
Collaborative Integration of Classic Applications in Virtual Reality Environments

Andreas Kopecki
High Performance Computing Center Stuttgart (HLRS)

Stuttgart, Germany

ABSTRACT

When working collaboratively with others, it is often difficult to
bring existing applications into the collaboration process. In this
paper, an approach is shown how to enable different applications
to work collaboratively. It enables a user to do three things: First,
the ability to work collaboratively with the application of choice,
selecting those applications that fit the need of the scenario best,
and the user is comfortable to employ. Second, the user can
work in the environment he chooses, even if the application is
not specifically designed for this environment like Virtual Reality
Environments or mobile devices. Third, the technology presented
makes it possible to mesh applications to gain new functionalities
not found in the original applications by connecting those appli-
cations and making them interoperable. Taking a Virtual Reality
Environment and a standard office application, the use and fit-
ness of this approach is shown. It should be specifically noted
that the work underlying this paper is not specifically on multi-
modal usage of Virtual Environments, although it is used that way
here, but rather showing a concept of meshing application capa-
bilities to implement “Meta-Applications” that offer functionality
beyond their original design.

Keywords: Collaborative Engineering, Collaborative Work, Vir-
tual Reality, Scientific Visualisation

1 INTRODUCTION

Traditional collaborative work that is state-of-the-art today fo-
cusses on screen sharing and video conferencing. Although this
method works, as it is simple and does not imply a lot of demand
on the systems used, it is awkward and uncomfortable. Mod-
ern collaboration demands more than just screen sharing. Es-
pecially in research and development the data is much more in-
teresting than just the visual representation that you can capture
using screen sharing alone.

The design of a new prototype in R&D often requires the con-
sideration of a multitude of parameters that influence the final
product. The product design impacts on the process in manufac-
turing and on the physical properties and vice versa, costs have
to be calculated and reduced as much as possible and physical
prototypes have to be somehow correlated to the initial virtual
design. This often requires a multitude of data and views on that

data, each usually bringing along its own application for display.

Thus, a design process involves several documents that contain
different data that is somehow interrelated. An Excel sheet could
contain the specifications for a virtual prototype that is visualised
in a Virtual Environment, and a simple text file may specify the
log and parameters for a simulation run whose results are dis-
played on top of the displayed prototype. Also, different views
using the same application are often required to assess a develop-
ment. This does not just include different viewpoints to a data set,
but also different representations and different aspects. Some-
times, different tasks require different media for display or kinds
of interaction, like making it necessary to relocate a discussion
from a meeting table to a Virtual Environment for a closer dis-
cussion of an issue that has arisen.

Especially in aforementioned Virtual Reality Environments – but
also on emerging every-day technologies like multi-touch screens
– it is difficult to work with “classic” applications, as the interac-
tion paradigms there are quite different from those used on the
desktop. Here, the traditional screen sharing approach defini-
tively fails, as it is impossible to translate the unique input re-
straints in those environments directly to the shared screen, thus
limiting the collaboration to the same kind of the original device.

In this paper, an approach is introduced to make applications
accessible in a collaboration, even beyond the boundaries of a
single application. This technology will be used to access data
from Microsoft Excel in the collaborative Virtual Reality En-
vironment OpenCOVER for COVISE. COVISE is a modular
and collaborative post-processing, simulation and visualisation
framework enabling the analysis of complex data sets in engi-
neering and science [1]. OpenCOVER, the COvise Virtual En-
vironment Renderer first described in [2], supports Virtual Envi-
ronments ranging from workbenches over Power Walls, curved
screens up to full domes or CAVEs and head mounted displays.
Using OpenCOVER, users can analyse their datasets intuitively
in a fully immersive environment through state of the art visual-
isation techniques, including Volume Rendering and fast sphere
rendering. Physical prototypes or experiments can be included
into the analysis process through Augmented Reality techniques.
OpenCOVER features an extensible plug-in framework that al-
lows to add further functionality to the environment. Open-
COVER already supports collaboration at every level. Users can
connect from different locations, analyse data sets, include audio
and video conferencing in their session, mark and document col-

24 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 5 - YEAR 2011 ISSN: 1690-4524

laboratively features of the data set, and other. Using COVISE
and OpenCOVER, it is even possible to join a collaboration just
using a plain web browser without any specialised plug-ins, en-
abling collaboration from everywhere [3].

2 RELATED WORK

It is generally accepted that applications especially created with
collaborative use in mind are less functional and used than the
single user applications that are commonly used by the end users
(e.g. [4] [5]).

A few methods exist that enable different users to share their ap-
plications with each other. There are the rare kind of applications
especially designed for sharing. They incorporate concepts for
collaborative work and inherent sharing. The advantage of that
approach is that, as the sharing is done at the application level, it
is usually much more sophisticated, efficient and powerful com-
pared to all other approaches. Drawbacks here are that the shared
application is usually developed primarily as a research vehicle
for sharing concepts and often lacks the functionality typically
found in state-of-the-art single user applications [5]. This is still
true, though recent efforts of e.g. Microsoft [6] and others show
that the once single user applications start to be extended to fur-
ther support collaboration, integrating more and more into collab-
oration enabling Groupware systems. When looking at applica-
tion design, collaboration features form usually a very small part
of a complete application [7]. Thus the common collaboration
research applications are doomed to fail comparing to state of the
art applications. Collaboration design is nevertheless important,
but it seems more straightforward – if the original software cre-
ator refuses to add internal collaboration facilities – not to repli-
cate the application just for adding collaborative features, but
rather to extend the existing application for collaborative func-
tionality.

Different methods of transparent application sharing have been
deployed. The first efforts undertaken were focused on image
based sharing of the application. Here, the desktop screen or
parts thereof is captured and transmitted to the partners in the
session. This is currently the most accepted form of application
sharing, used in various state-of-the-art commercial collabora-
tion software like WebEx [8], TeamViewer [9], and others. The
reason behind the wide adoptance is the ease to share arbitrary
applications, nowadays usually without a dedicated application
framework but through the web browser with appropriate stan-
dard plug-ins. The main drawback is generally a comparatively
high bandwidth needed while sharing the application and that the
application shared is not really collaborative, but rather just one
user can work with a single application instance at a time, the
others are viewers only. This limits the usability and flexibility of
this approach, leading to other ways of transparently sharing an
application.

In research, more semantic approaches are common nowadays.
Those approaches use transparent sharing that enables to share
applications without them explicitly knowing that they are being
shared. In contrast to the screen sharing approach, they usually
only capture raw input events like key presses or mouse clicks
rather than pixel data and transform those into more abstract
events using knowledge about the application. The clicks and
inputs are then replayed in all the participants’ locally running
applications and thus keep the application state consistent on all
connected hosts. Systems using this approach are described e.g.
in [5] and [4].

The main advantage of this approach is that it is feasible for all
current applications. But it requires the applications to be visu-
ally equivalent to capture the right button at the right coordinates.
If one user reconfigures his user interface, this method may fail
completely. It is also usually limited to a single operating system
type as it accesses low level operating system features not found
on other systems. Furthermore, only the surface of collabora-
tion is touched this way. Capturing the application state and the
content currently processed in the application cannot be included
in the synchronisation process, although it is typically the most
important part in the collaborative work.

A more sophisticated system will try to access the internals of an
application and use the loaded documents and application states
to improve the collaborative experience [7]. Almost all state-of-
the-art commercial applications, especially on Microsoft Win-
dows, nowadays support some kind of API a programmer can
connect to and issue commands to the application or retrieve in-
formation about the document loaded or the state the application
is in. This kind of API makes it often very easy to implement a
collaborative layer, quickly enabling an application to be used in
a collaborative way.

In the last decade, several such solutions emerged that did not
simply broadcast screen contents and capture keyboard input, but
rather analyse the input events and the application semantically
and replicate the events and synchronise the application contents
on remote machines. This approach is surprisingly successful,
as several examples show, extending off-the-shelf software like
Word [7], Visual Studio [10], or Maya [11]. Xia e.al. [7] for
example use Operational Transformation to map events from an
application to simple insert and delete operations on a linear ob-
ject space. As those operations are quite simple, it is also rela-
tively easy to assert the consistency of the two documents when
edits change cursor positions in the document. Thus, no direct
data is exchanged, but the events occurring in one application are
analysed, packaged into an abstract, simpler representation and
replayed in the target application. This is currently done between
the same applications though, forfeiting much of the power of
this approach, but this is maybe owned to the linear operational
space and the simple operations.

25SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 5 - YEAR 2011ISSN: 1690-4524

3 OBJECTIVES

Many sophisticated applications are available that offer a plethora
of functionality. Usually, this functionality is limited to a certain
environment – usually the desktop – and is available to a single
user only. Users should be enabled to choose the application and
the environment they desire and collaborate freely with others
nonetheless, even if the other partners prefer other applications
or environments. Thus participants should be enabled to work
in Virtual Environment if desired or at their local desktop, or on
mobile devices. It is also desirable to switch between those en-
vironments and let others participate in what they are working
on.

In Section 2 several examples for coupling two running instances
of an application or two applications of the same type were intro-
duced. But while enabling collaboration between different part-
ners, a goal is also to bring together different applications to offer
a unique functionality not available out of the box, harnessing
the power of a specialised application and connecting it to offer
an advanced functionality via a common interface. This sepa-
rates this approach from others available that allow the collabora-
tive, real-time working on documents like Microsoft Office Live,
Google Docs and is even more powerful than the simple screen
sharing approach used by WebEx or TeamViewer.

Both, the sharing and coupling of those applications, should be
done transparently without the need of explicitly informing the
application that it is used in a way thus. Also, the set-up of
the functionality should be both flexible and easy to learn, using
state-of-the-art technologies available on most platforms.

4 DESIGN

The implementation of the collaborative and inter-application ca-
pabilities is designed around a central component – the Applica-
tion Controller – that is running on every participants’ computer.
It can be used for starting and stopping the applications as well
as – more important – to steer the application and distribute and
transform events originating from the controlled applications to
other participating applications.

Application Controller

For transparently sharing applications, a component is needed
that captures application events, analyses their contents, trans-
forms them appropriately and distributes them to all applications
interested in this kind of event. Thus, an Application Controller
was developed that is capable of taking control of an application
and steer it with a small subset of commands. Using the Applica-
tion Controller it is also possible to save the application state of
the controlled application to storage and to resume the operation
later on with the same application state as before.

Figure 1: The message pipeline of the Application Controller

The Application Controller is a small networked service applica-
tion that is running at every host participating in a session. Every
application that is integrated into a session will require a spe-
cialised application interface for communicating with the Appli-
cation Controller. These interfaces are realised as plug-ins, link-
ing them at run-time directly to the Application Controller. The
application interface is responsible for translating the commands
originating from other applications to mechanisms native to the
application, like COM, CORBA, WebServices, signals, and oth-
ers. It also gathers the feedback and events from the application
and sends them back to the Application Controller. Thus the net-
work of the Application Controllers creates a hub that connects
all applications in a session, relieving them of the necessity to
directly communicate with a common protocol.

The Application Controller itself is listening at a SOAP inter-
face [12], waiting for commands to execute or sending messages
to other running instances. Applications are instantiated using
this interface and taken control of by the Application Controller.
It creates the new application instance by loading the appropriate

26 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 5 - YEAR 2011 ISSN: 1690-4524

application plug-in and starting the application process. A com-
munication link is established to the native API of the application.

The capabilities – i.e. the commands an application accepts – are
published using a simple XML document. This descriptive doc-
ument also contains other information about the application like
what documents it is able to process, if it can load directly from
a certain source (e.g. via the http protocol), and more. Clients
to the Application Controller can use this information to create
generic user interfaces to steer every application supported by the
application controller out of the box. All Application Controllers
are connected via a network bus for collaboration beyond host
boundaries.

Messages

Generally, the design is based on a message passing, message
transformation and state preservation mechanism. Messages are
usually coming in from the network or generated by the applica-
tions with the help of their application plug-ins connecting them
to the Application Controller. Thus, whenever e.g. a PowerPoint
slide set is loaded, an event is generated in PowerPoint that is
captured by the Application Controller plug-in for PowerPoint.
It generates a message, indicating that a file was loaded. This
message is sent to all other components that are subscribed to
these events. In Fig. 1 the message is transformed and passed on
to a Virtual Reality Environment, loading a data set correspond-
ing to the slide displayed in PowerPoint. Messages are realised
as strings encoding the message body. Arbitrary strings can be
sent in the message body, but per convention, an XML format is
used for easy parsing and structuring of the message content. But
of course, other formats can also be used that are understood by
the message destination, like JSON for ECMA-Scripts or Base64
encoded binary data for other destinations. Choosing a string rep-
resentation has several advantages, like human-readability, non-
endianess, same bit representation, and ease of use, but of course
limits the amount of data sent between applications. While it still
may be feasible to distribute a text document, the overhead for
large data like in numeric simulations is just too much and has to
be done using different communication channels.

Message Filters

Applications could react directly to those events, but that would
be quite inflexible, only allowing a pre-defined behaviour that
also would be hard to switch off if not desired. Thus, a more
flexible approach is used. All messages are sent down a message
pipeline that consists of several filters that process the message
on its way to the receivers. Filters can be arranged sequentially
in the pipeline, as well as in parallel, allowing the aggregation of
results from several independent filters. This aggregation allows
the flexible combination of functionality, for example to prevent
Master/Slave control from having an impact on network com-

munications. The filters are able to modify messages, add new
messages, replace the message with one or more, or discard the
message entirely. As messages sent from and to applications are
basically strings containing information possibly interesting for
others, it is very simple to parse and react on them even from
different frameworks like scripting languages or other runtime
environments using their own byte-code like Microsoft CLR or
Oracle JVM. Messages also contain some extra fields providing
information like who generated the messages and a topic describ-
ing a message group. Other applications or message filters can
subscribe to a topic or subscribe to all topics and filter messages
themselves for topics of interest.

Message filters are realised as plug-ins and dynamically loaded
by the Application Controller. Message filters can have arbitrary
functionality, but are usually used to modify or block messages
or send them to other Application Controllers or components par-
taking in a collaboration. Filters exist for communication, trans-
formation, master/slave floor control, collecting user data, and
others. Currently, the most used filters in the Application Con-
troller framework are a network component sending all messages
to a message bus for other Application Controllers to react on
them, thus enabling collaboration between different users or al-
low application meshing between applications running on differ-
ent hosts, and a scripted transformation filter that reacts on events
using a scripting language. The advantage of a scripting language
for filtering is its flexibility and fitness for quick rapid prototyping
cycles. For scripting, QtScript was chosen. QtScript is a subset
of the ECMA standard that is also the base for more common
languages like JavaScript and should be easy enough to learn by
anyone who is already familiar with languages like C++, C# or
Java. Scripts can also access all Application Controller function-
ality by calling its native methods. Thus, scripts can send arbi-
trary commands to application plug-ins to retrieve further data to
be processed.

A script can be easily loaded by directly distributing it amongst
the Application Controllers issuing a command or by passing a
file name to all Application Controllers to load the script from.
This creates what we call a workspace, connecting different ap-
plications together, enabling meshed functionality and collabora-
tive features.

5 APPLICATION OF THE CONCEPT

The concept of collaboratively using off the shelf applications
in different environments was used in several scenarios rang-
ing from contextual support to complete workspaces for meet-
ing support. To exemplify this technique, a small evaluation
scenario was chosen for this paper to demonstrate the possibil-
ities of collaboratively using applications and meshing two ap-
plications within a Virtual Reality environment. It consists of a
small real life problem in turbo machinery development. Here,

27SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 5 - YEAR 2011ISSN: 1690-4524

Figure 2: Using Excel data in a Virtual Environment

Figure 3: Using the same set-up as in Fig. 2 collaboratively at the
desktop

while designing turbines for water power stations, the perfor-
mance data is usually assessed using two tools: A 3D visuali-
sation of the turbine with various parameters mapped on the tur-
bine blades in the Virtual Reality Environment OpenCOVER and
a two-dimensional curve of the pressure profile in Microsoft Ex-
cel. Those two views are difficult to merge: The pressure profiles
are selected using a percentage of the boundaries of the turbine
that is not easily mapped to the real turbine in 3D.

Thus it is difficult to correlate these views that reside in two dif-
ferent applications. Therefore, a method was needed that was
able to show the location of the pressure profile in the Virtual
Reality Environment to make it possible to establish this correla-
tion. Admittedly, it is possible to somehow display those curves
by exporting them from Excel and writing a reader module for the
Virtual Reality Environment for visualisation. But it is obviously
more desirable to have the data within its original application and
share it with others in a transparent way – and to do this using
the applications as they are without adding direct functionality. If
changes are made, they can be directly applied to the Excel table
and will be immediately visible in the Virtual Environment for
further analysis without any explicit conversion steps. Using the

Application Controller, this also allows to collaboratively share
and discuss the data from within several environments.

The applications were connected using the Application Con-
troller and a small script reacting on changes within Excel and
sending the data to the Virtual Reality Environment. In the set-up
described here, three computers are involved. One head node
driving the cluster for the Virtual Environment running Open-
COVER in Linux (Fig. 2), one Windows Workstation running
Microsoft Excel and a TightVNC server [13], and one Notebook
of a remote partner running a desktop version of OpenCOVER
and another instance of Excel (Fig. 3). When the script for the
workspace is loaded, it automatically loads the Excel file corre-
sponding to the turbine currently displayed in the Virtual Real-
ity Environment. It also causes OpenCOVER to connect to the
workstation running Excel using VNC, displaying Excel directly
within the Virtual Environment and allowing a limited interaction
with Excel and the data loaded. On the remote notebook, both,
Excel and OpenCOVER are started, the appropriate data loaded
and displayed. Both users – the one in the Virtual Environment
and the other one at the remote notebook – can now analyse and
discuss the data, select different pressure profiles via a slider in
Excel and compare the pressure profiles to the three-dimensional
visualisation of the turbine blade.

When the slider is moved, the chart displaying the pressure pro-
file changes and an event is sent to all participants. The event
arrives at the script that consecutively queries Excel for the lo-
cation of the pressure profile on the blade. The coordinates are
stored within the Excel sheet and thus can be accessed by the Ap-
plication Controller script. The coordinates are transformed to
the correct format and sent to OpenCOVER that can use the x-
/y-/z-coordinates to display a poly-line on top of the turbine. The
user in the Virtual Environment can now compare the pressure
profile with the data mapped on the 3D visualisation with ease.
The other user sitting at his desktop can also compare the same
results concurrently.

A small evaluation was done with engineers doing turbine as-
sessment in their daily work. They were impressed by the ease
they could now compare the pressure profiles and the three-
dimensional visualisation. All used both views for assessment
while working in the virtual environment. None of the users ne-
glected one view in favour of the other. This shows that meshing
applications allows for a wider range of functionality than that
available from a single application that is unable to cover every-
thing, but is usually focused at one field it excels. Using the in-
ternal API of an application while meshing them gives a lot more
possibilities in combining views, data and control. The shown
example is very basic in its nature, but shows that just using the
off-the-shelf applications it is possible to get results that were not
able to be achieved before.

28 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 5 - YEAR 2011 ISSN: 1690-4524

6 CONCLUSIONS

In this paper, a technique was demonstrated that not only allows
to make applications collaborative in a way transparent for them,
but also allows to mesh those applications to add functionality to
other applications in use. It was not necessary to change those ap-
plications for the functionality implemented. In the given exam-
ple, we chose an Virtual Environment application and a standard
Office application for showing the application meshing concept.
The approach is not directly targeted or limited to this example
though, but rather a generic coupling method of two or more dis-
tinct applications. The coupling is done by generic or specialised
filters that transform application events into new behaviours and
commands. The flexible approach chosen using a directed mes-
sage filtering graph allows to combine different filter functional-
ity with ease.

This example is still not “feature complete” of what you may
have in mind what can be achieved by coupling of data sources
and applications. Of course, when adding further functionality to
the applications in question, a more seamless interaction concept
is possible. E.g. the Virtual Reality Environment OpenCOVER
could be extended by a plug-in that better visualises the location
of the pressure profile and even maps the profile directly onto the
turbine blade. Also, the slider to steer the Excel table could be
integrated as an interaction concept into the virtual environment
rather than using the original Excel slider. This would have re-
quired a dedicated component in one of the applications, a thing
that to do was avoided in this paper to show the possibilities of
the method without extending the original application and with
relatively minimal effort in scenario programming.

REFERENCES

[1] A. Wierse, U. Lang, and R. Rhle, “A system architecture
for data-oriented visualization,” in Proceedings of the
IEEE Visualization ’93 Workshop on Database Issues for
Data Visualization. London, UK: Springer-Verlag, 1993,
pp. 148–159. [Online]. Available: http://portal.acm.org/
citation.cfm?id=646122.680437

[2] D. Rantzau and U. Lang, “A scalable virtual environment
for large scale scientfic data analysis,” in Proceedings of the
Euro-VR Mini Conference, 1998.

[3] F. Niebling, A. Kopecki, and M. Becker, “Collabo-
rative steering and post-processing of simulations on
HPC resources: Everyone, anytime, anywhere,” in Pro-
ceedings of the 15th International Conference on Web
3D Technology, ser. Web3D ’10. New York, NY,
USA: ACM, 2010, pp. 101–108. [Online]. Available:
http://doi.acm.org/10.1145/1836049.1836065

[4] D. Li and R. Li, “Transparent sharing and interoperation

of heterogeneous single-user applications,” in CSCW ’02:
Proceedings of the 2002 ACM conference on Computer sup-
ported cooperative work. New York, NY, USA: ACM,
2002, pp. 246–255.

[5] B. Xu, Q. Gao, and C. Li, “Reusing single-user applica-
tions to create collaborative multi-member applications,”
Adv. Eng. Softw., vol. 40, no. 8, pp. 618–622, 2009.

[6] Microsoft Corporation. Microsoft Sharepoint
Workspace web page. http://office.microsoft.com/
sharepoint-workspace/. Accessed 2011. [Online]. Avail-
able: http://office.microsoft.com/sharepoint-workspace/

[7] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen, “Lever-
aging single-user applications for multi-user collaboration:
the coword approach,” in CSCW ’04: Proceedings of the
2004 ACM conference on Computer supported cooperative
work. New York, NY, USA: ACM, 2004, pp. 162–171.

[8] Cisco. WebEx home page. http://www.webex.com/. Ac-
cessed 2011. [Online]. Available: http://www.webex.com/

[9] TeamViewer GmbH. TeamViewer. http://www.teamviewer.
com/. Accessed 2011. [Online]. Available: http://www.
teamviewer.com/

[10] J. T. Biehl, W. T. Baker, B. P. Bailey, D. S. Tan, K. M.
Inkpen, and M. Czerwinski, “Impromptu: a new interaction
framework for supporting collaboration in multiple display
environments and its field evaluation for co-located soft-
ware development,” in CHI ’08: Proceeding of the twenty-
sixth annual SIGCHI conference on Human factors in com-
puting systems. New York, NY, USA: ACM, 2008, pp.
939–948.

[11] A. Agustina, F. Liu, S. Xia, H. Shen, and C. Sun, “CoMaya:
incorporating advanced collaboration capabilities into 3d
digital media design tools,” in CSCW ’08: Proceedings of
the ACM 2008 conference on Computer supported cooper-
ative work. New York, NY, USA: ACM, 2008, pp. 5–8.

[12] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F.
Nielsen, A. Karmarkar, and Y. Lafon. SOAP version 1.2 part
1: Messaging framework (second edition). Accessed 2010.
[Online]. Available: http://www.w3.org/TR/soap12-part1/

[13] TightVNC Group. TightVNC: VNC-compatible free remote
control / remote desktop software. Accessed 2010. [Online].
Available: http://www.tightvnc.com/

29SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 5 - YEAR 2011ISSN: 1690-4524

	CN11004

