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Abstract 

In order to overcome the limitation on small size of gene 
datasets, many meta-classification methods which 
ensemble classifiers from different datasets have been 
developed. However, due to discrepancies of the 
characteristics among multiple heterogeneous datasets, 
the number of common and significant genes is usually 
small. Instead of matching common genes between 
heterogeneous datasets, we propose a novel solution, 
alternative feature mapping approach (AFM), to utilize 
related and discriminative gene expressions while not 
necessarily having exact matches. Genes in the training 
dataset are clustered and mapped to the test dataset as 
gene groups. Through analyzing the correlation within 
gene groups, significant genes can be matched and 
dataset dissimilarity factors can be used as weights for 
meta-classification. We conducted experiments 
consisting of 10 heterogeneous datasets with different 
cancer types and platforms. Our experiments show that 
classification performance is greatly improved using 
suitable significant genes selected by AFM, and weight 
voting method based on AFM provides more reliability 
for meta-classification. 

Keywords: AFM, Gene Expression Data, Meta-
classification, Heterogeneous and Feature Selection.  

1. INTRODUCTION 
For DNA microarray technology, most of available 
datasets are collected from different research institutes 
with particular objectives. Also, samples hybridized on 
different types of platforms like oligonucleotide-based or 
cDNA-based microarray may lead to large discrepancies 
[1]. The homogeneous sample resources that can be 
directly used for classification are limited. To overcome 
the insufficiency of homogeneous datasets, many research 
works turn to utilizing heterogeneous datasets to 
complement training samples. For single or multiple 
dataset(s), ensemble different classifiers trained from 
various irrelevant features, learning algorithms or datasets 
can be considered as effective strategies to improve the 
classification accuracy. Some works [2,3] have tried to 
partition high-dimensional features into several sets to 
train multiple classifiers for meta-classification. 
Nevertheless, the results were not totally satisfactory as 
the heterogeneous datasets had few common genes. 

 
Several major compatibility problems may arise when 
handling heterogeneous gene expression datasets [4]. First, 
the number of probe sets configured for different types of 
microarray is not always consistent. For example, there 
are about 12600 probe sets contained in HG-U95v2 
microarray, and approximately 22600 probe sets for HG-
U133A. Second, in order to minimize the intra-microarray 
variation over several samples in the same dataset, 
normalization process needs to be performed to make raw 
signal comparable.  As a result, the gene expression value 
may fall into different ranges by normalization controls. 
Third, experimenting on diverse cancer type samples can 
generate different gene expression profiles. These 
dissimilar profiles must own a part of distinctive 
functional genes different with other cancers, and result in 
making comparison impossible [5,6]. All methods 
mentioned above must initially extract the common probe 
sets shared by heterogeneous datasets before selecting 
significant genes and classifying cancer samples [7]. 
Obviously, analyzing on limited number of common 
genes may lose much additional information inside 
distinct features. Finding common significant genes 
among multiple gene datasets is a great challenge for 
meta-classification. 
 
In this paper, we propose a mapping procedure to link 
between feature selection and classification and extend 
AFM for multiple gene datasets. The alternative feature 
mapping (AFM) is to match the significant features of 
training dataset with potential useful features in the test 
dataset instead of demanding exact feature matching. 
Genes in the training dataset are clustered and mapped to 
the test dataset as gene groups. After analyzing the 
correlation within each gene group, corresponding 
discriminative genes in test dataset can be identified by 
AFM for classification. Furthermore, the dataset 
comparison procedure in AFM can generate a dataset 
dissimilarity factor for each pair of datasets, which reflects 
the difference between training and test datasets. We take 
advantage of this dataset dissimilarity factor as weight for 
weight voting method in meta-decision. Meta-
classification that assembles multiple classifiers associated 
with their weights improves classification accuracy and 
reliability. 
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2. ALTERNATIVE FEATURE MAPPING 
2.1. Overview of AFM 
Let { }

AmAAAAA x,,x,x,xX
321
L=  be a training dataset A 

with Am samples and An genes in each sample, and 
similarly BX for test dataset B including Bm samples and 

Bn genes. A modified t-statistic feature selection method 
[8] is adopted as a hypothesis test to assign t-value for 
each gene. A large t-value means higher discrimination 
between two classes of normal and cancer sample. In 
AFM, initially, low informative genes need be filtered out 
with respect to small t-values in the training dataset, and 
only '

An  top order genes will be remained. After that a k-
means cluster algorithm will be executed to partition 

'
An candidates into k  clusters to construct training gene 

groups AG . Here, each gene group AG  contains p  positive 
correlated genes and is represented as 

{ }pA ggggG ...,, 321=  . p  may not be uniform and can be 
of different values for different groups. One significant 
gene *

Ag  with the highest t-value will be extracted from 
each gene group to form the training feature 
vector { }**** ...,,

321 kAAAAA ggggS = . Next, we directly map 
each AG  to the test dataset BX  to construct k  
corresponding test gene groups BG . Each group may 
contain q  genes, and is represented 
as { }qB ggggG ...,, 321= . Comparing the difference between 

AG  and BG , genes with low variation after mapping can 
be regarded as useful genes, and then be refined as a 
template to search more correlated genes across Bn  genes 
in test dataset BX . Finally, similar to AS , the 
corresponding significant features can be found out from 
these refined test groups, and generate a test feature 
vector { }**** ...,,

321 kBBBBB ggggS = . In this paper, we call 
genes in AS  and BS  discriminative genes. Two 
parameters k and '

An  can be set by users initially. A 
completed flow of AFM is illustrated in Fig. 1. 
 
2.2. Gene Group Construction 
The basic idea of AFM is to extend an individual 
significant gene to a group of related genes for mapping 
rather than the traditional direct mapping (TDM) that 
maps genes of same features between training and test 
samples. As these related genes in each group should be 
discriminative as well, features with high t-values in the 
filtered dataset are used to construct the training gene 
groups in Eq. (1).  
                           ),( '

AnterFeatureFil A
'
A XX =                  (1) 

 
After '

An  candidate genes are remained, a k-means cluster 
algorithm is applied to divide these genes into k  gene 
groups, and each group may have different value of p . 
Garrett-Mayer E et al. [9] has demonstrated that positive 

correlation can best reflect the relationship of each gene in 
a group. Hence, the k-means algorithm in AFM uses the 
distance between each gene in terms of positive Pearson 
correlation coefficient, and minimizes the variation of 
genes within group as shown in Eq. (2). We believe that 
these independent groups built by k-means can cover 
different ranges of gene function pathways as many as 
possible. To generate a feature vector AS  containing k  
discriminative genes on the training dataset, gene with the 
highest t-value in each training group AG  will be selected 
respectively as shown in Eq. (3).  
                           ),(_ kmeanskG
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'
AX=    ],1[ ki∈            (2)  
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The use of gene groups not only enables individual 
significant gene for group mapping, but also be able to 
measure the difference between two heterogeneous 
datasets. In order to compute the difference, AFM needs 
to calculate the correlation for each gene in a group to 
reflect the properties of AG , which is termed as AR . The 
detailed computation procedure is discussed in section 
2.4.1. In this pp * correlation matrix AR shown in Eq. (4), 
V denotes the value of Pearson correlation coefficients of 
genes between each other in the same group.  
 

 
Figure 1.  Workflow of AFM. 
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2.3. Direct Dataset Mapping 
For the mapping of different generations of Affymetrix 
microarrays, a preferable way is to use the spreadsheet 
provided by Affymetrix. According to the Best Match 
method shown in spreadsheet (HG-U95v2 vs HG-U133A) 
[10], one probe set in HG-U133A microarray may have 
multiple corresponding matched probe sets in HG-U95v2. 
It should be better to take average of same meaning probe 
sets in HG-U95v2 microarray so as to convert to one to 
one mapping as shown in Fig. 2. In AFM, because of the 
inconsistence of two microarrays, l  unmatched genes 
may be lost and remain q  genes in BG , when AG cannot 
be totally mapped to BG . 
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2.4. Gene Group Matching 
2.4.1. Gene Group Comparison. Other than the l  
unmatched genes, differences of gene expressions in 
datasets can also influence the application of matched 
significant genes. For instance, some genes with strong 
discriminative power in the training dataset may no longer 
be significant for the test dataset. Therefore, it is necessary 
to introduce a strategy that can assess the discrepancies of 
two independent datasets and filter useless features which 
may exist in BG . Since the comparison of individual gene 
is of low significant for heterogeneous datasets, the 
application of gene regulatory network to uncover the 
interaction information embedded in multiple correlated 
genes is obviously a suitable choice. If the correlation 
structure of a group has some changes after mapping, the 
dissimilarity between two groups can indicate that some 
genes may not perform well in the test gene profile. 
 
Before assessing the difference between two datasets, 
AFM calculates the properties BR of corresponding group 

BG  and then obtains the difference BA RR −  to measure 
the dissimilarity between two heterogeneous datasets. In 
difference matrix Eq. (6), NaN  is the null value for l  
missing genes. Each gene in a group will be assigned a 
dissimilarity factor id  derived from this difference matrix, 
which is the average of its correlation coefficients to other 
q  non-null value genes to reflect its change from the 
training dataset. For each gene group, AFM introduces a 
group dissimilarity factor gd that can indicate the 
discrepancies between AG  and BG  shown in Eq. (8). The 
group dissimilarity factor could also be extended for 

identifying the difference between two entire datasets, and 
be used for handling multiple training datasets in meta-
classification as described in Section 2.5. For Eq. (7) and 
Eq. (8), we have ]2,0[, ∈gi dd . 
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2.4.2. Refining Matched Gene Group. Although there 
are numerous genes in a microarray, only a minority of 
genes showing distinction between normal and cancer 
samples are regarded as useful features. Therefore, in a 
gene group some genes with high variation after mapping 
to the test dataset would have a high possibility to be 
converted into the useless genes. Since the aim of AFM is 
to identify a set of potential significant genes representing 
all BG , noisy genes contained in each gene group may 
bring interference to correctly obtain these expectative 
representative genes. Filtering these noisy genes with 
large id  can further refine the matched gene groups BG . In 
one test gene group, for the purpose of controlling the 
amount of genes which need to be filtered, the number of 
refined genes r is determined by gd . If the difference 
between AG and BG is relatively large, AFM will only 
keep a few useful genes, and vice versa. Therefore, r  is 
calculated by the inverse proportion of gd to q  genes 
in BG , and β  in Eq. (9) is a constant used to reduce the 
proportion of noisy genes in some cases. The remaining r  
genes are regarded as a template { }rB ggggT ...,, 321= , 
where BB GT ⊂ , to search additional correlated genes 
in BX . In AFM, it is necessary to refine all k  test gene 
groups to improve the quality of templates. 
                            ( ) qdr g *2/1 β−−=                           (9) 
 
2.4.3. Searching Representative Feature. Since the r  
remaining genes in the template BT may not be sufficient 
to locate a representative gene in one group, additional 

rp − genes which are correlated with BT  across the whole 
test dataset should be adopted to complement BG . One 
advantage of gene complement is to make the number of 
genes in both training and corresponding test group 
equivalent. In AFM, we set a weight iw  to every gene in 
the whole test dataset by calculating their correlations 
with each other gene in template BT  as shown in Eq. (10). 
After that rp −  additional genes with highest iw  in 

BX will be joined into the template BT  to reconstruct the 

 
Figure 2.  Gene mapping between HG-95v2 and HG-U133A. 
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gene group BG . For k  gene groups in the test dataset, this 
procedure will repeat k times until all test gene groups 
have been filled in. In order to speed up the process of 
searching, we can initially filter out low variation genes in 

BX  to make Bn  smaller. 

       ( ) rggPearsonw
r

j
jii /,

1
∑
=

=   Bji Tgg ∈∈ ,BX             (10) 

 
With the steps above, all genes in a test group BG  would 
be related to a corresponding *

Ag . Therefore, in a group 

BG we need to indentify the most representative gene from 
q  potential useful genes to match significant gene 

*
Ag in AG . Similar to Eq. (10), in Eq. (11) AFM computes 

the correlation for one gene with the rest of genes in BG as 
a weighting factor to indicate its conjunction to BG . It is 
obviously that the gene that shows the highest correlation 

'
iw among other genes in a group can be considered as a 

significant gene to represent BG . Finally, all genes with 
highest '

iw  in each BG  are collected to generate a test 
feature vector BS corresponding to the training feature 
vector AS  for classification. Due to the different scaling 
among heterogeneous microarray datasets, it is also 
necessary to rescale AS  and BS  before inputting these 
discriminative genes into any kind of classifiers. Here, we 
simply convert AS  and BS  to standard normal distribution 

'
AS  and '

BS with zero mean and unit standard deviation by 
z-score normalization, and complete all steps of 
alternative feature mapping. 
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2.5. Meta-Classification 
Usually, classification performance depends on the dataset 
that is used to train classifier. However, the size of 
training samples is usually small for an individual gene 
expression dataset, which may not be effective to train a 
high performance classifier. One possible way is to 
ensemble multiple classifiers that are generated from 
several heterogeneous datasets to make a meta-decision 
on test dataset.  As AFM is to match significant genes 
between two datasets, problem of handling multiple 
training dataset can be solved by making pair of each 
training dataset with the particular test dataset, and 
performing classification individually. The meta-decision 
then can be determined by summarizing individual 
classification results of each classifier associated with 
their weights as shown in Fig 3.  
 
For meta-classification we adopt a weight voting method 
to combine various classifiers that are trained by multiple 
gene datasets. Suppose there are h training datasets and 1 
test dataset. Firstly, each training dataset need make a 

comparison with the test dataset to identify significant 
genes by AFM, and generate a dataset dissimilarity 
factor Dd  for weight voting. In Section 2.4.1, we have 
introduced an indicator called group dissimilarity factor 

gd calculated by making difference between AR and BR to 
reflect the discrepancies between two heterogeneous 
microarray datasets. We take average of gd to derive 

Dd as weight for each pair of training and test datasets. In 
Eq. (13) gd is the group dissimilarity factor, k is the 
number of gene groups forming in training dataset. 
Since ]2,0[∈gd , we normalize the dataset dissimilarity 
factor Dd  into a range [0, 1] divided by 2.  
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Secondly, h classifiers trained by heterogeneous datasets 
are used to classify each test sample, and assign their 
classification labels, normal or tumor. The weight of 
classifier would then be voted to the corresponding label 
of test sample respectively. Finally, to make a meta-
decision, we calculate the total weights on each 
classification label of test sample. By comparing the total 
weights of normal and tumor label, the final decision can 
be made by selecting the label that has smaller weights. In 
Eq. (14) if cxclassifier i =)( , 1))(( == cxclassifiersign i .  

  
{ }

)))(((minarg
1,
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h

i
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3. EXPERIMENTS 

3.1. Experiment Settings 
To demonstrate how AFM works well for heterogeneous 
gene expression data, we arranged two types of 
classifications, single-classification and meta-
classification. For single-classification, only one classifier 
is used to classify the test dataset. In our experiments, 8 
out of 10 gene expression datasets were separated into 3 
kinds of heterogeneous datasets combination, which 
involved in datasets with same cancer type but different 
platforms, different cancer types with the same platform 
and different cancer types with different platforms. 
Detailed information about 10 microarray datasets is 

 
Figure 3.  Meta-classification by combing h classifiers 
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illustrated in Table I. Table II lists each combination of 
heterogeneous datasets. Two kinds of widely used 
classifiers, SVMs and KNN, were introduced to classify 
heterogeneous datasets using the discriminative genes 
selected by AFM. For comparison purpose, a set of 
comparison experiments with traditional direct mapping 
(TDM) was also performed to compare the effectiveness 
of direct matched genes and alternative genes. The 
procedure of TDM is much simpler than AFM, which first 
selects top k  significant genes from the common genes 
between training and test dataset, matches corresponding 
genes to the same meaning genes in the test dataset, 
rescales significant genes by z-score normalization.  
 
For meta-classification, we combined 6 classifiers that 
were trained by all six training dataset as shown in Table I 
to classify test dataset. The final meta-decision was made 
by using weight voting method according to the dataset 
dissimilarity factor of each classifier. In our experiment, 4 
sets of experiments were conducted to verify whether 
AFM and work well on meta-classification scenario.   

TABLE I.  INFORMATION OF HETEROGENEOUS DATASETS 

Dataset 
Name 

Microarray Cancer 
Type 

Normal 
Samples 

Tumor 
Samples 

# of 
genes 

Usage

GSE1987 U95v2 Lung 9 28 12599 Test 
GSE2514 U95v2 Lung 19 20 12625 Test 
GSE10072 U133A Lung 49 58 22283 Training
GSE2443 U133A Prostate 10 10 22283 Test 

Singh U95v2 Prostate 50 52 12600 Training
GSE6631 U95v2 HNSCC 22 22 12625 Training
GSE9476 U133A Leukemia 38 26 22283 Training
GSE6012 U133A Skin 10 10 22283 Test 
GSE7670 U133A Lung 31 35 22283 Training
GSE6919 U95v2 Prostate 81 25 12625 Training

TABLE II.  COMBINATION OF HETEROGENEOUS DATASETS FOR 
CLASSIFICATION 

Training 
Datasets 

Test Datasets Cancer Type Platform 

GSE10072 GSE2514 Lung U133A -> U95v2
Singh GSE2443 Prostate U95v2 -> U133A
Singh GSE1987 Prostate -> Lung U95v2 

GSE10072 GSE6012 Lung -> Skin U133A 
GSE9476 GSE2514 Leukemia -> Lung U133A -> U95v2
GSE6631 GSE6012 HNSCC U95v2 -> U133A

 

3.2. Experiment Results and Discussions 
Table III demonstrates the single-classification results 
using TDM with 5 and 20 discriminative genes, and Table 
IV shows the corresponding classification performance by 
AFM. Firstly, when comparing the classification 
accuracies by using TDM and AFM, we find great 
accuracy improvement occurred for AFM in most 
experiments except the first case (GSE10072->GSE2514) 
with about 2.5% to 5% decrease. Furthermore, it is 
obviously that features selected by TDM do not 
successfully classify different cancer type datasets. Only 
41%~75% accuracies for 5 significant genes case and 
35%~70% for 20 significant genes case are reached by 

TDM. However, by contraries, AFM demonstrates its 
powerful performance for classification using appropriate 
genes not the direct matched genes. For example, TDM 
can only reach about 50% accuracy in experiment 
(GSE10072->GSE6012); while a high accuracy near to 
100% has been achieved by AFM. Secondly, besides the 
comparison with TDM and AFM, for the different number 
of significant genes (5 and 20 genes) chosen in our 
experiments, classification accuracies for AFM using 5 
significant genes have a slightly better than 20 genes in 
most cases. That may be the reason that small number of 
discriminative genes means fewer gene groups, and a 
relative larger size of genes in each test gene group, which 
could cover more potential useful genes. Thirdly, since 
two kinds of classifiers, SVMs and KNN are used to test 
the performance of AFM, when assessing the 
classification results of these two classifiers, both SVMs 
and KNN show satisfied classification accuracies in 
different experiments. Therefore, AFM has a good 
compatibility with different kinds of classifiers. 

TABLE III.  SINGLE-CLASSIFICATION RESULTS BASED ON DIRECT 
MAPPING METHOD (TDM) 

   5 significant genes        20 significant genes 
Single-classification

(TDM) 
SVMs 

Acc (%) 
KNN 

Acc (%) 
SVMs 

Acc (%)
KNN 

Acc (%)
GSE10072->GSE2514 100 100 100 
Singh->GSE2443 50 50 55 
Singh->GSE1987 59.46 62.16 64.86 
GSE10072->GSE6012 45 50 60 
GSE9476->GSE2514 41.03 48.72 41.03 
GSE6631->GSE6012 75 70 35 

100 
55 

70.27 
60 

41.03 
50 

TABLE IV.  SINGLE-CLASSIFICATION RESULTS BASED ON 
ALTERNATIVE FEATURE MAPPING (AFM) 

   5 significant genes        20 significant genes 
Single-classification

(AFM) 
SVMs 

Acc (%) 
KNN 

Acc (%) 
SVMs 

Acc (%)
KNN 

Acc (%)
GSE10072->GSE2514 97.44 97.44 94.87 
Singh->GSE2443 65 70 65 
Singh->GSE1987 86.49 83.78 81.08 
GSE10072->GSE6012 100 100 100 
GSE9476->GSE2514 79.49 87.18 97.44 
GSE6631->GSE6012 95 90 85 

94.87 
75 

83.78 
95 

84.62 
90 

 

 
We especially concentrate on an experiment (GSE6631-
>GSE6012) to investigate how AFM matches appropriate 
features. Fig. 4(a) illustrates the distribution of normal and 
tumor samples in the training and test datasets. AFM 
chose genes 32263_at and 39657_at from the training 

  
(a). Feature mapping using AFM.          (b). Feature mapping using TDM.

Figure 4. Distribution of training and test samples. 
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dataset and two corresponding discriminative genes 
209773_s_at and 209185_s_at to observe the distribution 
of samples. Fig. 4(b) shows the distribution based on gene 
32263_at, 39657_at and gene 202705_at, 213240_s_at 
matched by TDM. Through the comparison, we can notice 
that the test normal and tumor samples in the test dataset, 
as shown in Fig. 4(a) are totally separated according to the 
two feature genes selected by AFM; while in Fig. 4(b), 
normal samples are mixed with tumor samples, which 
could decrease the classification accuracy. 

TABLE V.  META-CLASSIFICATION RESULTS BASED ON 
ALTERNATIVE FEATURE MAPPING (AFM) 

 SVMs (5 significant genes)         
 GSE 

10072 
Singh GSE 

9476  
GSE 
6631  

GSE 
7670 

GSE 
6919  

Meta 
Decision

GSE1987        
Acc (%) 81.08 78.38 48.65 78.38 86.49 48.65 86.49 

dD 0.188 0.235 0.234 0.207 0.156 0.254  
GSE2514        
Acc (%) 97.44 94.87 89.74 74.36 94.87 74.36 94.87 

dD 0.069 0.196 0.234 0.201 0.083 0.252  
GSE2443        
Acc (%) 50 50 70 45 45 40 55 

dD 0.330 0.205 0.228 0.236 0.306 0.283  
GSE6012        
Acc (%) 90 85 75 90 95 70 95 

dD 0.334 0.230 0.256 0.222 0.299 0.264  
 
Table V shows the meta-classification results on four test 
datasets by combing six heterogeneous classifiers. For 
each test dataset, we listed classification accuracy of every 
used classifier and its dataset dissimilarity factor Dd  as 
weight respectively. The accuracy of meta-decision is the 
final result after performing weight voting method by 
merging six classifiers. For one particular test dataset, we 
can find each classifier trained by heterogeneous training 
dataset may have totally different classification 
performance. Some classifiers works well and achieve 
high classification accuracy, and some are not. For test 
dataset GSE1987, 86.49% classification accuracy was 
reached by classifier GSE7670, while only 48.65% test 
samples were classified correctly by classifier GSE9476 
and GSE 6919. Similar situations happened on other three 
test datasets as well. Apparently, it is not reliable to 
determine the class of test sample in terms of only one 
classifier. Furthermore, since classifiers are trained by 
heterogeneous datasets, we have no prior knowledge 
about the performance of classifier when it is applied on 
different types of datasets. Therefore, merging different 
classifiers could provide stable classifications and reach 
relative high accuracies. As we can see in Table V the 
accuracy of meta-decision is basically close to the highest 
accuracy among six classifiers. The reason is that for a 
high performance classifier, the dataset dissimilarity factor 

Dd is relatively low. When taking weight voting, 
classifiers with lower dataset dissimilarity factors would 
have more effect on final results, and ensure a reliable 
high classification performance by combing multiple 
classifiers.  

4. CONCLUSIONS 
In this paper, we propose a novel alternative feature 
mapping method (AFM), which can match two related but 
both highly discriminative genes from training and test 
dataset. Contrary to the traditional direct mapping method 
(TDM) that maps genes of exact features, AFM takes 
advantage of a group of correlated genes instead of 
individual significant genes for mapping. Based on the 
concept of gene regularity networks, a set of appropriate 
genes from test groups can be recognized by AFM, which 
may be more suitable for classifying heterogeneous cancer 
samples. Moreover, the dataset dissimilarity factor derived 
by comparison of heterogeneous datasets can be applied 
on meta-classification through weight voting method. To 
test the performance of AFM, we conducted 6 single-
classification and 4 meta-classification experiments 
consisting of 10 heterogeneous datasets. In order to 
compare the classification results with AFM, we also 
classified the same gene expression data using the 
traditional direct mapping. Our experiments show that 
classification accuracies obtain great improvement based 
on the appropriate discriminative genes selected by AFM, 
and AFM can also provide reliable classification 
performance by combing multiple classifiers from 
heterogeneous datasets.  
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