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ABSTRACT
This  paper  is  about  how  to  control  the  quality  of 
microarray  expression  data.  Since  gene-expression 
microarrays  have  become  almost  as  widely  used  as 
measurement  tools  in  biological  research,  we  survey 
microarray  experimental  data  to  see  possibilities  and 
problems to control  microarray  expression data.  We use 
both variable measure and attribute measure to visualize 
microarray  expression  data.  According  to  the  attribute 
data's  structure,  we  use  control  charts  to  visualize  fold 
change and t-test attributes in order to find the root causes. 
Then, we build data mining prediction models to evaluate 
the  output.  According  to  the  accuracy  of  the  prediction 
model,  we  can  prove  control  charts  can  effectively 
visualize root causes.

Keywords: statistical quality control, microarray, 
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1. INTRODUCTION

In  microarray  experiments,  we  compare  patterns  of 
expression  across  multiple  samples  hybridized  to  a 
particular array in order to discover new genes that, as drug 
targets, are responsible for a disease. For gene discovery 
and prediction, the quality of the data set usually affects the 
result of the experiment. 

Microarray technology has found its applications in recent 
years in many fields of life science. Generally speaking, all 
the  data  analysis  behind  these  applications  can  be 
characterized  into  two  major  categories:  discovery  and 
prediction. Discovery is to discover new knowledge, new 
genes  involved  in  a  pathway;  prediction  is  to  create 
predictive models to be used in such areas as toxicology 
and disease diagnosis. Fundamental to both discovery and 
prediction is the selection of genes that are differentially 
expressed (up or down) when comparing the samples of 
your interest to the control group. 

Lu  and  Segall  [11,  12]  present  preliminary  research  on 
medical  record linkage and entity  resolution methods as 
applied to bioinformatics. Segall [14] presented a chapter 
on data mining of microarray databases for biotechnology. 
Segall [14] performed data visualization and data mining 
of  microarray databases  for  continuous numerical-valued 
Abalone fish data and discrete nominal-valued mushroom 

data using evolutionary algorithms specifically for neural 
networks  and  genetic  algorithms.  Segall  [15]  performed 
data  mining  of  microarray  databases  for  human  lung 
cancer. Segall [16], Segall [17], and Segall [18] performed 
data  mining  of  microarray  databases  of  Leukemia  cells 
using single  SOM. This  paper  extends  the  methodology 
used  in  authors’ previous  research  for  microarray  data 
analysis  to  those  using  statistical  quality  control 
techniques.

2. PHASE I: MEASURING THE QUALITY 
ATTRIBUTES

For two-color microarray experiments, as shown in Figure 
1, one must decide what the most appropriate comparison 
is to be made with each array hybridization. The simplest 
comparisons  can be  separated  into  four  general  classes, 
such  as  direct  comparison,  reference  design,  balanced 
block  design  and  loop  design.  In  many  ways,  direct 
comparisons are the simplest conceptually; they are used 
when two distinct classes of experimental samples are to be 
compared,  such  as  a  treated  sample  and  its  untreated 
control. On each array, representatives of the two classes 
are paired and co-hybridized together such that the relative 
expression levels are measured directly on each array. The 
choice of appropriate pairing depends on the experimental 
question under study. For example, one can pair diseased 
and normal tissue from the same patient or randomly select 
animals from mutual and wild-type groups. The strategy to 
collect  data  for  any given case  is  influenced by a wide 
range of factors, including the availability of samples, the 
quantity of RNA that can be obtained, the size of the study, 
and the logistical constraints in the laboratory. 

For  each  gene,  the  process  begins  with  defining  an 
expression vector that represents its location in expression 
space. In this view of gene expression, each hybridization 
represents  a  separate  distinct  axis  in  space,  and  the 
log2(ratio)  measured  for  that  gene  in  that  particular 
hybridization represents  its  geometric  coordinate.  In this 
way, expression data can be represented in m-dimensional 
expression space, where m is the number of hybridizations 
and where each gene expression vector is represented as a 
single point in that space. It should be noted that one could 
use a similar approach to representing each hybridization 
assay using a sample vector consisting of the expression 
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values for each gene; these define a sample space whose 
dimension is equal to the number of genes assayed in each 
array.

We  collect  Microarray  experimental  data  and  to  see 
possibilities  and  problems  about  whether  the  data  are 
sufficient  and  can  be  used  to  generate,  evaluate,  and 
improve  the  cancer-related  prediction  model  and  about 
whether  the  data  can  be  used  to  select  the  proper  pre-
processing and modeling techniques. Several different data 
sets are considered. According to Babu [1], a microarray is 
typically  a  glass  slide  onto  which  DNA molecules  are 
placed as  spots.  A microarray may contain thousands of 
spots and each spot may contain a few million copies of 
identical  DNA molecules  that  uniquely  correspond  to  a 
gene as shown in part A of Figure 1 from Babu [1]. 

For  liver  cancer  [3],  there  are  17,400  genes  and  179 
samples, for lung cancer [2], there are 12,600 genes and 
245 samples, for NIH cancer dataset [3], 12,196 genes and 
240  samples,  for  prostate  cancer  [10],  there  are  26,260 
genes and 103 samples. Most of Microarray data have a 
small  size  of  samples  in  which the  number  of  genes  is 
large. Obviously, in comparison with the number of genes, 
we can make such a conclusion that most of Microarray 
experiments  can  neither  supply  enough  samples  to  do 
statistical analysis, nor generate a prediction model. A wide 
range  of  methods  for  microarray  data  analysis  have 
evolved,  ranging from simple fold-change approaches to 
testing for differential expression, to many computationally 
demanding and complex techniques. In this paper, in order 
to control the quality of Microarray experimental data, we 
generate  such  a  process  that  we  collect  Microarray 
experimental data,  check the quality of the data,  remove 
noise, and build a prediction model to evaluate the output.

Other than expression ratio value, we also use fold change 
and t-test as attribute measures. Fold change and t-test can 
be  used  to  identify  best  distinguish  genes  between  the 
sample classes.

The student's t-test can be used to test whether a difference 
is  significant,  which  is  an  assessment  of  signal-to-noise 
ratio for the particular gene in question.
                        t = (signal / noise) = 
      (difference between groups / variability of groups)
A  large  value  for  the  t  statistics  indicates  that  the 
populations  representing  measurements  of  a  gene  for 
condition A and B are well separated.  It  can be used to 
estimate how likely that a gene is differentially expressed 
between conditions.

Fold change is  a mathematical operation describing how 
much two variables differs. It is the ratio of the final value 
and initial value (B/A), if the final value is larger. 

For t-test, a p-value is normally calculated to quantify the 
significance. And the most common interpretation for a p-
value  of  0.05  is  that  there  is  a  5% probability  that  the 
observed  difference  in  expression  may  simply  due  to 

chance,  not  independent.  Calculating  a  fold  change  is 
straightforward, although one does have to decide which of 
the  three  methods  to  use  to  calculate  an  average 
(arithmetic, geometric, harmonic).

Figure 1. Illustration of a microarray that may contain 
thousands of “spots” of genomic data [1]

3. PHASE II: ANALYZE THE INFORMATION 
PRODUCT 

Statistical process for microarray expression data includes 
the following steps:
1. Pre-processing:  because of  experimental  errors,  some 

values  of  expression  data  are  missing.  We  use  K 
Nearest  Neighbor  (KNN)  algorithm to  automatically 
impute missing values first.

2. Sample selection: since microarray expression data set 
is  not  very  big,  we  can  use  total  data  for  any 
experiments  and  applications.  However,  regarding  to 
the different number of treated samples and untreated 
samples, we randomly generate data sets in which both 
treated and untreated classes have the same number of 
samples.

3. Feature selection: even if data mining analysis can be 
performed, it is still extremely useful to reduce the data 
set to those genes that are best distinguished between 
the sample classes.

Before statistical  analysis of  microarray expression data, 
we have to decide the attribute data which can be used to 
analyze root causes. For an information system, there are 
two types of data: one is variable data; the other is attribute 
data. Variable data can be measured, primarily continuous 
in nature. Attribute data are observed to be either present or 
absent, conforming or non-conforming. The effectiveness 
of  charts  depends  on  the  attribute  data’s  structure.  The 
problem is how to choose attribute data. The critical is if 
the categories of non-conforming are sufficiently focused, 
so that there is likely to be only one assignable cause per 
category.  For  microarray  expression  data,  since  the 
difference  and  independence  of  difference  samples  are 
significant, we use fold change and t-test to measure the 
quality  of  the  sample.  For  microarray  expression  data, 
since it belongs to binomial distribution and each gene is 
tested in the same number of experiments, we use np chart 
to visualize the fold change and pValue.

Our work is based on liver cancer [3] data. We choose total 
data and balanced data to generate sample sets. For fold 
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change equal to 1.5 or 2.0, and pValue equal to 0.05 and 
0.01, we generate different data sets, as shown in Table 1. 
For each data set, we use np chart and moving range chart 
to visualize fold change and pValue, as shown in Figure 2 
and Figure 3.

Fold change pValue
Total data 1.5 0.01

1.5 0.05
2.0 0.01
2.0 0.05

Balanced 
data

1.5 0.01
1.5 0.05
2.0 0.01
2.0 0.05

Table 1. Data Sets with Difference Values of Fold Change 
and pValue

Figure 2. NP Chart for Total Data with Fold Change Set to 
1.5

Figure 3. Range Chart for Random Data 

In  Total  Quality  Management  (TQM),  an  organization 
would  follow certain guidelines  to  scope  an IQ project, 
identify critical issues, and develop procedures and metrics 
for  continuous  analysis  and  improvement  [19].  Control 
charts provide us an easy way to compare the observed 
subgroup  averages  and  subgroup  ranges  against  the 
predicted limits. As shown in Figures 2, 3, we use upper 
and low control limits and 1 sigma and 2 sigma control 
limits to analyze the root cause. A sigma unit is a measure 
of scale for the data. Roughly 60% to 75% of the data will 
be located within a distance of one sigma unit  on either 
side of the average. Usually 90% to 98% of the data will be 
located within a distance of two sigma units on either side 

of the average. Approximately 99% to 100% of the data 
will be located within a distance of three sigma units on 
either side of the average. Figures 4(a)-4(d) show us the 
relationship  between  empirical  rules  and  control  charts. 
Any point outside of the upper and lower control limits is a 
clear example of a special cause variation. The other forms 
of  special  cause  variation  are  called  runs.  Trends  are 
special forms of a run. According to the average chart, we 
can see  some  data  are  out  of  upper  and  lower  2 sigma 
limits, and even out of upper and lower control limits, they 
are definitely out of control. That means those observations 
are  not  consistent  with  predictions  and  can  make  the 
process unstable. Since the average chart and range chart 
are for root cause analysis, out of range data are special 
causes of variation, we need to take actions to identify and 
remove them. 

Figure 4(a). Interpretation of Western Electronic Rule 1 
[20]

Figure 4(b). Interpretation of Western Electronic Rule 2 
[20]

Figure 4(c). Interpretation of Western Electronic Rule 3 
[20]
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Figure 4(d). Interpretation of Western Electronic Rule 4 
[20]

Table 2 lists the number of genes and the percentage of 
deletion by using fold change and t-test feature selection. 
In next section, we use prediction model to evaluate the 
output after removing special causes.

datas et sam plesgenes rem oving perc entagetotal orders ub order

1 total 179 19536
2 total_pvlaue005 179 6660 0.659090909 24 8
3 total_pvlaue001 179 4383 0.775644963 18 6
4 total_fc 20 179 2717 0.860923423 12 4
5 total_fc 20_pvalue005 179 1270 0.93499181 6 2
6 total_fc 20_pvalue001 179 772 0.96048321 3 1
7 total_fc 15 179 5795 0.703368141 19 7
8 total_fc 15_pvalue005 179 2768 0.858312858 14 5
9 total_fc 15_pvalue001 179 2181 0.888359951 9 3

10 balanc e3 50 19536
11 balanc e3_pvlaue005 50 5864 0.6998362 21 7
12 balanc e3_pvlaue001 50 3939 0.798372236 16 6
13 balanc e3_fc 20 50 2785 0.85744267 15 5
14 balanc e3_fc 20_pvalue005 50 886 0.95464783 4 2
15 balanc e3_fc 20_pvalue001 50 743 0.961967649 2 1
16 balanc e3_fc 15 50 5900 0.697993448 22 8
17 balanc e3_fc 15_pvalue005 50 2403 0.876996314 10 4

18 balanc e3_fc 15_pvalue001 50 2135 0.890714578 7 3

19 balanc e2 50 19536
20 balanc e2_pvlaue005 50 5948 0.695536446 23 8
21 balanc e2_pvlaue001 50 4006 0.79494267 17 6
22 balanc e2_fc 20 50 2739 0.859797297 13 5
23 balanc e2_fc 20_pvalue005 50 898 0.954033579 5 2
24 balanc e2_fc 20_pvalue001 50 739 0.9621724 1 1
25 balanc e2_fc 15 50 5851 0.700501638 20 7
26 balanc e2_fc 15_pvalue005 50 2422 0.876023751 11 4
27 balanc e2_fc 15_pvalue001 50 2148 0.89004914 8 3

Table 2. The Number of Genes Present after Sample 
Selection and Feature Selection

4. PHASE III: IMPROVE THE INFORMATION 
PRODUCT 

After generating different  data sets,  as the output of  the 
process, we use data mining analysis to evaluate them. In 
TQM, knowledge has been created for Information Quality 
(IQ) practice [5, 6]. Precision model building includes two 
steps:  model  building  and  model  validation.  Model 
building  involves  in  training  data  selection.  Model 
validation involves in testing the built model with testing 
samples  and  measuring  the  precision  and  recall  of  the 
output of the generated model.

We use K-Nearest  Neighbor (KNN) [4],  Random Forest 
(RF) [7], Multipass-LVQ (MPL) [8], and Self-Organizing 
Map (SOM) [9] algorithms to calculate the precision and 

recall on different data sets. KNN is based on the direct 
comparison of the distance between two neighbors.  This 
algorithm is good for high dimensional vectors. Random 
Forest  is  based  on  decision  tree  theory.  Since  the  best 
features  are  selected  to  build  decision  trees,  the 
significance  of  different  features  are  considered  in  this 
algorithm.  Multipass-LVQ  and  SOM  belong  to  neural 
network  algorithm.  Since  samples  can  be  randomly 
selected as input for many times, these algorithms are good 
for  high-dimensional  small  size  data  sets,  such  as 
microarray expression data. Precision and recall of these 
algorithms on different data sets are shown in Figured 5(a) 
to 5(g) below.. 

In the below Figures 5(a)-5(e) and 5(g), KNN is used for 
#1-4, RF for #5-8, SOM for #9-12, and MPL for #13-16. In 
Figures 5(f) and 5(h), SOM is used for #9-16, and MPL for 
#17-20.

Figure 5(a) 

Figure 5(b)

Figure 5(c ) 
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Figure 5(d)

Figure 5(e)

Figure 5(f)

Figure 5(g) 

Figure 5(h)

5. CONCLUSIONS

This  paper  introduced  the  significance  of  data  quality 
control in microarray experiments. According to different 
microarray  comparisons,  we  collected  data  in  different 
ways.  A  formal  method  was  given  to  measure  the 
possibility and problems about whether data are sufficient 
and  can  be  used  to  generate,  evaluate,  and  improve 
prediction model. We used T-test and fold change to select 
samples and genes, and used control chars to visualize the 
quality of the output. Four data mining algorithms, such as 
KNN, SOM, Random Forest, Multipass-LVQ, were used to 
build prediction models and to evaluate the quality of the 
data.  The  performance  of  the  output  showed us  control 
charts  are  useful  for  the  visualization of  the  root  cause 
variation  of  the  data.  Selection  of  appropriate  charts  to 
visualize  the  output  is  very  important  for  data  quality 
control.  Empirical  root  cause  rules  and  analysis  can  be 
used to explain control charts and ensure control charts will 
yield very few false conclusions. 
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