 

Taτ3 , Waτ3  141 141 

Taτ 4 , Waτ 4  1493 1285 

5τ  3839 1417 

6τ  3667 1509 

7τ  1861 748 

        
       There is no communication cost if tasks are executed 
on the same processor. Each root node is associated with 
an arrival time r (for which it can begin its execution) and 
each sink node is associated with a deadline d (the time 
by which it must complete its execution). But in this 
application, it is considered that all tasks share a common 
deadline (d1). In our application, d1 is the period of the 
task graph which is 21276.6 us. 
 
(ii) Initial tightest schedule and development of a new 
DAG graph 

 
Fig. 4. Initial tightest schedule for the task graph in Fig. 3 
 
      In the original DAG graph Gs, tasks are not allocated 
on the processors (MSP430T,W and  
PXA255). After allocating the tasks to the processors, an 
initial tightest schedule with minimum schedule length is 
obtained by readjusting and allocating the execution order 

of tasks on each processor and communication events 
for wireless channels. In this initial tightest schedule, 
tasks are scheduled as tight as possible so that d, which 
is the end time of the last task 7τ , is minimized. In our 

application, the data from Taτ 2 to 5τ  and from Tgτ 2  to 

6τ  are sent together. Similarly, the data from Waτ 2  to 

5τ  and from Wgτ 2  to 6τ  are sent together. The resulting 
initial tightest schedule is shown in Fig. 4. In this paper, 
the initial tightest schedule is generated using a list 
scheduling method. Based on the originally specified 
task graph Gs and the initial tightest schedule, a new 
DAG graph G = (V,E) is constructed. The set of 
vertices V contains all the tasks as in the original task 
graph Gs and the communication events allocated to the 
communication links in the tightest schedule. If an 
edgeε ::vi→vj∈E exists between vi and vj, it means that 
vi is a direct predecessor of vj in the original task graph, 
or vi is scheduled just ahead of vj on the same processor. 
Arrival time associated with root nodes and deadlines 
associated with sink nodes in Gs are still kept with the 
corresponding nodes in the newly constructed DAG 
(Fig. 5).  
 

       
      
Fig. 5. DAG graph G constructed based on the tightest 
schedule (a) and identified critical paths (b) 
     
(iii) Critical-path identification     
       In DAG graph, a path always starts from a root 
node with arrival time rroot (r1,2=0) and ends at a sink 
node with deadline dsink.(d1=21276.6us) Scaling factor 
for a path k is defined as 

(a) (b) 

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 11 - NUMBER 3 - YEAR 2013 3ISSN: 1690-4524



  

∑
∑ ∑

∈

∈ ∈
+−−

=
kpathi i

kpathi kpathi iirootk

k w

lwrd
S

)()( sin
                                                                                 

                                                                             (4) where 
w, l represent WCET, WCCT and total available slack 
(the amount of unused or available time in a path) on the 
path k is given by 

∑ ∑∈ ∈
+−−

kpathi kpathi iirootk lwrd )()( sin . 

Therefore, the scaling factor Sk then represents the ratio of 
allocated slack for a task over its WCET, i.e., distributing 
the total slack on path k evenly among all tasks along the 
path. Scaling factors, using Eqn. 4, i.e., 

,712.0
76.11262

76.132626.21276

1

1 1sin
1

=
−

=

∑ ∈

∑ ∈ ∑ ∈+−−
=

pathi iw

pathi pathi )iliw()rootrk(d
S

  

 

,800.0
76.11262

76.122626.21276

2

2 2sin
2

=
−

=

∑ ∈

∑ ∈ ∑ ∈+−−
=

pathi iw

pathi pathi )iliw()rootrk(d
S

  

(based on the WCETs shown in Table 2) on each path are 
shown in Fig. 5b. A critical path for a pair of nodes (vi,vl) 
is defined as the one that has minimum scaling factor 
among all paths that pass through vi and ends at vl. For 
example, if two paths ( 5211 τεετ →→→  with 

S0=0.4 and 51 ττ → with S1=0.8) are available between 

two tasks 1τ  and 5τ , the path with minimum scaling 
factor is taken (Fig. 6). In our case, the set of critical paths 
P is shown in Fig. 5b.  

                  
Fig. 6. Another task graph example is used to clarify the 
critical path  
 
(iv) Static scheduling algorithm  
       The critical-path based static scheduling (CPSS) 
algorithm (Algorithm 1) uses the path information track-
and-update scheme to distribute slack over tasks, based on 
the identified set of critical paths. By evenly distributing 
slack over tasks, the slack time that can be allocated to a 
task iτ along the path k is then computed by Sk · wi and 
the speed reduction ratio (compared to the maximum 

speed of the processor) for this task can be set to 

i
Sτ =1.0+ Sk. In each iteration, the most critical path m 

with minimum scaling factor is identified. The speed 
reduction ratios for all unallocated tasks along the path 
m are computed and allocated to every task on the path. 
If a task kτ  on path m is located on multiple paths, it 
does not use up the slack available from the rest of 
unallocated paths. The remaining slack time not used 
by task kτ for such a path j is (Sj - Sm) · wk . The scaling 
factor for each such path j should be updated according 
to equation 

∑ ∈

⋅−
+=

allocatednotijpathi iw
kwmSjS

jSjS
&

)('                  

                                                                                     (5) 
such that this remaining slack can be reclaimed by other 
unallocated tasks along path j. The most critical path m 
will be exempted from the set P afterwards. The same 
process of identifying most critical path and updating 
scaling factors of associated paths continues until all the 
tasks are allocated. In this way, speed reduction ratio is 
figured out for every task on each processor and the 
least amount of energy is consumed. In CPSS 
scheduling, it is assumed that all tasks consume their 
WCETs.  
 
 (v) Dynamic scheduling algorithm 
        During runtime, the tasks do not always consume 
their WCET. Unused time can be used to reduce the 
energy consumption further. The critical-path based 
dynamic scheduling algorithm (CPDS) is therefore used 
to reclaim the unused time during runtime. To reduce 
the runtime complexity, we use a two-phase 
framework. During the design-time phase, i.e., CPSS, 
the initial tightest schedule is obtained and then the set 

Algorithm 1. Critical-path based static scheduling 
algorithm 
Compute the scaling factor Sk for each path k∈P using 
Eqn. 4. 
while P is not empty do 
      Identify the path m with minimum scaling factor Sm; 
      for each unallocated task kτ on path m do 

            Task kτ  is allocated slack time Sm.wk and  

            The speed reduction ratio 
k

S
τ

is set to be 

1.0+Sm; 
            for each path j∈P that kτ is also located on do 
                   Update scaling factor of path j using Eqn. 5    
                   Remove path j from P if Sj is equal to zero; 
            end for 
      end for 
 Remove path m from Pi     
end while  
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of critical paths is identified. During the runtime phase, 
we apply dynamic CPDS to determine the running clock 
speed for each scheduled task using the critical-path 
information track-and-update scheme. The CPDS 
algorithm uses the static schedule results obtained from 
the CPSS algorithm assuming every task takes its ACET. 
When a task is  due  to be  scheduled  during  runtime, it  
 

Algorithm 2. Critical-path based dynamic scheduling 
algorithm 
function before schedule kτ ; 
     Identify the path m with minimum total slack 
among  associated paths with kτ , i.e., 

;min iLipathk
mL ∈= τ  

     if ( mLkw
kavgS ≤−− *)0.1τ then 

           ;
kavgS

k
S ττ −=  

     else 
           ;0.1 kwmL

k
S +=τ  

     end if 
    for each path j that kτ  is located on do 
          Update the total slack Lj using Eqn. 6 
    end for 
end function 
 
function after schedule kτ  

    for each path j that kτ  is located on do 
         Update the total slack of path j using Eqn. 7; 
    end for  
end function 

 
aggressively runs at the statically computed average-case 
speed, under the condition that the deadlines are met even 
when all the subsequent tasks consume their WCETs. The 
path information track-and-update scheme keeps track of 
the minimum total available slack from the task’s 
associated critical paths and guarantees that the task does 
not use more than that, which therefore satisfies the 
various constraints at all times. The pseudo code for the 
CPDS algorithm is given in Algorithm 2. Initially each 
path j is assigned with the total available slack Lj = (dsink - 
rroot) - ( ∑∑ ∈∈

+
jpathi ijpathi i lw ). Before and after a 

task completes its execution, the total slack of its 
associated paths are updated and tracked. When task kτ is 
due to be scheduled, the path m with minimum total slack 
Lm is identified from all paths associated with kτ . 

Task kτ is constrained to utilize a maximum slack of Lm. 
From this, the maximum allowable speed for the task 

kτ is computed, in order to guarantee that the execution 

for the subsequent tasks can be completed before their 
deadlines even if they take their WCETs. Suppose that 
the statically computed average-case speed reduction 
ratio for task kτ is denoted as 

k
avg

S
τ−

. If the 

statically allocated average-case slack time 
(

k
avg

S
τ−

-1.0) · wk is less than or equal to Lm, kτ can 

take the speed reduction ratio of 
k

avg
S

τ−
and is 

allocated with slack time 
k

Lτ = (
k

avg
S

τ−
-1.0) · wk, 

or else it can only aggressively use up the slack time 

k
Lτ  = Lm and its speed reduction ratio is set 

to kwmL
k

S /0.1 +=
τ

. After the execution speed for 

kτ is allocated, the total available slack on each path j 

that kτ is located on will be updated by  

          
k

L
j

L
j

L
τ

−=' .                                         (6) 

After kτ  completes its execution, a slack of 
k

S
τ

· (wk - 

ak) is generated and it shall be distributed over its 
associated paths. The total available slack on these 
paths are updated by        

       
k

S
j

L
j

L
τ

+=' · (wk - ak).                                   (7) 

    The information on the total available slack on paths 
is carried from one node to another with the 
communication events between these two nodes. It can 
be guaranteed that each task to be scheduled always 
gets the latest path information, due to the precedence 
relationship between tasks. 
 

3. EXPERIMENTAL RESULTS 
 
      We conducted a simulation study to evaluate the 
performance of applying DVS to the fall pre-impact 
detection system using the CPSS and CPDS algorithms. 
We measure the worst-case (WCET) and average case 
execution times (ACET) of all the tasks as shown in 
Table 2. We use the values that are reported in [12] for 
the power consumption of the MSP430 microcontroller 
at different voltages and frequencies. For the PXA255 
processor, we obtained the values for the combined 
power consumption of the processor and the gumstix 
motherboard from [13]. First we present the CPSS 
algorithm. As shown in Fig. 5b, the scaling factors for 
all critical paths are  
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Fig. 7. Update of paths’ scaling factors during the 
execution of the CPSS algorithm 
 
computed and we identify that path 1 has the minimum 
scaling factor. In Fig. 5b, each task kτ  located on path 1 
is allocated a slack of 0.712·wk. The scaling factor of path 
2 is then updated to 1.239 using Eqn. 5 since the tasks 

5τ , 6τ  and 7τ  also lie on path 2 (Fig. 7). Each task kτ  
on path 2 that is yet to be allocated is allocated a slack of 
each 1.239·wk. (Fig. 7). Based on the slack that are 
allocated to the tasks, the computational frequencies and 
voltage levels at which to execute the tasks are known. 
However, since the voltage levels and frequencies are 
continuous and real processors support only discrete 
voltages and frequencies; we apply the method in [14] to 
map the continuous voltage levels and frequencies to the 
two neighboring discrete levels. Assuming that all tasks 
always execute at their WCET, the total energy 
consumption of the system (three processors) in one 
iteration of the pre-impact detection algorithm is 12770 uJ 
if no DVS is applied and 10843 uJ if DVS is applied 
using CPSS. 
      For the dynamic case, we generate the execution times 
of each task in the DAG for 500 cycles assuming that the 
execution times are normally distributed around the 
ACET. In CPDS, we first obtain a static schedule using 
CPSS assuming that the tasks execute at their ACET. We 
then apply the CPDS algorithm as described in Section 
2.2(v) to the system. The results are as follows. For the 
case when no DVS is used, the total energy consumption 
for three processors (MSP430T, MSP430W, and PXA255) 
is 4.35 J (0.37+0.37+4.28 J). On the other hand, when 
CPDS is used, the total energy consumption is 3.08 J 
(0.032+0.032+3.02 J). Table 3 shows the battery life 
extension of 1000mAh battery using CPDS algorithm for 
gumstix motherboard with the PXA255 processor. From 
the results we see that CPDS is able to reduce the energy 
consumption of the system significantly by using DVS. 

 
Table 3. Battery life extension of 1000mAh battery 
using CPDS algorithm on the gumstix motherboard 
with the PXA255 processor 

 Voltage 
(V) 

Average Current 
(mA) 

Battery 
life  
(hours) 

Gumstix 
motherboard 
with PXA255 

4.5 

mA
sV

J

4.89
0212766.05005.4

28.4

=
××

 

11.19 

DVS with 
CPDS 

4.5 

mA
sV

J

1.63
0212766.05005.4

02.3

=
××

 

15.85 

Note: 0.0212766s is one iteration execution time of the 
detection algorithm using DVS processor with the CPDS 
algorithm 
 

4. CONCLUSIONS 
 
        In this paper, we propose low-energy static and 
dynamic scheduling algorithms. Our algorithms are 
based on the analysis of critical paths that represent all 
the timing and precedence constraints imposed. We 
designed a track-and-update scheme to keep track of 
and to update the scaling factor (or available slack) for 
each critical path. By using this new scheme, our static 
(CPSS) and dynamic (CPDS) algorithms exhibited a 
low computational complexity compared to other 
scheduling algorithms [8]. The timing and precedence 
constraints are also guaranteed to be satisfied. The 
simulation results conclusively demonstrated that our 
proposed scheduling algorithms save considerably 
energy compared to the real execution on the 
heterogeneous multiprocessor systems. 
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