
Dams, Flows and Views: Cross-Aspect Use of Knowledge in Collaborative
Software Development

 Norbert Jastroch
MET Communications

Eschbacher Weg 10
61352 Bad Homburg, Germany

norbert.jastroch@metcommunications.de

Thomas Marlowe
Seton Hall University

400 W. South Orange Ave.
South Orange NJ 07079

thomas.marlowe@shu.edu

Vassilka Kirova
Alcatel-Lucent

600-700 Mountain Ave.
Murray Hill, NJ 07974

vassilka. kirova@alcatel-lucent.com

Mojgan Mohtashami
Advanced Infrastructure Design

10 Richardson Lane
Hightstown, NJ 08520
mojgan@aidpe.com

Abstract

Collaboration between organizations raises significant
knowledge management issues, especially in software
development of complex projects, in which both product and
process are themselves knowledge. While research has
examined direct, explicit flows of knowledge within project
aspects, or forward between aspects, there is less investigation
of the need and support for backward, implicit or emergent
flows.

Keywords: Collaborative software development, collaboration,
software engineering, knowledge management, ICSD.

1 Introduction

The share and impact of inter-organizational collaborative
software development (ICSD), in various modes [19] and with
multiple motivations have increased. Concurrent trends of
growing complexity, feature space and size of software
packages, which are also increasingly knowledge intensive, are
characteristic of the majority of projects. Many of these
applications can be expected to be long-lived, evolvable, and
used in diverse contexts and environments. This combination of
factors entails use of sophisticated and specialized
organizational, software engineering, and knowledge
management (KM) approaches. We consider a software
development project hard if it is large, complex, and knowledge-
intensive, and intended to be long-lived, evolvable, portable, and
useful in diverse settings or for diverse user populations or
clients.

Collaboration in general, and collaborative software
development for hard projects in particular, requires
cooperation, information sharing, and interaction at multiple
levels. Working more-or-less from the governance business
aspects toward the technical and deployment ones, and forward
in project time, we identify in Section 2 a number of critical,
knowledge-intensive aspects of collaborative software
development, particularly crossing organizational boundaries.

In past papers , we and others have investigated the impact of
collaboration in hard projects, and recommended changes in
policies, processes and artifacts. These papers have addressed
both general concerns [4,9,19,22,24,25] and specific areas such
as business policies and processes [10,15], risk management
[16,17], and technical processes and artifacts [11,12,13,23].

These recommendations affect corporate policy and
procedures, software development, risk management, and
knowledge management. Major themes are (1) a layered
approach, comprising single-organization structures, a
collaborative structure, and a method of resolving priorities and
conflicts; and (2) methods and/or artifacts to extract,
communicate and display appropriate knowledge, possibly
including new kinds and forms of information, as well as filters,
abstractions and views.

In the KM literature [2.6,7,8,14], knowledge is frequently
classified as explicit, implicit or tacit; it may also be useful to
distinguish emergent knowledge—knowledge that arises from
synthesis of existing knowledge, or is a result, possibly in
combination with such knowledge, of the project or product
under investigation. Collaborative knowledge (see [5,7,14]),
particularly the more difficult to control tacit and/or emergent,
poses its own problems, most particularly those of intellectual
property, security, privacy, and confidentiality, on the one hand,
and credit (cost-benefit) assignment on the other [14]. With
care, it is not that difficult to create a structure for the sharing
and use of such knowledge, especially if used within an aspect,
or when the flow is forward, that is, used as a driver of tasks
more immediately focused on the current project, process, or
product. It is more difficult when the flow itself is implicit/tacit
or emergent, and especially if the flow is backward, that is, from
a more product focused back to a more process or policy
focused context.

In Section 3 we review and extend a list of drivers, benefits,
impediments and risks in collaborative software development for
hard projects, thus identifying the dams. Section 4 presents some
examples of emergent and backward flows and related views.

36 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 5 - YEAR 2011 ISSN: 1690-4524

The final Section 5 briefly presents recommendations and
conclusions.

2 Aspects of software development

Collaboration in general, and collaborative software
development for hard projects in particular, requires
cooperation, information sharing, and interaction at multiple
levels. Working more-or-less from outside in (governance and
business drivers to development and domain platform to specific
project and product), and forward in time, we can identify a
number of critical, knowledge-intensive aspects of collaborative
software development, particularly crossing organizational
boundaries.

1. Business policy: Includes business vision and plans, risk
tolerance, legal (intellectual property, proprietary
information, privacy, confidentiality, and related issues),
collaboration readiness and advocacy, marketing and
management strategies, and issues related to reputation,
business culture, and openness to employees, collaborators
and customers.

2. Business process: Includes security, risk management and
knowledge management, personnel management (including
attitude toward collaborative work), culture and trust,
marketing, and support for extramural activities.

3. IT and related support: Communication infrastructure and
restrictions, establishment of shared representations and
glossaries (see [15]).

4. Application knowledge base: Domain (e.g., banking) and
product discipline and functions (e.g., auditing) knowledge.
Heterogeneous contributions of partners; integration and
inclusion of external knowledge, including new
developments; supporting extramural use; credit and debit
assignment; support of domain expert/discipline specialist
consultation and collaboration [3].

5. Technical development environment and resources:
Development platforms: computing resources; software
tools including change management and dependency
tracking.

6. Software engineering process and methods: Includes
technical management processes including requirements
analysis and quality assurance; people issues such as
training and team management; nature of artifacts to be
developed in SW process, and patterns of use, dependence
and sequencing of these artifacts. Requirements for
documentation and views.

7. Customer requirements and intimacy. Initial and ongoing
interaction with customer (and possibly other stakeholders),
prior to release, or explicit requests for modifications.

8. Project and product artifacts and history: Includes
definition and design time software artifacts and change
history. The actual artifacts associated with the current
project and/or product: Requirements, specification,
architecture, design, code, documentation, dependence

analysis and traceability, testing and debugging. Interacts
with Customer Requirements.

9. Product-generated information: Information resulting from
use and/or analysis of product: input-output patterns,
including unexpected exceptions or errors, patterns of use
and performance based on information from profilers,
history, logs, and similar tools, results of static and
dynamic compiler analyses and transformations,

10. Customer satisfaction and desires: customer satisfaction
survey results, modification requests and theirs severity and
scope, ongoing feedback, new feature requests and long-
term partnering proposals

Each aspect generates and ideally consumes its own
information, and must manage that information for efficient use.
Each aspect may but need not exist for each partner and for the
collaboration, and some, such as (7) and (10), will necessarily
be limited to one or two collaborators as discussed in [18].
Figure 1 shows the aspect structure, and Figure 2 shows its
replication in a collaborative structure/engagement. Figure 2
shows some example flows: cross-flows are those between
identical aspects; forward flows are those downward in the
diagram; and backward flows include all the others.

Flows out of the collaborative structure are especially likely to
involve collaborative knowledge, as are those (not illustrated for
reasons of simplicity) with multiple sources in multiple partners.
Emergent flows are most likely to include some backward flow,
and emergent knowledge is most likely to be (at least in part)
carried along such flows.

37SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 5 - YEAR 2011ISSN: 1690-4524

In our previous papers,we have considered modifications in
both the structure in each aspect [10,11,12,13,19] and in its
knowledge management to support collaboration [7,8], including
supporting flows forward/downward in the process, and some of
the more evident feedback flows. Here, we indicate the need
for a more careful investigation of the need for additional,
emergent or backward flows, to improve the collaboration, to
optimize the process and product, to improve partner corporate
and technical decision processes, or to improve the acquisition,
organization, management, and protection of knowledge.

3 Drivers, benefits, impediments and risks
in ICSD

In order to motivate the investigation of knowledge flows, we
briefly review the tradeoffs in collaboration and in ICSD. These
are based on existing literature and project observations, some of
which have been discussed in our previous work and that of
others. The identified impediments, and to a lesser extent the
risks, become the dams obstructing the flow of needed
information.

Drivers
1. Increase product feasibility, market, and
profitability by leveraging expertise, knowledge,
intellectual property, and reputation and connections of the
partners.
2. Improve time to market by resource and expertise
sharing, by reducing cost and time for knowledge
acquisition, and training, and by parallel development.

3. Establish good working relationships with
trustworthy partners.
4. Foster innovation by exploiting collaborative
knowledge and collaborative process optimization.

Other Benefits
1. Increased knowledge and expertise from collaborating
with specialists at other partners [3].
2. Improved tool, process and development environment,
and improved component repository.
3. Better resilience due to extended personnel resource
pool.
4. Improved reputation resulting from quality product
and association with quality partners.
5. Innovation and insights resulting from development of
knowledge and data filters, abstractions, representations
and views.

Impediments
1. Corporate inertia and resistance from corporate and
technical management, IT departments, and legal counsel
[16].
2. Intellectual property, proprietary information, privacy,
confidentiality and security.
3. Corporate policies and procedures for sharing
information, firewalls, access restrictions, …
4. Difficulty in establishing trust and understanding of
differences in social and corporate cultures [1,16,17,21].
5. Inconsistencies in tool suites, software development
processes, and so on.

38 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 5 - YEAR 2011 ISSN: 1690-4524

Other risks—business
1. Management contingency policies need to be
collaboration-aware [18].
2. Risk management process needs to be collaboration-
aware.
3. Customer and vendor contact needs to be centralized.
4. Indirect communication (e.g., via agents).

Other risks—technical
1. Specification needs to be collaboration- and
decomposition-sensitive.
2. Software development process not amenable to
cooperation and collaboration.
3. Inappropriate definition of component interfaces,
in particular with respect to supporting evolution, both
before and after release.

4 Dams, flows and views

Definitions and concerns:
• A knowledge object is a representation, often an

abstraction, of a set of information and analysis results
together with a context. The denotation, and especially the
connotation, of a knowledge object is in large part defined
by the domain, the discipline, the organization, and the
social and organizational culture and history/memory and
learning capability of an institution. One problem in
collaboration lies in assuring communication not just of the
object, but of enough context so that common denotations
and connotations of knowledge objects can be established.
Another lies in assuring that there is minimal leakage of
protected information that is not needed by the recipient or
the collaboration, or conversely underestimation of the cost
associated with achieving minimal leakage.

• A view is a picture of a product, process, project, or
knowledge object, arising from an angle of analyzing an
object as to perceive/identify some of its aspects under
given/specific interest – employs filtering, results in
extraction, generates a knowledge object.

• A flow is a communication, with appropriate extraction,
translation, filtering and abstraction, of a knowledge object
available in one aspect or subaspect of a collaboration, to
another aspect or subaspect in which it will be needed, or in
which it will be integrated with other knowledge objects, or
in which it will be further manipulated for use in a third
aspect.

• A dam is a rule, guideline or standard related to
management or technical procedures and policies, tool
suites, and interfaces which, intentionally or not, regulates
flows. A set of such dams works as the regulative
framework for all flows in a collaboration.

The key issue in ICSD for hard projects is the tension between
evolvability on the one hand, and intellectual property and
related issues on the other. We have already considered
modifications of management and software processes and

artifacts, but largely to support later project aspects and phases,
or to support change and optimization of the aspect or phase
under consideration. Much of our attention has been separately
focused on business structure (1)-(3), knowledge management
(5), or software development (6)-(8).

A typical way to address the impediments and risks is to
figure out which of these are considered controllable, establish
limits/levels of acceptability for them, and implement guidelines
in order to ensure that those limits be kept without unduly
inhibiting progress on the project. Intellectual property issues
thus can be (and frequently are) made subject to an explicit
corporate policy. Customer and vendor contacts can be restricted
to specified personnel, with necessary communication then
being channeled through fixed reporting lines and procedures.
Tool suite and process inconsistencies often get treated by
general ruling in (respectively, out) of what is allowed.

In effect, once ICSD becomes a frequently used practice or
even a sort of a business concept of an organization, the
management of impediments and control of risks soon drive
toward the introduction of guidelines or even standards for a
variety of processes and technical facilities. This is normal for
intra-organizational software engineering, and in this context it
is usually considered to deliver a sound balance of evolvability
and risk management.

However, there are clear examples of the potential utility of
collaborative, emergent or backward flows, as well as the
protections that may need to be applied.

New information in, or new inferences from, a partner
knowledge base (5) can help in meeting customer requirements
(7) or desires (10), or in improving product design (8).
However, credit assignment for this information, and its use by
the collaboration and by other partners remains an issue,
especially when the knowledge must be integrated with
knowledge available to other partners or developed by the
collaboration to be useful.

Inadequacy in collaborative software engineering structures
(6) may require changes in technical infrastructure (4), either for
the collaboration or for individual partners, or in IT and
communication support (3), or even in intellectual property
policies and processes (1-2). Alternatively, the problem may be
traced back to problems in sharing knowledge (5)—and perhaps
again indirectly to intellectual property and security (1-3), or to
inadequate development of abstractions, filters or views—a
combination of (2, 3, 6).

Finally, as is well-known, information resulting from the
design process (8) or the analysis or execution history of the
application (9) can reveal flaws in security or confidentiality
policies and processes, or be needed to tune or change risk
management plans, affecting the business phases (1)-(3) and
perhaps the technical infrastructure (4)-(5). But both the
information and its analysis may require divulging the internals
of software components or proprietary tools.

39SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 5 - YEAR 2011ISSN: 1690-4524

5 Conclusions

ICSD, to a far greater extent than collaboration in general,
will always be driven by the tension between the overwhelming
need for shared knowledge in all phases and aspects of the
corporate and technical process, and the need to protect
legitimate security, intellectual property, confidentiality, and
privacy interests, including those of third parties not involved in
the collaboration. Although the risks are real, the benefits are
substantial enough to encourage greater use of this fully
collaborative mode of development.

However, sharing must be guarded, by filtering and
abstracting transmitted knowledge, and by providing constraint
views, while still communicating the necessary information.
The ubiquity of integrated and emergent knowledge, and the
utility of emergent and backward flows, argue that the harder the
development project, and in particular, the greater the reliance
on dynamic knowledge and product evolution, the greater the
anticipation of and the need for filters, abstractions and views,
an agreed-on scheme for credit allocation, and an approach for
mediation and conflict resolution.

6 References
[1] P. M. Alexander, Teamwork, Time, Trust and Information,

Proceedings Of The 2002 Annual Research Conference of the
South African Institute of Computer Scientists and Information
Technologists on Enablement Through Technology, Port
Elizabeth, South Africa, 2002, pp 65-74.

[2] C. D. Crampton, The Mutual Knowledge Problem and Its
Consequences for Dispersed Collaboration, Organization Science,
Vol. 12, No. 3, May–June 2001, pp. 346–371.

[3] D. Flynn, E. Brown, R. Krieg: A Method for Knowledge
Management and Communication within and across
Multidisciplinary Teams, KGCM 2008, June 2008.

[4] J. D. Herbsleb: Global Software Engineering: The Future of Socio-
technical Coordination, 2007 Future of Software Engineering
(FOSE’07), Minneapolis, Minnesota, May 23-25, 2007.

[5] E. Hustad, Knowledge Networking in Global Organizations: The
Transfer of Knowledge, SIFMIS, Tucson, Arizona, USA, April 22-
24, 2004.

[6] N. Jastroch, T. Marlowe: Knowledge Transfer in Collaborative
Knowledge Management: A Semiotic View; Journal of
Systemics, Cybernetics and Informatics, JSCI, Vol. 8, No. 6, pp.
6-11, 2010.

[7] N. Jastroch: Advancing Adaptivity in Enterprise Collaboration,
Journal of Systemics, Cybernetics and Informatics, JSCI, Vol.
7, No. 6, pp. 7-11, 2009.

[8] N. Jastroch: Adaptive Interenterprise Knowledge Management
Systems. Proceedings of The 12th World Multi-Conference on
Systemics, Cybernetics and Informatics: WMSCI2008, Vol. VII,

IIIS Publication, Orlando/FL, 2008

[9] N. Jastroch, V. Kirova, C. S. Ku, T. J. Marlowe, M. Mohtashami:
Software Engineering Must Be Collaboration-Aware, (Position
Paper), Proc. of the 22nd International Conference on Software and
Systems Engineering and their Applications [ICSSEA], Paris,
France, December 2010.

[10] N. Jastroch, V. Kirova, C. Ku, T. Marlowe, M. Mohtashami,
Adapting Business and Technical Processes for Collaborative
Software Development, Proceedings of the 21st International
conference on Concurrent Engineering, ICE 2011, July 2011

[11] V. Kirova, T. Marlowe : "Prendre en compte les changements
dynamiques dans le développement cooperative du logiciel",
Génie Logiciel, Decembre 2008, Numéro 87, pages 15-25.

[12] T. J. Marlowe, V. Kirova: Addressing Change in Collaborative
Software Development through Agility and Automated
Traceability, WMSCI 2008, 209–215, Orlando, USA, June-July
2008.

[13] T. J. Marlowe, V. Kirova: High-level Component Interfaces for
Collaborative Development: A Proposal, Journal of Systemics,
Cybernetics, and Informatics, 7 (6), pages 1-6, 2009.

[14] T. J. Marlowe, V. Kirova, N. Jastroch, M. Mohtashami, A
Classification of Collaborative Knowledge, Proceedings of the 4th
International Conference on Knowledge Generation,
Communication and Management: KGCM2010, Orlando FL, July
2010.

[15] M. Mohtashami: The Antecedents and Impacts of Information
Processing Effectiveness in Inter-Organizational Collaborative
Software Development, Ph.D. Thesis, Rutgers University, July
2006.

[16] M. Mohtashami, T. Marlowe, V. Kirova, F. Deek: Risk
Management for Collaborative Software Development,
Information Systems Management, 25 (4), 20–30, Fall 2006.

[17] M. Mohtashami, T. Marlowe, V. Kirova, F. Deek: Risk-Driven
Management Contingency Policies in Collaborative Software
Development, Intl. Journal of Information Technology and
Management, to appear, 2011.

[18] M. Mohtashami, T. Marlowe, V. Kirova, F. P. Deek: A
Comparison of Three Modes of Collaboration, 15th Americas
Conference on Information Systems (AMCIS 2009) [CD-ROM],
August 2009.

[19] M. Mohtashami, T.J. Marlowe, V. Kirova: Lost In Translation:
When Outsourcing Decouples Development, 41st Annual Meeting
of the Design Sciences Institute (DSI 2010) [CD-ROM], San
Diego CA, November 2010.

[20] N. Schadewitz: Cross-Cultural Collaboration,
http://crossculturalcollaboration.pbworks.com/FrontPage, accessed
October 2010.

[21] M. J. Schniederjans, A. M. Schniederjans, D. G. Schniederjans:
Outsourcing and Insourcing in an International Context, M.E.
Sharpe, New York.

[22] J. Sutherland: Future of Scrum: Parallel Pipelining of Sprints in
Complex Projects, AGILE 2005 Conference. Denver, July 2005.

[23] J. Whitehead: Collaboration in Software Engineering: A Roadmap,
2007 Future of Software Engineering (FOSE’07), Minneapolis
Minnesota, May 23-25, 2007.

[24] J. Whitehead (ed.): Collaborative Software Engineering, Springer,
2010.

40 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 5 - YEAR 2011 ISSN: 1690-4524

	CN11006

