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ABSTRACT

In this paper we introduce an approach for the creation of
adaptive learning environments that give human-like recommen-
dations to a learner in the form of a virtual tutor. We use
ontologies defining pedagogical, didactic and learner-specific
data describing a learner’s progress, learning history, capabilities
and the learner’s current state within the learning environment.
Learning recommendations are based on a reasoning process
on these ontologies and can be provided in real-time. The
ontologies may describe learning content from any domain of
knowledge.

Furthermore, we describe an approach to store learning histories
as spatio-temporal trajectories and to correlate them with influ-
encing didactic factors. We show how such analysis of spatio-
temporal data can be used for learning analytics to improve
future adaptive learning environments.

Keywords: computer-assisted learning, adaptive e-learning,
spatio-temporal database, learning analytics, learning pathway,
instructional design

1. INTRODUCTION

With the raise of ICT, there have been diverse efforts to integrate
learning theories into instructional designs of computer-based
learning. In this context, fusioning technology with didactic and
pedagogical expertise has been a challenge. The costs of design
and implementation grow if such systems are supposed to adapt
to the user’s behavior, progress and personal capabilities.

Whereas early ”adaptive” systems were oriented towards be-
haviorist concepts and were mainly designed as training and
testing machines [1]–[5], today’s approaches claim to implement
more complex mechanisms of adaption. Nonetheless it remains
difficult to design adaptive systems that – on the one hand –
can adapt to individual learners and – on the other hand – can
be used on a general base for various knowledge domains.

In this paper we introduce an approach to create adaptive
learning environments that go beyond automated training and
testing and that are not limited to specific knowledge do-
mains. We implemented a system that integrates didactic and
pedagogical knowledge into learning environments and infers
on this knowledge in order to generate human-like learning
recommendations in real-time.

The system was developed with the EU-funded INTUI-
TEL project (”Intelligent Tutoring Interface for Technology-
Enhanced Learning”) [8]–[17]. INTUITEL uses ontologies to
map pedagogical and didactic meta data of the learning content
as well as data describing the learner’s progress and state
within the learning environment. The respective instructional
design is inferred from these ontologies during runtime. As a
consequence, this can be used for any learning material and any
knowledge domain.

An innate nature of any instructional design is the transformation
of semantically linked learning content into a linear sequence
along the time dimension. We give an outlook on how the
underlying model of INTUITEL can be expanded such that
we can perform learning analytics in an entirely new way
that especially focuses on the time dimension. Each learner’s
history of progress and state within the learning environment
is modelled as a high-dimensional trajectory interpolating data
over the time dimension. We describe how to use technology
of spatio-temporal databases for this and how such data can
provide for multi-variate data analysis.

2. THE INTUITEL SYSTEM

Human teachers organize learning content based on its charac-
teristics and the relations between single pieces of that content.
They estimate the suitability of the content for their students and
seek reasonable forms of didactic progression. With INTUITEL
such human knowledge is transformed into machine-processable
ontologies that interrelate the learning content to a semantic
network. Within the learning environment INTUITEL tracks
the behavior of the learners, locating the learning content they
have attended to and constantly deduces influencing factors
which in the following we call didactic factors. Combined with
the pedagogical ontology of INTUITEL, these measures form
the input for the reasoning and recommendation process of
INTUITEL.

Pedagogical Ontology
The pedagogical ontology of INTUITEL is derived from Nor-
bert Meder’s Webdidactics [6], [7] and provides a vocabulary
to structure and semantically link learning content and form
learning pathways. It is the result of an empiric study of a wide
range of learning pathways discovered in didactic content in the
past. On top, the learning material is subdivided according to
the following granularity [21]:

Knowledge Domains (KO) are on the highest level and are equal
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TABLE I
DIDACTIC FACTORS

Factor Description

knowledge
actuality

Ranks the time that has passed from the
learner’s last session until now

course-focused
KO learning
speed

ranks the average difference in time needed by
a learner to proceed a course compared to the
time of other course participants.

learning pathway
permanence

Ranks the number of KOs a learner has com-
pleted along the current learning pathway com-
pared to those of other learners

learning attention States how much attention a learner pays to
the learning content as measured by an eye
tracking device

deafness States if the learner is deaf
gender Statement about the learner’s gender
connectivity level Ranks the quality of the learner’s network

connection

to entire courses

Concept Containers (CC) are equivalent to lessons and are
contained by Knowledge Domains

Knowledge Objects (KO) are contained by Concept Containers
and represent atomic pieces like texts, tests, exercises or media
items

On the respective levels of granularity items are semantically
linked such that they form learning pathways along which the
learner is provided with recommendations [21]:

Macro Learning Pathways are built by linking different Concept
Containers. These links may express hierarchical or chronolog-
ical relations.

Micro Learning Pathways link different knowledge objects and
may express the following relations:

• multi stage learning (behaviorist learning style)
• inquiry based learning (constructivist learning style)
• increasing level of abstraction
• increasing level of concretion

Additionally, the vocabulary allows to specify KOs with respect
to their knowledge types and their media types. Amongst others,
the set of knowledge types comprises receptive, interactive,
cooperative and assignment types and may communicate ori-
entation or explanation knowledge [21]. The set of media types
includes text, tables, audio or video.

Didactic Factors
Beyond the definition of learning pathways and semantic rela-
tions among Knowledge Objects (KOs), INTUITEL is capable
of considering didactic factors. These factors describe facts
that are meaningful to rate the suitability of KOs and learning
pathways with respect to a learner’s personal, environmental
and performance parameters. A didactic factor is aggregated by
transforming non-nominal data into nominal data denoting an
individual that is part of the ontologies on which the INTUITEL
system performs its reasoning and recommendation process.
Table I explains a few examples of the 47 didactic factors
currently specified by the INTUITEL standard [22].

Transformation Rules for Didactic Factors
Didactic factors identify individuals in the scope of the
pedagogical ontology. The following two simple examples
give an impression of the transformation rules that are used

to transform measured non-nominal data into such nominal
identifiers.

Knowledge Actuality: The input data of this factor is ld = last
login date. The according output data is LastLoginLongAgo or
LastLoginRecently

IF ( l d > 14 days ) {
o u t p u t = ” LastLoginLongAgo ”}

ELSE {
o u t p u t = ” L a s t L o g i n R e c e n t l y ”}

Learning Pathway Permanence: Input data of this factor is:

• lAmount = Number of KOs a learner has completed on
the current learning pathway

• oAmount = Average number KOs other learners have
completed on the same learning pathway

• sd denotes the standard deviation σ

Output data: LpPermanenceHigh, LpPermanenceLow,
LpPermanenceNormal

IF ( lAmount > oAmount + sd ) {
o u t p u t = ” LpPermanenceHigh ”

} ELSE IF ( lAmount < oAmount − sd ) {
o u t p u t = ” LpPermanenceLow ”

} ELSE {
o u t p u t = ” LpPermanenceNormal ”

}

Recommendation Process
While the pedagogical ontology describes learning pathways
and interrelations between KOs, the learning environment is
to provide data contributing to learner-specific didactic factors.
From this information, INTUITEL creates a learner state ontol-
ogy (LSO). Combining the LSO and the pedagogical ontology,
INTUITEL queries on the resulting custom ontology in order to
perform a reduction on the set of available KOs, such that those
KOs remain that fit most the learner’s state and needs. Based on
this data set, the learner is given a respective recommendation,
with which KOs she may continue.

LMS Implementation
Currently, INTUITEL support has been implemented in the form
of plugins for several open source and commercial Learning
Management Systems (LMS): These are Ilias, Moodle, Crayons,
Clix and eXact [20]. The plugins are coupled loosely and
platform-independent to the INTUITEL system by using REST
interfaces over a network. The INTUITEL system imports ids
and meta data of KOs that are present in the LMS. These con-
tents are then semantically annotated to form learning pathways
as described above providing an editor to a didactic engineer
e.g. a teacher. This information is kept entirely inside the
INTUITEL system — outside of the LMS. The plugin tracks
the ids of the KOs a learner attends to as well as environmental
and performance data that contribute to didactic factors. This
information is sent to the INTUITEL system which triggers the
above described reasoning and recommendation process. The
recommendations are finally sent by the INTUITEL system back
to the LMS plugin. Within the user interface of the LMS, these
recommendations are presented to the learner including textual
messages and rankings of further KOs [20].
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3. THE MULTIDIMENSIONAL COGNITIVE SPACE
MODEL

The theoretical foundation of INTUITEL is based on a math-
ematical model to describe a learner’s progress regarding the
set of learning content in a learning environment. We introduce
the concept of the learner’s cognitive position in a cognitive
space the dimensions of which are spanned by the KOs that are
contained by a course and that a learner is supposed to attend.
We assume that learning progress is measured by the amount of
knowledge and skills a learner may have achieved, compared to
the learning goal that is expressed by the same measures [22].

Based on this, let N be the number of KOs in a course. Then
the learner’s cognitive position is an N-dimensional vector P =
{xi} with i = 1, . . . ,N and xi ∈ [0,1]. xi represents the degree of
progress with respect to the ith KO. xi can be determined the
following ways:

1) The learning environment may omit the degree of progress
of single KOs as percentage value.

2) The learning environment may omit the result of a test
reviewing the learner’s progress.

3) In the easiest case the learning environment only provides
the information if a learner has attended to a KO or not.
This leads to the special case when xi degenerates to xi =
{0;1}

The Hypercube Model
The cognitive space model is best understood when visualizing
it as a fuzzy hypercube [18], [19]. Each KO forms a dimension
and a coordinate axis in a N-dimensional space. The degree of
progress is an interval [0,1] along this axis. Taking the interval-
borders along each dimension we can build a N-dimensional
hypercube. When assigning the current learning progress for
each KO we obtain the already explained N-dimensional vector
P denoting the cognitive position of the learner as a vector inside
the hypercube. At the beginning P will point close to the origin,
when a learner has made little progress so far. With increasing
progress P will converge to the theoretically maximum position
which is given by Pe = {xi|∀xi = 1}. This would imply that the
learner has attended to every single KO in the course with 100%
success. Figure 1 shows a 3D-hypercube for N = 3. Figure 2
shows a hypercube for N = 4 and an exemplary learning pathway
through it [22].

Learning Pathways and the Cognitive Distance
Using the hypercube paradigm, we can calculate the distance
between the learner’s current position and predefined learning
pathways. This way INTUITEL determines a recommended
learning pathway that is closest to the learner’s cognitive posi-
tion. For this purpose we introduce the User Learning Pathway
(ULP) that equates to the cognitive position vector P except for
the difference that the ordering of the KOs reflects the order in
which a learner has processed the KOs so far.

In comparison to the ULP a predefined learning pathway LP
is expressed as a permutation of the ULP reflecting the order
in which the learner should have processed the KOs if he had
followed this LP. As an example, assume a course consisting
of 6 KOs. A possible LP may define the following sequence:

LP⇒ (KO3,KO1,KO5,KO4,KO2,KO6)

Now suppose, the learner has first processed KO1 completely,
second KO4 completely and third KO5 to a degree of 60%.
Then the ULP and the respective LP vectors equate to:

Fig. 1. 3D-hypercube for three KOs named A,B and C

Fig. 2. 4D-hypercube for four KOs with an exemplary learning pathway
(bold arrows)

ULP = {x1,x4,x5,x2,x3,x6}= {1,1,0.6,0,0,0}
LP = {x3,x1,x5,x4,x2,x6}= {0,1,0.6,1,0,0}

INTUITEL calculates a distance measure between these
two vectors. This way INTUITEL is able to select the LP that
fits most the current cognitive position of the learner [22].

4. FUTURE WORK: LEARNING HISTORIES AS
SPATIO-TEMPORAL TRAJECTORIES

The following elaborations are subject of current and future
work. Both instructional design and learning pathways have the
time dimension as an integral component as the progress of
learning always includes the transformation of learning content
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into a linear sequence along the time dimension. We enhance
the hypercube model in a way such it forms the foundation of
a new approach to perform learning analytics in experimental
as well as in real-life learning situations. The results of these
analytics are supposed to discover new didactic factors which
may be used to improve future learning environments.

Enhancing the Hypercube Model
First, we enhance the hypercube model by adding indicators that
may contribute to didactic factors. The N-dimensional cognitive
space is enlarged by K additional dimensions associated with
K indicators. Such indicators may be measured by the learning
environment or they may be collected separately by the use of
surveys accompanying the learning process. In this advanced
hypercube model the enhanced vector denoting the learners
cognitive position is P(N+K) = {1, . . . ,N,1 . . . ,K}.

Learning Pathways as Spatio-Temporal Trajectories
We will first build a temporal database system to track and store
the cognitive position P(N+K) in the form of time-continuous
vector data. In a second stage, building upon that temporal
database, we transform this time-continuous vector data to
N +K-dimensional spatio-temporal trajectories, lifting the tem-
poral vector data to a spatio-temporal database. The spatio-
temporal space of this database will represent the advanced
hypercube model. Trajectories that represent learning histories
are time-interpolated cognitive position vectors inside that ad-
vanced hypercube. As all dimensions of this hypercube are to be
restricted to xi ∈ [0,1], the indicators forming the K additional
dimensions will have to be normalized to this interval.

Using such a spatio-temporal database approach, data is brought
to a highly abstract level where all the information about a
learner’s progress and corresponding influencing factors are
inherent in purely geometric data which is interpolated over
the time dimension. Nevertheless, the original vector data will
still be available and can be selected by common database
operations. For example, regarding projection, one can decide
to use only a subset of the K indicators. Morevover, one
can treat the learning pathways seperately from the indicators
which becomes important if correlations between indicators and
learning pathways are subjected.

The spatio-temporal database is yet to be implemented and will
be based on data structures and algorithms for spatio-temporal
indexing and querying as they are used in already existing
spatio-temporal databases. By example this includes the use
of R-trees [25] or X-trees [26] for indexing. Existing systems
mainly focus on Geographical Information Systems (GIS),
Network and Facility Management, Land Information Systems
(LIS) and Image Processing [27]. They mostly provide support
for only two or three spatial dimensions [28]–[32]. A particular
approach for dealing with higher dimensions was introduced
with the DEDALE system using a constraint database technique
[33]–[38]. Moreover, the database will provide algorithms for
the clustering of the (N + K)-dimensional trajectories. Based
only on the geometric relations between different trajectories
of different learners such trajectory clusters can be used as
input for further multivariate data analysis. We sketch two
examples to illustrate how such data analysis can contribute to
the improvement of adaptive learning environments.

Discovery of Unknown Didactic Factors: In the context
of an experimental learning situation, arbitrary indicators are
measured. The resulting data is transferred into the above
described system and the data is converted into persistent
learning histories together with their indicators. Using factor

analysis, new didactic factors can be identified together with
indicators that are represented by these factors. In a second
step, the original set of indicators can be reduced to a smaller
one, restricted to indicators that are easy to measure in a
non-experimental learning environment.

Real-Time Learning Pathway Prediction: Like in the
previous example, learning histories as well as influencing indi-
cators are stored with the advanced hypercube model. In a first
stage, the learning histories are subjected to a cluster analysis
in order to identify common classes of learning histories. In
the second stage, taking these clusters on the one side and
the measured indicators on the other side, one can perform for
example either a discriminant analysis or a logistical regression.
As a result, we can determine, which variation of indicators
of a specific learner will probably lead to a specific learning
history. Built on this knowledge and measuring these indicators
in the learning environment, i.e. in an LMS, we can predict
the learner’s future learning history and recommend according
learning pathways and KOs.

5. CONCLUSION

INTUITEL provides a novel and innovative way of transforming
human-based didactic and pedagogical knowledge into machine-
processable information. It furthermore introduces a new way
to develop adaptive learning environments that can guide their
learners similar to a virtual tutor. The didactic and pedagogical
expertise is integrated into the system in a plug-and-play style
using ontologies. The ontology-based approach ensures that the
knowledge, that is needed for the annotation of learning material
as well as for the creation of recommended learning pathways,
can be formulated in a way that reflects human language and
thinking. This way, no specific technical expertise about the
system is needed by the didactic engineer. With INTUITEL,
we have separated the underlying technology from the didactic
and pedagogical domain. The creation of annotated material
is therefore intuitive and completely unrestricted with respect
to the according domains of knowledge. Also, the technical
implementation for already existing learning environments is
inexpensive. The use of a REST-based protocol for the commu-
nication between the learning environment and the INTUITEL
system makes it possible to implement plugins for a wide range
of learning environments.

In particular, INTUITEL does not force the learner to follow a
certain learning pathway or to take some specific knowledge
objects. Instead INTUITEL is capable of adapting itself to
the decisions of the learner. The hypercube model and the
calculation of cognitive distances between the learner’s state
and recommended learning pathways allows INTUITEL to con-
stantly generate new recommendations regarding the learner’s
movement through the cognitive space.

INTUITEL was tested with real learners with respect to learning
success, usability and the learners’ general satisfaction. The
tests were taken at the University of Vienna, University of
Reading and the University of Valladolid. The summary and
conclusions of these tests can be retrieved from [24]. More
detailed information about the overall pedagogical testing plan
can be found under [23]. In addition, the Karlsruhe University of
Applied Sciences continues to design more INTUITEL courses
for real learners in order to gain more experience for the
enhancement and improvement of the INTUITEL system.
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The utilization of the advanced hypercube model for a spatio-
temporal database approach in order to model learning histories
as spatio-temporal trajectories will offer a new way to perform
learning analytics. Integrating indicators related to learning
behaviour into the hypercube model will contribute to finding
new didactic factors. It will help to understand how these factors
influence learning behaviour. And finally, we can find out how
to measure and implement them in a learning environment.
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[29] J. Xu and R.H. Güting: A Generic Data Model for Moving Objects.
In: GeoInformatica 17:1 (2013), 125-172.

[30] M. Neteler, M. H. Bowman, M. Landa, M. Metz:GRASS GIS: A
multi-purpose open source GIS. In: Environmental Modelling &
Software 31 (2012) 124–130

[31] O. Balovnev, M. Breunig, A. B. Cremers, S. Shumilov: Extending
GeoToolKit to Access Distributed Spatial Data and Operations In:
Scientific and Statistical Database Management, 2000. Proceedings.
12th International Conference

[32] L. Relly, H. Schuldt, H. Schek Exporting Database Functionality
- The CONCERT Way In: IEEE Data Eng. Bull 01/1998; 21:43-51

[33] G. Kuper (editor), L. Libkin (editor), J. Paredaens (editor): Con-
straint Databases Springer; 2000 edition

[34] P. Rigaux, M. Scholl, L. Segoufin, S. Grumbach: Building a
constraint-based spatial database system: model, languages, and
implementation. In: Inf. Syst. 28(6): 563-595 (2003)

[35] S. Grumbach, P. Rigaux, M. Scholl, L. Segoufin: DEDALE, A
Spatial Constraint Database. In: DBPL 1997: 38-59

[36] S. Grumbach, L. Segoufin, P. Rigaux: Efficient multi-dimensional
data handling in constraint databases. In: BDA 1998

[37] S. Grumbach, P. Rigaux, L. Segoufin: Modeling and Querying
Interpolated Spatial Data. In: Proceedings 15èmes Journées Bases
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