
Enzyme Computation
Computing the way proteins do

Jaime-Alberto PARRA-PLAZA

Computer Science, Avispa Group, Pontificia Universidad Javeriana

Cali, Colombia; jparra@javerianacali.edu.co

Jaime VELASCO-MEDINA

Bionanoelectronics, Universidad del Valle

Cali, Colombia; jvelasco@univalle.edu.co

and

Eduardo CAICEDO-BRAVO

Perception and Intelligent Systems, Universidad del Valle

Cali, Colombia; ecaicedo@univalle.edu.co

ABSTRACT

It is presented enzyme computation, a computational

paradigm based on the molecular activity inside the

biological cells, particularly in the capacity of proteins to

represent information, of enzymes to transform that

information, and of genes to produce both elements

according to the dynamic requirements of a given system.

The paradigm explodes the rich computational possibilities

offered by metabolic pathways and genetic regulatory

networks and translates those possibilities into a

distributed computational space made up of active agents

which communicate through the mechanism of message

passing. Enzyme computation has been tested in diverse

problems, such as image processing, species classification,

symbolic regression, and constraints satisfaction. Also,

given its distributed nature, an implementation in

dynamical reconfigurable hardware has been possible.

Keywords: Bioinspired systems, computational agents,

computational models, cytocomputation, distributed

computation, parallelism.

1. INTRODUCTION

It is very well known the enormous success that

bioinspired approaches have obtained in solving problems

such as optimization, classification, searching, or

constraint satisfaction [1]. However, it is also a fact, and a

concern for most of the researchers in the field, the evident

dependence with respect to the right choice of values for a

set of uncorrelated parameters for this success to come [2].

Nonetheless, when turning to Nature for new inspirations

it is evident that it has already solved this problem, so, a

closer look at how this has been accomplished can be

useful for trying to minimize the impact of these

parameters in the relative success of the technique [3].

It is in this spirit that enzyme computation is proposed, as

a framework for solving problems inspired in the

processes that are performed inside the cytoplasm of

biological cells through the interaction of proteins and

enzymes and among these and genes. The enzymatic

approach is part of a major concept, the cytocomputational

paradigm [4]. Currently, it has three parts, all of them

concurrent: a linear genotype, which produces resources

(proteins and enzymes) on demand; a set of proteins,

which hold incoming and temporal data and that are

arranged in a regular geometric space, able to perform

local computation; and a set of enzymes acting upon

proteins to perform transformations. In designing the

framework, explicit parameters requiring careful tuning

have been avoided. Instead, each part regulates and is

regulated by the others, resembling the metabolic

pathways and the genetic regulatory networks found in

biological cells. The fitness of a given representation is

tested according to the patterns presented in the current

problem and this establishes if that particular component

becomes specialized, generic, or silenced.

A solution to a problem runs in this way: first, it is

necessary to set genes for the resources to be allocated,

been these initial information, i.e, state, data, and

functions. All of these can be added or eliminated at any

time, as the computational space is naturally concurrent

and distributed. Second, genes express enzymes, which

process proteins if possible. The enzyme selected for a

given protein is assigned according to a matching matrix,

which is updated from previous solvers in order to gain

insight into common patterns.

19SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 4 - YEAR 2013ISSN: 1690-4524

If the computational space gets stuck, this becomes a

pressure for silenced genes to express or for active genes

to change, following a variety of evolutionary processes,

but without dependency on representation or position, i.e.,

each gene expresses a whole, functional product, and it is

the interactions among these products that evolves. For

that, every product is tagged with a concentration factor

and a shape value, and evolution implies fitting these two

numbers; in this way, as the process advances, products

become part of disjoint sets. It is this specialization that is

able to generate meaningful patterns and to minimize the

dependency with respect to preset parameters.

This paper is organized as follows: section 2 gives the

biological support. Section 3 presents the computational

model. Section 4 shows several illustrative examples.

Section 5 offers the conclusions and future work.

2. BIOLOGICAL CONCEPTS

All living beings on Earth share the same biochemical

machinery present in every one of their constituent cells.

Inside a cell, three macromolecules outstand as the main

actors when modeling its computational powers (see

Figure 1): genes, proteins, and enzymes. Although

enzymes are also proteins, their active role as protein

transformers justifies making this explicit distinction,

leaving the name protein only for those macromolecules

exhibiting very low capacities of transformation [5].

Figure 1. Protein interactions in a cell.

Three structures are clearly identifiable in Figure 1:

nucleus, cytoplasm, and membrane. Nucleus stores the

genetic code as a collection of genes. A gene normally is

in charge of producing a protein or an enzyme, and its

activity is regulated by special proteins called transcription

factors (TF). Cytoplasm is the place where proteins and

enzymes interact. Enzymes transform proteins modifying

their properties. Membrane holds another kind of special

proteins, receptors, which become specialized in reacting

with other special proteins, ligands. Finally, some proteins

may leave the cell and interact with other cells.

Gene structure

A gene in cytocomputation is composed, at least, of four

parts: promoter, operator, exon, and intron (see Figure 2.)

Promoter and operator make up the header of the gene and

are intended to allow its regulation from other genes.

Exons and introns conform the body of the gene and are in

charge of producing resources either enzymes or proteins.

In fact, products are only generated from exons; introns

are a kind of disabled exons, susceptible to become active

through mutations. In the biological system, exons do not

directly produce proteins, but an intermediate called

messenger RNA (mRNA). The intermediate generated by

introns, called small nuclear RNA (snRNA), acts as

another level of regulation and biologists are just starting

to discover its principles [6-7].

Figure 2. Gene structure

Gene regulation
Genes regulate each other through an interaction between

cis elements and trans elements. Cis elements are the ones

abovementioned, promoters and operators, which are

constituents of every gene. Trans elements are a special

kind of proteins, called transcription factors (TF), released

as a product from the exons of genes. Transcription factors

produced by a gene may regulate the activity of any gene,

including the one that generated them [8-9].

Figure 3. Gene regulation

The activity of a gene depends on the state of its promoter

and operator. The promoter enables the gene’s activity

whereas the operator inhibits it. In order for a gene to be

20 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 4 - YEAR 2013 ISSN: 1690-4524

operational, it is necessary that its promoter be bound to its

TF. Two strategies exist in biological genes: promoter’s

regulation is either all-or-nothing or proportional. The

former occurs when the TF must be all present, resembling

the control performed by a logical AND gate; the latter

happens when TF act as facilitators, working in an

incremental fashion, i.e., the more TF present, the more

product will be released by the gene (see Figure 3

bottom.). The control established by the operator follows a

similar pattern: it can be either digital or analogical. In the

first case, TF are as the inputs to a logical OR gate and the

presence of any of them disable the gene. In the second

case, the activity of the gene is reduced proportionally to

the number of TF present in the operator [10].

Protein structure

A protein is made up of amino acids (aminos for short),

attached each other through chemical bonds (see Figure 4.)

An amino can set connections not only to its immediate

neighbors, but to distant ones, and in this way a protein is

folded in a tridimensional shape. Another possibility for an

amino is becoming phosphorilated: this happens when a

residue is attached to it, modifying its behavior. Both

alternatives are used in the cytocomputational model [11].

Figure 4. Protein structure

Enzyme processing

Modifications to a protein are sometimes motivated by the

protein itself, but can be also forced externally through the

participation of an active agent: an enzyme. An enzyme

has the capacity to alter the internal structure of a protein,

using either the changing in bonds or the adding of

phosphate residues (see Figure 5.) In this case, the enzyme

is like an active agent, and the protein is a kind of passive

component. After being attacked by an enzyme, a protein

may suffer different transformations (see Figure 6): broke

up in two or more new proteins, joined to another or other

proteins, modified in structure (components added or

deleted), modified in functionality (components changed.)

Figure 5. Protein with residues

Figure 6. Enzyme activity

Pathways and networks

A protein can suffer successive transformations through its

exposition to different enzymes. Because through any of

these modifications a protein may become the source

product for itself, many self-regulating scenarios are

possible. In the cytoplasm, metabolic pathways are created

when a cascade of successive transformations produces a

set of proteins from a unique protein. In the same way,

after modification, a protein may become a TF, allowing

for regulation of an entire process. Even, a protein may

regulate the rate of its own production. Genetic regulation

networks occurs when a set of genes regulate each other

through TF created inside the own set [12-13].

3. COMPUTATIONAL MODEL

Enzyme computation is built on the base of modeling sets

of agents which interact among them following the rules

present in metabolic pathways and genetic regulatory

networks. In enzyme computation, problems are

represented as records, holding the required information

for the system to solve them. Figure 7 shows one of such

records, written in Oz code [14-15]. Input holds the

original information of the problem. Output is the place

where the system will put the transformations and results

obtained. Process is in charge of carrying out the

transformations required, and a finish statement describes

what condition must be met to end the process and what

action to take.

c(

input:Input

output:Output

finish:'cond'(condition:FinishCondition

action:FinishAction)

process:Process

)

Figure 7. Problem descripcion

This record is received by a solver, entity in charge of

creating, activating, and sensing the computational space

which will solve the problem described. The Solver takes

the problem and creates the structures necessary for

solving it. Figure 8 shows an example for the case that the

problem will be solved through a set of cooperative agents

resembling the aminos of a protein.

21SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 4 - YEAR 2013ISSN: 1690-4524

fun {Solver Problem}

DiffType = {Label Process} Status

ProteinInitState = c(input:Input output:Output

finish:c(finishCondition:FinishCondition

finishAction:FinishAction)

agent:Protein status:Status)

Protein = {AgentProtein ProteinInitState}

Amino = {Tuple.make c {Record.width Input}}

in

for I in 1..{Record.width Input} do

InitState = c(mypos:I myval:Input.I

neighs:DiffNeighs.DiffType

agent:Amino protein:Protein process:Process)

in

Amino.I = {AgentAmino InitState} end

for I in 1..{Record.width Input} do

{Send Amino.I start} end

Status

end

Figure 8. Solver descripcion

Once the threads are allowed to work, the enzyme system

will attack the proteins created, modifying them until one

of two conditions matches: the finishing condition is met

or the computational space becomes stable (no more

message traffic). The proper condition will be informed

through the status flag, which can be sensed by other

processes for synchronization purposes.

4. EXAMPLES

This section will present several examples extracted for

different fields solved by enzyme computation. They are

intended to show the main characteristics of the paradigm

when dealing with real problems.

Cooperative computation

There exist many problems which are parallel by

definition but are usually seen as sequential because of the

way they are traditionally solved. Consider for instance the

problem of finding the maximum value in a vector of

numbers. Any programmer will almost instantly conceive

a solution implying a loop and a store. The store will hold

the current maximum, and the loop will be used for

comparing each number against such current maximum.

When reaching the last position of the vector, the store will

hold the global maximum value. Although this approach is

simple, it hides the real characteristics of the problem,

which disallows any attempt to take advantage of a

particular disposition of the numbers, i.e., the traditional

approach always requires to traverse the entire vector no

matter the maximum value is already at the first position

[16].

In enzyme computation the time required to find the

solution is directly proportional to the disorder of the

vector, it is to say, the more local maxima exist, the more

is the time necessary to find the global maximum. On

average, the time required is in the order of NLogN, being

N the size of the vector and Log the logarithm base 2. In an

extreme situation, if the maximum is in the middle of the

vector, the solution can be obtained in only one step.

Figure 9 shows a typical scenario and the successive

transformations performed on the protein until it gets

stable and holding the final solution. Observe how fast

unhelpful information is discarded in every stage. The

process followed is that every amino compares its value

against those of its neighbors. Any amino having a

neighbor greater than it will exclude itself from the

protein. At any time, only those aminos that are greater or

equal to both neighbors will be alive. Comparisons

continue until no more bonds are removed, which indicates

that a stable state has been reached and the solution lies in

the surviving aminos.

5 2 7 9 4 9 8 1 6 3

(a) Original vector

5 9 9 6

(b) After the first comparisons

9 9

(c) Final solution

Figure 9. Problem solved by protein computation

Propagating computation

Consider finding the shortest path between two nodes in a

directed graph. The entire graph is associated with a

protein, where each node is an amino and its vertices are

the chemical bonds attached to that amino. The process

starts by phosphorilating the starting and ending nodes.

The starting node then proceeds by exciting its neighbor

bonds. Every time an amino senses activity at any

incoming bond it enters an unstable state which is resolved

when all these bonds become excited. At this point, the

amino selects the least-valued bond and propagates its

value to its outcome neighbors. At the same time, the

strength of the winning bond is increased. When the

ending node is reached, it no longer propagates new

information and the computational space becomes stable,

finishing the process. The path of interest can then be

retrieved by visiting the aminos and traversing through

their strongest bonds (see Figure 10, where the shortest

path is S-a1-b2-E.)

7 4 32 9 9 8 1 669 95 95 995 6995

7 4 32 9 9 8 1 669 95

7 45 32 9 9 8 1 6

22 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 4 - YEAR 2013 ISSN: 1690-4524

Figure 10. Problem solved by propagating computation

The process follows in this way: after the node S is

excited, it excites its three output bonds, propagating their

strengths to nodes a1, a2, and b2. Nodes a1 and a2 has

only one input bonds, therefore they propagate that value

and return to its stable state, but node b2 has more inputs

and that requires entering a waiting state until all inputs

become known. Every node will in turn receive input

information, and will either wait for the rest of its nodes or

propagate the weakest value to its output, strengthening

that connection. When the ending node is solved, it will

not propagate further information; instead, it will traverse

back through the strongest connections until getting the

starting node, time when the complete shortest path

information will be available.

Phosphorilating computation
Be the task of sorting a vector of numbers. Using enzyme

computation, the job is done in a distributed fashion,

where each number is associated with a protein and all

proteins are injected into the cytoplasm, becoming

susceptible to be transformed by enzymatic catalysis.

Initially, all proteins are created with a common phosphate

residue, for instance the value 1. Enzymes choose

randomly pairs of proteins and determine possible

modifications in the phosphate residues based on this

condition:

if protein1.val >= protein2.val

then protein1.phospho ++

else protein2.phospho ++

Enzymes only act upon proteins holding the same

phosphate group, therefore, after some time, a snapshot of

the process will show several computational spaces, each

one with several proteins on it (see Figure 11.)

Computation stops when the base space, the one with

phosphate value 1, collapses to a single component. At this

time, every space should have only one component and the

sorted version of the vector can be retrieved by taking each

element from the top space to the bottom.

5 2 7 9 4

(a) Original vector

(b) After 5-7 and 2-4 comparisons

(c) Final solution

Figure 11. Problem solved by phosphorilating computation

Competitive computation

Be the task of finding the roots of a polynomial. This task

requires exploring a space solution in order to

incrementally obtain a more accurate solution until

satisfying a maximum error. One way of using genetic

agents to obtain faster convergence is defining a candidate

root as composed of three floating point numbers:

Root = Ss*(Is.Fs)*10^Ps +

Sm*(Im.Fm)*10^Pm +

Sl*(Il.Fl)*10^Pl

Where S=sign, I=integer part, F=fractional part,

P=exponential power.

There exist three genes in charge of these three parts:

small, medium, and large (corresponding to the subscripts

s, m, and l in the above expression.) A regulation network

is established among these genes. The idea is that gene l

explores large portions of the space solution, whereas gene

m works on a more localized portion of it, and gene s is

dedicated to fine tuning the answer. Figure 12 shows a

polynomial with four roots: -1000, -250, 5, and 820. Three

candidate roots are also shown, represented by a circle, a

square, and a triangle, commanded by their large, medium,

and small genes respectively. It is to say; the closer a root

is to an answer, the more control the small gene will have

on the other genes. Once a root is found, its associate gene

will tend to exclude other genes from searching in this

area, provided that there are no multiple roots.

Figure 12. Genetic computation

Figure 13. Competitive computation

71 4151 21 91

42
51 21 91

72

53

21

74

95

42

F(X) = X̂ 4 + 425*X̂ 3 - 777150*X̂ 2 + 2E+08*X + 1E+09

-4E+11

-2E+11

0

2E+11

4E+11

6E+11

8E+11

1E+12

-1500 -1000 -500 0 500 1000 1500

a1

a2

b2S

b1

b3

E

23SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 4 - YEAR 2013ISSN: 1690-4524

Diffusion computation

Some problems have dynamic information that can not be

easily represented as aminos or genes. Consider the case of

a group of autonomous robots executing a collecting task.

Each robot explores the working space looking for specific

items to carry to some predefined place. In order to make

the whole process more efficient, it would be desirable

some kind of collaboration among the robots in order to

reduce repetitive efforts. Moreover, it would be interesting

to have some predictive capacity to assist in the decision

of what type of robots to deliver.

Be a scenario like the one shown in Figure 14, where the

rectangles represent storage places, the small circles are

the supplies and the medium and big circles are two types

of robots. A medium robot can carry one unit whereas a

big robot can hold three items. Several behaviors are

available for a robot such as moving straight, wandering,

staying close the storage places, or passing its items to

another robot. Each behavior is controlled by a gene, and

regulation is performed through transcription factors

produced by other robots and by the environment (storage

places and supplies). Simulations show that several

societies evolve. In one case, big robots stay closer to the

stores while small robots wanders and deliver items to

them. In another case, large quantities of supplies put in

line promote offspring composed entirely by big robots

moving straight.

Figure 14. Cell computation

5. CONCLUSIONS AND FUTURE WORK

It was presented a computational paradigm based upon the

molecular activity inside biological cells. The paradigm

captures the way enzymes and genes work, allowing for a

distributed computational space where flexible agents are

able to modify and been modified in order to adapt

themselves to changes in the input information.

Several examples where shown describing the versatility

of the paradigm. Proteins permit to represent complex

structures of information with different levels of

interconnections. Enzymes allow modeling different

transformation processes. Metabolic pathways let the

designer describe spatial and temporal steps in more

complex transformations. Promoters and operators allow

fine tuning cooperative and competitive distributed

systems. Finally, genetic regulatory networks provide a

platform to solve problems requiring iterative and

evolutionary approaches.

Future work will be devoted to extend the applicability of

enzyme computation to more complex tasks such as

control of paramedic services in a big city and

lexicographical assistance in natural language processing.

6. ACKNOWLEDGMENTS

This work was supported in part by Colciencias, the

Colombian Science Foundation, through a doctorate

scholarship.

7. REFERENCES

[1] D. Floreano and C. Mattiussi, Bio-Inspired Artificial Intelligence:

Theories, Methods, and Technologies. MIT Press, 2008.

[2] S. Grand, Creation: life and how to make it. Harvard University

Press, 2000.

[3] J. A. Parra-Plaza and J. Velasco, “CytoComputation: a new

computational paradigm inspired by biomolecular models”

Doctorate Thesis Proposal, Universidad del Valle, Cali, Colombia,

2007.

[4] J. A. Parra-Plaza, “Cytoelectronics: a computational intelligence

paradigm based upon the retrovirus dynamics” in ICCI 2005

International Congress on Computational Intelligence, Montería,

Colombia, 2005.

[5] P. F. Cook and W.W. Cleland. Enzyme Kinetics and Mechanism.

Garland Science, 2007.

[6] J. Mattick, “Challenging the dogma: the hidden layer of non-

protein-coding RNAs in complex organisms”, in BioEssays, Vol.

25, 930-939, Oct 2003.

[7] J. Knight, “Gene regulation: Switched on to RNA”, Nature, Volume

425, No 6955, 2003.

[8] E. H. Davidson and D. H. Erwin. “Gene Regulatory Networks and

the Evolution of Animal Body Plans”, Science 10 February 2006:

Vol. 311. No. 5762, pp. 796 – 800, 2006.

[9] J. Knight, “Gene regulation: Switched on to RNA”, Nature, Volume

425, No 6955, 2003.

[10] J. C. Bongard and R. Pfeifer. “Evolving Complete Agents Using

Artificial Ontogeny”, in Morpho-functional Machines: The New

Species (Designing Embodied Intelligence), F. Hara and R. Pfeifer

Edds. Springer-Verlag, pp. 237-258, 2003.

[11] J. A. Parra-Plaza, “A-Communities: an agent-based platform for

cytocomputation” in ICCI 2006 International Congress on

Computational Intelligence, Bogota, Colombia, 2006.

[12] J. D. Watson, T. A. Baker, S. P. Bell, A. Gann, M. Levine, and R.

Losick. Molecular Biology of the Gene. Benjamin Cummings,

2007.

[13] H. Lodish, A. Berk, C. A. Kaiser, and M. Krieger, Molecular Cell

Biology, W. H. Freeman, 2007.

[14] P. Van Roy, Concepts, Techniques, and Models of Computer

Programming. MIT Press, 2004.

[15] www.mozart-oy.org

[16] D. Le M'etayer, “Higher-order multiset programming”, in Proc. of

the DIMACS workshop on specifications of parallel algorithms,

American Mathematical Society, Dimacs series in Discrete

Mathematics, 1994.

24 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 4 - YEAR 2013 ISSN: 1690-4524

	9F252LL

