

A DoS/DDoS Attack Detection System Using Chi-Square Statistic Approach

Fang-Yie Leu*
Department of Computer Science, Tunghai University

leufy@thu.edu.tw
Contacting author

 and

I-Long Lin

Dept. of Information Management, Central Police University, Taiwan
paul@mail.cpu.edu.tw

ABSTRACT

Nowadays, users can easily access and download network attack
tools, which often provide friendly interfaces and easily operated
features, from the Internet. Therefore, even a naive hacker can
also launch a large scale DoS or DDoS attack to prevent a system,
i.e., the victim, from providing Internet services. In this paper, we
propose an agent based intrusion detection architecture, which is a
distributed detection system, to detect DoS/DDoS attacks by
invoking a statistic approach that compares source IP addresses’
normal and current packet statistics to discriminate whether there
is a DoS/DDoS attack. It first collects all resource IPs’ packet
statistics so as to create their normal packet distribution. Once
some IPs’ current packet distribution suddenly changes, very
often it is an attack. Experimental results show that this approach
can effectively detect DoS/DDoS attacks.

Keywords: Intrusion Detection System, DoS, DDoS, Mobile

agent, Chi-square

1. INTRODUCTION

Denial of service (Dos) is a type of attack in which a hacker
issues a huge amount of packets to congeal specific servers’
services, consequently blocking legitimate users from normal
access to the services. Distributed DoS (DDoS) attacks are
another form of DoS attacks in which a host or hosts suffer from
receiving a huge amount of packets issued by zombies. DDoS
attacks often do not rely on particular network protocols or
system weaknesses [1]. Instead, they simply exploit a tremendous
amount of Internet resources, i.e., compromised hosts located
between themselves and the victim (or victims), to send a huge
amount of useless packets toward the victim (or victims) around
the same time. The magnitude of the combined traffic is generally
sufficiently huge to jam, or even crash, the victim (system
resource exhaustion), or its Internet connections (bandwidth
exhaustion), or both, consequently taking the victim off the
Internet [1].

Often hackers of DoS attacks spoofed their attack packets’ source
addresses, and in DDoS attacks, each zombie only sends a limited
amount of packets to a victim or victims. Both make it very
difficult to trace to the real attackers [2]. According to a 2007 CSI
Computer Crime and Security Survey [3], DoS attacks were in the
top 5 among all attack types. 25 percent of respondents’

computers had detected DoS attacks. Amount of companies’ loss
caused by DoS is $2,888,600 which was ranked the top 7 among
all attack types. These show the severity of information security.

According to a 2008 CSI Computer Crime and Security Survey [4]
about attacking technologies used, intrusion detection and
intrusion prevention systems are very important tools for security.
This survey also described that DoS attack has severely
influenced on network security in a year after year tendency of
the rise.

The surveys imply a fact that although present DoS is very severe
to computer networks and systems, and many intrusion detection
methods [5-11] have been developed, none of current detection
approaches can completely protect a system and prevent a system
from DoS attacks. The key reason is hackers discover new
vulnerabilities and then create new attacking methods almost
everyday. What we can do right now is continuing developing
protection frameworks and algorithms to enhance security
systems.

In this article, we propose a distributed security system, Agent-
based Instruction Detection System (AIDS), to detect DoS and
DDoS attacks. In these attacks, a huge number of connection-
requests and/or data packets are sent to the same destination
address, i.e., the victim. AIDS uses mobile agents to decentralize
tasks of data analysis, and employs distributed components to
reduce workload of detection tasks. A network management unit
[12], e.g., a company’s or a university’s network system, can
employ an AIDS as its security system to detect DoS/DDoS
attacks.

The contributions of this research include (1) developing the
AIDS, a distributed system with scalability; (2) Once AIDS has
detected an attack, it sends hackers’ information to a database,
from which a firewall can accordingly drop known hackers’
packets and disconnect hackers’ connections. That is, this security
system integrates firewall to mitigate the attack in a real-time
manner; (3) AIDS can more effectively detect DoS/DDoS attacks
than other tested approaches.

The rest of this article is organized as follows. Section 2 describes
related work of this thesis. Section 3 introduces our system
architecture and the algorithms that are used to detect DoS/DDoS
attack. Experiments and discussion are stated in section 4. Section
5 concludes this article and addresses our future work.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 41ISSN: 1690-4524ISSN: 1690-4524

2. BACKGROUND AND RELATED WORK

Feinstein et al. [13] used chi-square formula to detect DoS attacks.
The authors classify network connections into six groups, called
previous groups, according to packets’ receiving frequencies, and
calculate the total frequency of normal connections for each
group. When detecting attacks, the detector again classifies
frequencies of current connections, and classify then into six
groups, called current groups. It then compares the frequency of
previous group i and that of current group i with chi-square
statistic method to see whether or not the difference is significant.
If so, we can suspect that there is a DoS or DDoS attack.

However, several problems exist in this system. The first is that
there are only six groups. For a huge institute or organization, the
number should be increased. Otherwise, too many IPs are in a
group, resulting higher false positives. The second, there is no
way to identify who the backers are once a DoS/DDoS is
discovered. To solve this problem, we create a mechanism to do
this. The third, if hackers issue a DoS/DDoS attack with a specific
protocol, e.g., icmp flooding, due to only occupying a portion of
total packets, the attack is hard to be detected. The fourth is
before calculating chi-square statistics, the authors grouped IPs
based on their current connection frequencies rather than
following the classification of previous groups. That is, a packet
which is classified into previous group i may be classified into
current group j,1 , 6,i j i j≤ ≤ ≠ , again resulting in the fact that we
only know that there is a DoS/DDoS attack, but do not know who
is issuing the attack. The final problem is the authors failed to
considered network consumption attacks. They only considered
resource consumption attack. In fact, network consumption attack
can be detected by the same method.

2.1 Scenario of Distributed DoS attack

A DDoS attack often has two issuing stages to set up an attack,
including control stage and attack stage. In control stage, the
hacker looks for vulnerable systems and install handlers/masters
and zombies/daemons by exploring system vulnerabilities.
Famous DDoS master and agent programs include Trinoo, Tribe
Flood Network 2000, and Stacheldraht.

In a DDoS attack, the handlers are the first level vulnerable hosts
controlled by the attacker. The zombies are the second level
vulnerable hosts controlled by the attacker through the handlers.
Most of the control messages in control stage are single direction
from attacker and handler, but is bi-direction between handlers
and zombies. After the control stage, the list of vulnerable hosts is
then entering their attack stage and launching a DDoS attack.

2.2 Mobile agents
A mobile agent is a program which has the ability to migrate
among heterogeneous network systems. It can autonomously
determine when to transfer to another system and where it can or
should move to. An IDS that deploys mobile agents to detect
attacks has advantages over a traditional IDS in that [14,15] it can
(1) Reduce network load: Mobile agents can execute programs
stored in servers where they current reside to avoid issuing many
requests and transferring a huge amount of data to and from other
servers. This can reduce network burden and speed up data
processing.
(2) Overcome network latency: Real-time systems do not permit
long network latency. A mobile agent can monitor and control an

underlying environment and respond appropriately and
immediately.
(3) Encapsulate protocols: In a distribution system, although
information is exchanged by using specific communication
protocols, two heterogeneous systems with different
communication protocols are hard to communicate with each
other. However, a mobile agent can encapsulate packets of other
protocols into a new packet as the new packet’s payload, and send
the new packet to next node. This is known as tunneling.
Information can be then exchanged.
(4) Execute independently and autonomously: Mobile agents can
autonomously perform tasks that users assign to them. They can
also autonomously and independently determine when to migrate
to other nodes and where to migrate.
(5) Adapt dynamically: A mobile agent can adjust its running
method according to the change of its operational environment.
(6) Naturally heterogeneous: A network may consist of many
heterogeneous nodes which are connected by network links, and
which provide different operating systems and applications
running on different hardware platforms. A mobile agent can
adapt itself in such a heterogeneous environment. Also, when a
host is going to be shut down, all mobile agents now residing on
the host will be notified to migrate to other nodes so as to
continue their operations and tasks.

2.3 Related Work

D-WARD [16] is a source-end DDoS defense system, which can
identify malicious flows at the source end due to its architecture
near to attack’s source more effectively to discover attack, but it
more difficult to deployment and detection. And its architecture
contains statistics normal traffic models on three types including
TCP, UDP and ICMP. Once an attack is discovered, it would
control traffic, but D-WARD only deny by a rate limit. Actually,
it will still impact on the performance of Internet. However,
attackers can still successfully perform those attacks from
unprotected network. In addition, those system require spending a
huge amount money and time to deployed.

DefCOM [17] is a distributed framework for DDoS defense. It
consists of heterogeneous defense nodes organized in a peer-to-
peer network, communicating to achieve a dynamic cooperative
defense and it carried out victim end, source end, and network
core defenses mechanisms to perform attack detection, traffic
differentiation and rate-limiting, respectively. Its components are
of different types and can fulfill, e.g., only filtering or only attack
detection. There are three types of nodes including alert generator
to detect the attack and inform other nodes, classifier to
distinguish legitimate traffic and rate-limiter. When under a
DDoS attack, all nodes communicate with each other by flooding
messages, however, this approach is only effective with all core
router deployed at least. In addition, the compromised overlay
nodes can do harm to the DefCOM operation. Another DDoS
defense [18] allows implementing the cooperation of two and
more perimeter defense systems.

The Distributed Intrusion Detection System (DIDS) [19] project
was sponsored by the United States Air Force Cryptologic
Support Center through a contract with the Lawrence Livermore
National Labs. The DIDS architecture combines distributed
monitoring and data reduction with centralized data analysis, but
it did not scale well for large networks since addition of any new
component increases the load on the DIDS director component,
and the data flow from monitors to DIDS director consumes high

42 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 ISSN: 1690-4524ISSN: 1690-4524

network bandwidth. Our proposed approach focuses on scalability
problems by using mobile agents to decentralize task of data
analysis, and employs distributed components to reduce workload
of detection tasks.

The Autonomous Agents for Intrusion Detection (AAFID) [20]
made use of multiple layers of agents organized in a hierarchical
structure with each layer performing a set of intrusion detection
tasks. Administrator can send global instructions to all agents so
that network and data can be respectively monitored and analyzed
on each node. Data on end nodes are collected by agents which
are dispatched by local monitoring nodes. Local monitoring nodes
are responsible for analyzing data gathered by agents. Global
monitoring nodes are in charge of integrity monitoring. However,
AAFID uses only static agents and is deprived of some of the
benefits mobile agents can offer.

The Lightweight agents for intrusion detection [21] had been
developed for an IDS that deploys distributed multiple layers of
lightweight intelligent mobile agents and applies data mining
techniques to detect intrusions. An agent monitor system roams
around different system networks, analyzing and integrating
collected information and transferring the results to users and at
last, storing the results into a database. This system allows an
agent to increase its new ability during its execution period, and
provides more convenient mechanisms to improve IDS’s
communication capability.

3. SYSTEM ARCHITECTURE

AIDS system architecture as shown in Figure 1 consists of five
main components, including event monitoring subsystems,
backup subsystems, mobile agents, a duty center and a black list
database.

An event monitoring subsystem is employed to protect
geographically concentrated subnets which are subnets
geographically located together or nearby. A building with
several subnets owned by different departments or the same
department is an example. This subsystem monitors source and
destination addresses of packets to detect whether there is a
DoS/DDoS attacks. Once detected, it dispatches a mobile agent to
send attacker’s IP address to the black list database which is a
database used to record hackers’ information and intrusion details.
In addition, it periodically dispatches another mobile agent to
send the packet statistics to the duty center, which is the
coordinator of an AIDS installed in a specific location, e.g., the
computer center of a university, for further detecting whether or
not there is a DDoS attack. If a DDoS truly exits, the duty center
dispatches a mobile agent to record attackers’ information also in
the black list database. With the database, a firewall can
accordingly filter out packets issued by known hackers.

When a host is under a DoS/DDoS attack and loses its detection
capability, a node will be chosen from the corresponding backup
subsystem and requested to substitute for the attacked one.

Figure 1. AIDS system architecture

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 43ISSN: 1690-4524ISSN: 1690-4524

Table 1. A source-IP distribution table (IP-based)
Packet-information

Source-IP-
addr

Port

Group

Past
7th-
day

count

Past
6th-
day

count

Past
5th-
day

count

Past
4th-
day

count

Past
3rd-
day

count

Past
 2nd-
day

count

Past
1st-
day

count

One-week
count=

7

1i=
∑

ith day count

Current-
day

count

Past-10-
sec

count

10-sec-
base G% N%

Chi-
square

%

Chi-
square

 for
amount

Table 2. A source-IP distribution table (group-based)

Packet-information

Group#
Past-

7th-day-size …

One-week

size=
7

1i=
∑ ith-day size

Current day-
size

Past-10-sec-

size

10-sec-
base G% N%

Chi-
square

 %

Chi-square
for amount

Event Monitoring Subsystem
An event monitoring subsystem as shown in Figure 1 consists of
event analyzers and an event collector. An event analyzer is
employed to detect DoS/DDoS attacks launched to the subnets
that it protects. An event collector collects event information and
packet statistics from its subordinate event analyzers, detects
whether there is an DoS/DDoS attack and reports attacking
information to the black list database.

 An Event Analyzer: An event analyzer collects packets
sent to hosts that it protects through a switch having a mirror port.
A packet flowing through the switch will be duplicated and sent
out via the mirror port from which an event analyzer gathers all
its detection packets. The original packet will continue its journey
to its destination. In addition, an event analyzer collects source
and destination addresses of packets sent to protected subnets, and
counts number of packets that each sender (source IP address)
sends to a specific host or subnet in the protected subnets in order
to produce a source-IP distribution table (which will be described
later) from which the event analyzer can detect DoS/DDoS
attacks, and identify who is issuing the attacks. An event analyzer
periodically once per ten second dispatches a mobile agent, called
delivery agent, to deliver the source-IP distribution table to its
coordinating event collector. An event collector on receiving the
table accumulates the table contents to it source-IP accumulation
table which is a table used to accumulate packet statistics for the
subnets in the underlying geographically concentrated unit.

 (1) Source-IP distribution table: A source-IP distribution table
as shown in Table 1 is an IP-based table. Each source IP has its
own tuple to record the IP’s packet information. This table
consists of Source-IP, port#, group#, packet-information, 10-sec-
base, group-percentage (G%), N-percentage (N%), chi-square-
percentage, and chi-square for amount where Source-IP records
source IP of a received packet, e.g., packet P, port# lists the ports
that has been used by P’s sender, group# identifies which group P
belongs to. Details of groups will be described later. Packet-
information consists of two portions, packet-information-amount
and packet-information-size. The former (the later) is used to
count number of packets (to accumulate size of packets) that P’s
sender has sent during a specific period of time. Packet-
information-amount has 10 subfields, including past 7 days’
counts, (i.e., past-ith-day-count, i=1,2,…7), one-week-count,
current-day-count and past-10-sec-count. Past-ith-day-count
records the past ith day’s packet count, one-week-count=

7

1i=
∑ past-ith-day-count, current-day-count records packet counts

for current day, and past-10-sec-count keeps information of past
10 seconds. Packet-information-size has also 10 subfields where

field names are exactly the same as those of packet-information-
count, except the “count” in each field name is substituted by
“size” since these subfields are used to accumulate sizes of
receiving packets rather than counts of the receiving packets. For

example, one-week-size==
7

1i=
∑ past-ith-day-size which

accumulates sizes of receiving packets for the past 7 days.
However, to avoid redundantly listing them, Table 1 only lists
packet-information-count portion. 10-sec-base records the 10 sec
average of an IP’s normal traffic in the past one week. Group-
percentage represents the percentage of packet counts that a group
received previously under normal circumstance over the total
number of packets that the system has received, N-percentage is
defined as the number of packets that a group has currently
received, e.g., Qi, over total number of packets the network has
received, i.e., Q, in the past 10 seconds (i.e., N-
percentage= /iQ Q), chi-square-percentage defined as

2(% %) / %N G G− is used to analyze whether or not there is a
resource consumption attack, chi-square for amount defined as

2((10 sec) (10 sec))
10 sec

past size base
base

− − − − − −
− −

 is employed to

analyze whether or not there is a bandwidth consumption attack.
However, in the following, we remove field name of packet-
information to make all its subfields to be level-one fields.
Further, to clearly illustrate behaviors of a group instead of
individual behaviors of single IPs, we create another table, called
group-IP distribution table, which calculates values for different
group features. The values are obtained by summing up field
values recorded in the corresponding source-IP distribution table.

The group-IP distribution table, as shown in Table 2, has the same
attributes as those of Table 1. But omitting Sorrce-IP-address and
port# since in a group-based table, the two fields lose their
original features.

From the group-IP distribution table, we can realize which group
or groups, e.g., groups1’, 2’,…k’, k’≦13, are issuing DoS/DDoS
attacks. Therefore, the search space of finding out who are
launching the attacks can be reduced to the IPs that belong to
groups 1’, 2’, …k’. Now, we can realize who is issuing the attack
by checking packet-information-amount and packet-information-
size subfields and source-IP field in their original source-IP
distribution table. The source-IP can be used to trace back to the
hacker. In addition, we can close the ports that P’s sender has
used once the sender is suspected as a hacker.

(2) Baseline Profile Establishment: Before detection, we first
collect ordinary packets for subunits of a geographically

44 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 ISSN: 1690-4524ISSN: 1690-4524

concentrated unit for one week, filter out attack packets and
calculate their normal packet counts and normal accumulated
packet sizes. The IP with the largest amount of packets is ranked
number one. The second largest amount is ranked number two,
and so on. After that, we classify them into 13 groups as follows.
That ranked number one constitutes the first group, i.e., group 0.
Those ranked number two and three are group 1. The
classification is shown in Figure 2.

The baseline profile is updated every 24 hours. Each time after

update, we recalculate chi-square value ix for each group i,

i=0,1,2,……12, as their new baseline profile values,
where k jx x≥ when k>j, k=0,1,2,…………11, and

j=1,2,3,……12.

Group# Range of
source IPs Ranked no.

Group 0 20 1
Group 1 21~22-1 2,3
Group 2 22~23-1 4,5,6,7
Group 3 23~24-1 8,9,10,11,12,13,14,15
Group 4 24~25-1 16,17,18,……………31
Group 5 25~26-1 32,33,34,……………63
Group 6 26~27-1 64,65,66,……………127
Group 7 27~28-1 128,129,130,………..255
Group 8 28~29-1 256,257,258,………..511
Group 9 29~210-1 512,513,514,……….1023
Group 10 210~211-1 1024,1025,1026,…...2047
Group 11 211~212-1 2048,2049,…………4095
Group 12 212 and up 4096 and remaining

Figure 2 classification of collected source IPs

(3) Algorithms: Algorithms for establishing a source-IP

distribution table and Baseline Profile are as follows:

Algorithm 1: Establishing a source-IP distribution table TD-IP
Input: An incoming packet P with source IP S-IP and destination

IP D-IP;
Output: update S-IP’s information in TD-IP, or insert a new tuple

with source IP address=S-IP into TD-IP
{1. If (S-IP is already in TD-IP, e.g., tuple t) { /* i.e., t.source-IP =

S-IP */
1.1 t.past-10-sec-count ++;
1.2 t.past-10sec-size =t.past-10sec-size + P ; /*|P|: packet

size*/
1.3 If (P’s port# is not in “port#” field) Append the port# to

“port#” field; /* accumulating port # */}
Else { /* S-IP is absent from TD-IP */
1.4 Retrieve port # from P; , e.g., port j;
1.5 Insert(source-IP=S-IP, port #=port j, past-10-sec-count=1,

past-10sec-size= P ;) into TD-IP; /* insert a new tuple, and

other fields are given null values*/ }
2. If (timer times out) {

/*accumulate current-day-count/size, reset past-10-sec
count/size and detect DoS/DDoS per 10 seconds*/

2.1 t.current-day-count=t.current-day-count + t.past-10-sec-
count;

2.3 t.current-day-size=t.current-day- size + t.past-10-sec-size;
2.4 t.past-10-sec-count=0;
2.5 t.past-10-sec-size=0;

2.6 Call Algorithm 3; /*detecting DoS/DDoS attack per 10
seconds*/

2.7 Set timer to 10 seconds;}

The algorithm that establishes a baseline profile is as follows.

Algorithm 2: Establishing a baseline profile /* summing up the

past 7-day’s counts/sizes and classifying source IPs
in a source-IP distribution table into 13 groups */

Input: a source-IP distribution table T which contains two tables,
T-count and T-size

Output: tuples in T are classified into 13 groups
{If (timer times out) /* timer’s initial value=24 hr */

1.1 For (i=6; i<=1; i--)
{Shift past-ith-day-count to past-(i+1)th-day-count;

Shift past-ith-day-size to past-(i+1)th-day-size;}
1.2 Shift current-day-count to past-1th-day-count;
1.3 Shift current-day-size to past-1th-day-size;
1.4 For (each tuple in T)

{t.one-week-count=
7

1i=
∑ t. past-ith-day-count;

t.one-week-size=
7

1i=
∑ t. past-ith-day-size;}

1.5 Call Sort-data (current-day-count, T-count=T); /*
generating baseline profile for count */

1.6 Call Sort-data (current-day-size, T-size=T); /* generating
baseline profile for size */}

1.7 For (each tuple q in T-count and T-size)
Fill in the group number to which q belongs to group# field;

1.8 Set timer t=24 hr;}

Sort-data (x, y) { /* x may be current-day-count or current-day-

size */
1.1 sort tuples in T on x subfield;
1.2 The IP ranked top one is x-group 0;
1.3 The IPs ranked the top 2nd and top 3rd are x-group 1;
1.4 The IPs ranked the top 4th to top 7th are x-group 2;
1.5 The IPs ranked the top 8th to top 15th are x-group 3;
 …
1.6 The IPs ranked the top (2k) th to top (2k+1-1)th are x-group k;

 …
1.7 The IPs ranked the top (211) th to top (212-1)th are x-group

11;
1.8 The IPs ranked the top 212 and up are x-group 12;}

(4) Detecting DoS/DDoS attacks: The method to detect a
DoS/DDoS attack is as follows. Let Gi-count be average number of
packet counts that group I, i.e., Ni, has received per 10 seconds
under the circumstance of no attacks,

. count

7*24*60*60
10

t Ni
i count

t one week
G ∈

−

− −
=
∑ . Let Gi-size be average

accumulated packet sizes that group i has received per 10 seconds
also under the circumstance of no attacks,

. size

7*24*60*60
10

t Ni
i size

t one week
G ∈

−

− −
=
∑

. The threshold values calculated

beforehand for each group are as follows. Let

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 45ISSN: 1690-4524ISSN: 1690-4524

1
2

0

n
i count i count

count
i i count

N Gx
G

−
− −

= −

−
=∑ , and

1
2

0

n
i count i count

count
i i count

N Gx
G

−
− −

= −

−
=∑

where ()i count i sizeN N− − is number of packets (accumulated
packet size) that group i has currently received in past 10 seconds,
i=0,1,2,…12, n=13, and degree of freedom is df=12 (=n -1).

In this research, we choose significant standard α = 0.05 and

2
12, 21.026x α = . If 2 2

12,x x α≤ , we accept the null hypothesis H
0
,

indicating that there is no attack where x2 may be either x2
count or

x2
size. However, if 2 2

12,countx x α> (or 2 2
12,sizex x α>) , we reject

0H , which means its alternative hypothesis 1H is true, showing
that there is a suspected resource consumption (bandwidth
consumption) attack.

Algorithm 3: detecting DoS attack by using chi-square statistic

method invoked by an event analyzer for every ten
seconds.

Input: a source-IP distribution table T; baseline profile-count;
baseline profile-size

Output: whether or not a subnet or subnets protected by an event
analyzer are under a DoS/DDoS attack

{1. Att=false;
2. If 2 2

12,(())countx x thresholdα≥ + /* a resource consumption

attack is discovered */ {For (i=0; i<=12; i++) /* check which groups issued the
attack */

If (
2()i count i count

i count
i count

N G threshold
G

− −
−

−

−
>)

Choose k IPs whose past-10-sec-counts are the highest as
the suspected hackers, where

11

0 0
10 sec / 10 sec

 80%

imj k

j j
j j

past count past count
−= −

= =

− − − − − −

≥

∑ ∑ in

which mi is number of source IPs in group i;
Send attack information to the black list database, and an

alter message to administrator to show that there is a
resource consumption DoS/DDoS attack;}

3. If 2 2
12,(())sizex x thresholdα≥ + /* a bandwidth consumption

attack is discovered */
{For (i=0; i<=12; i++) /* check which groups issued the

attack */
If (2()i size i size

i size
i size

N G threshold
G

− −
−

−

−
>)

 Choose k IPs whose past-10-sec-sizes are the highest as
the suspected hackers, where

11

0 0

10 sec / 10 sec

 80%

imj k

j j
j j

past size past size
−= −

= =

− − − − − −

≥

∑ ∑ ;

Send attack information to the black list database, and an
alter message to administrator to show that there is a
resource consumption DoS/DDoS attack;}}

An Event Collector
As stated above, an event analyzer periodically, once per 10
seconds, sends its source-IP distribution table to its event
collector which on receiving the table, for each source IP address
retrieves the corresponding count and size from the table, sums up
the counts and sizes for each packet information subfield (a total

of 10+10 subfields) and records the results in the corresponding
subfields in its own source-IP accumulation table, which has the
same schema as that of Table 1. In other words, the values of
packet information subfields of a source IP address P appearing in
different source-IP distribution tables will be summed up as total
counts/sizes of the corresponding subfields of P in a source-IP
accumulation table. For example, in the source-IP accumulation
table, P’s past-ith-day-count is the sum of P’s past-ith-day-counts
in all the received source-IP distribution tables,1 7i≤ ≤ .

An event collector should receive source-IP distribution tables
periodically from all its event analyzers. When it does not receive
the table from an event analyzer, it dispatches a mobile agent as a
backup agent to check status of the event analyzer. If the event
analyzer is still alive, the backup agent asks the event analyzer to
send the source-IP distribution table to the event collector.
Otherwise, the backup agent will request the corresponding
backup subsystem to select a host to take over for the failed event
analyzer. The functions of the backup host are exactly the same as
those of an event analyzer.

An event collector detects whether a geographically concentrated
unit is attacked by a DoS/DDoS or not also based on chi-square
statistic approach. It calculates chi-square values of normal
network traffic in advance for a geographically concentrated unit
by using the algorithm similar to Algorithm 3 with the given
source-IP distribution table substituted by its source-IP
accumulation table. Its baseline profile values are also generated
from the accumulation table beforehand. Each time, when an
event collector finishes collecting source-IP distribution tables
and updating its own source-IP accumulation table, of course
once per 24 hours, it periodically once per 10 seconds checks to
see whether the chi-square value of current network traffic for its
13 groups significantly exceeds its threshold or not. If yes, it
dispatches a mobile agent as a update agent to send hacker
information to the black list database. And regardless of yes or
not, it dispatches a mobile agent as a notifying agent to send its
source-IP accumulation table, also per 10 seconds, to the duty
center, which will integrate contents of source-IP accumulation
tables delivered by all event collectors, into its source-IP
integration table from which the duty center can further detect
DDoS attacks, particularly for low-density DoS/DDoS attacks,
which are hard to be detected by an event collector.

Duty Center
The duty center, as the coordinator of AIDS, further detects
whether or not there is a DoS/DDoS attack which is attacking the
protected system. The duty center builds a source-IP integration
table, of which the table structure is similar to that of a source-IP
distribution table, to detect attacks. If yes, the duty center
dispatches a mobile agent to record attackers’ information also in
the black list database. With the database, a firewall can
accordingly filter out packets issued by known hackers.
Algorithm 4 shows the detection details of the duty center.
Algorithm 4: process of the duty center
Input: source-IP accumulation tables received periodically
Output: whether network management unit, e.g., a

university/company, is under a DDoS attack
{1. If (timer generated for an event collector times out)

{Dispatches a mobile agent as a backup agent to check status
of event collector;

 If (event collector fails)
Send a message to the corresponding backup subsystem
to choose a host to take over for the failed event collector;

46 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 ISSN: 1690-4524ISSN: 1690-4524

Else asks the event collector to send content of its source-
IP accumulation table to the duty center;}

2. Integrate all source-IP accumulation tables received to
generate its source-IP integration table;

3. Detect whether there is a DoS/DDoS attack by calculating Gi-

count, Gi-siez, x2
count and x2

size at duty-center level;
4. If (yes)

{Send a message to administrators;
Dispatch an update agent to deliver hacking information to

the black list database;}}

Backup Subsystem
When an event analyzer (an event collector) is under a

Dos/DDos attack and loses its detection capability, as stated
above, its event collector (the duty center) dispatches a backup
agent to the corresponding backup subsystem, asking the
subsystem to choose a host to substitute for the attacked event
analyzer (an event collector). The process of selecting a backup
host by an event collector is as follows.

Algorithm 5: process of choose a backup host for an attacked
event analyzer
Input: a set of hosts H= {h1,h2,h3,…hm} in the underlying
geographically concentrated unit, where m is number of hosts in
the backup subsystem
Output: the chosen host acts as an event analyzer
{1. Choose the host with the highest performance, e.g., hi;
 2. Send a message to request hi acting as an event analyzer to

take over for the failed event analyzer;
 3. Change hi’s network interface (i.e., network card) into

promiscuous mode to filter packets sent to the protected
subnet or subnets;}

The algorithm that the duty center invokes to select a backup host

is similar to algorithm 5.

Mobile Agents
There are four types of mobile agents. The first is delivery agents
which are those dispatched by event analyzers to send source-IP
distribution tables to their event collector. The second is notifying
agents which are those dispatched by event collectors to send
their source-IP accumulation tables to the duty center. The third is
update agents which are dispatched by event analyzers, event
collectors or the duty center to send hacker information to the
black list database. The fourth is backup agents which are
dispatched by event collectors (or the duty center) to check an
attacked event analyzer’s (an attacked event collector’s) status
and/or select a backup node to substitute for the attacked one.

Black List Database
Black list database keeps hackers’ information, e.g., hackers’
source IP addresses, hacking date/time, victim IPs, protocols of
attacking packets, etc. Using BLD has several advantages: (1)
Identical attack information can be combined to form a record. (2)
Intrusion warning can be significantly reduced. (3) If an event
analyzer has detected an attack, we can prevent the attacker from
sending attacking packets to other geographically concentrated
units in advance. (4) Router or firewall can follow the black list in
black list database to discard packets issued by hackers.

Security of AIDS
Readers may ask how AIDS protects itself from being attacked.
All event analyzers, event collects and backup hosts are given
private IPs. So they are not visible to hackers. The duty center is

the only one that is given public IPs. Its security is implemented
by using firewall and IDS.

4. EXPERIMENTS AND DISCUSSIONS

Our experimental environment comprises computers installed in
computer classrooms of Science and Technology Building,
Computer center and Engineering-college Building in Tunghai
University. The configuration is shown in Figure 3, in which the
only victim is located in Science and Technology Building, and
number of attackers and their positions are listed in Table 3.
Wireshark (version 0.99.5) software is installed on the victim to
gather traffic issued by the attackers, and attack tools are used to
send attack packets, which have their own features so that we can
discriminate attack packets from normal ones.

Figure 3. The configuration of our experimental
environment

Table 3. Numbers of attackers and their positions

Building Comp. room No. of compu.
Sci. and Tech. Room 1 20

Room 1 36 Computer
Center Room 2 41

Eng.-college Room 1 39

Table 4. The Information about Attacks
experiment Attack Type Attack Period ANP/sec

1
Resource

Consumption
Attack

10 sec 323,201

2
Bandwidth

Consumption
Attack

10 sec 32,404

Table 5. Rations of attack packets distributed to each group in

experiments 1 and 2.
Group Experiment 1 (%) Experiment 2 (%)

0 18.75 0
1 34.38 0
2 21.88 0
3 25 0
4 0 0
5 0 0
6 0 0
7 0 49.52
8 0 8.02
9 0 13.06
10 0 10.69
11 0 10.69
12 0 8.02

 100% 100%

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 47ISSN: 1690-4524ISSN: 1690-4524

Three experiments were performed in this study. Experiments 1 is
a resource consumption attack, experiments 2 is a bandwidth
consumption attack and experiment 3 evaluates detection
accuracies of tested security systems.

Table 4 lists the attack details where ANP/sec stands for average
number of launched packets per second. Each attack is separately
issued twenty times. Table 5 lists how many percentages of attack
packets are delivered by each group in the first two experiments.
For example, in experiment 1, 18.75% of attack packets were sent
by the hosts belonging to baseline-profile group 0, and 34.38%
were delivered by members of baseline profile group 1 and so on.

(1) Experiments 1 and 2
In experiment 1, only 85.6%(=2,766,800/(323,201*10)) of
packets arrived at the victim, including legitimate packets and
attack packets. Table 6 lists the contents of a source-IP
accumulation table established in this experiment. Table 7 lists
the source-IP accumulation table generated in experiment 2.

However, in this table, tuples Qs that belong to a group are
summed up to be a tuple R to simplify scope of the table, where

R’s field i’s value=
| |

1
(

Qs

j=
∑ tuple j’s field i's value), i=1,2,3…k, in

which k is number of fields that R and Qs have. We call the
simplified table a concise accumulation table, from which, we can
realize which groups are issuing DoS/DDoS attack.

Besides, packets were also further classified according to their
protocols so that we can detect DoS/DDoS attacks of a specific
protocol. Tables 8, 9 and 10 respectively list the baseline profiles
for icmp, tcp and udp, which are obtained by classifying Table 7’s
tuples based on the tuples’ protocols. Of course, the
corresponding baseline sub-profiles for the protocols are also
generated from the original baseline profile beforehand. So, when
we are interested in detecting a specific type of DoS/DDoS, e.g.,
ICMP flooding, only ICMP packets are compared with ICMP
baseline profile.

Table 6 Packet statistics collected in experiment 1 for an event collector’s source-IP accumulation table and the chi-square result values.

Group Source IP
Past

7th-day
count

Past
6th-day
count

Past
5th-day
count

Past
4th-day
count

Past
3rd-day
count

Past
 2nd-day
count

Past
1st-day
count

one-week
count=

7

1i=
∑

ith- day count

current-
day

count

Past
10-sec
count

10-sec-base G% N% Chi-square
%

Chi-square for
amount

G0 140.128.0.132 6,634,149 7,016,363 10,579,147 11,070,566 10,374,389 11,466,430 11,111,517 68,252,562 7,553,961 537,598 1,128.51 15.83 19.43 0.82 475.38
140.128.1.85 3,284,640 4,091,457 5,481,159 5,136,475 6,686,429 5,501,435 6,169,027 39,800,171 4,804,121 712,664 17.41

G1
140.128.0.125 4,014,561 3,628,274 6,699,195 6,277,914 5,929,474 6,723,976 5,470,646 35,294,492 3,783,604 155,330

1,241.64

31.37 11.19 698.07

163.23.75.125 1,161,892 1,228,833 1,816,951 2,008,209 1,946,050 1,852,812 1,938,878 11,953,623 1,688,232 459,399 11.09
140.128.0.123 1,394,271 1,474,599 2,180,341 2,409,851 2,335,260 2,223,374 2,326,653 14,344,348 1,526,847 52,248
140.128.0.121 1,115,417 1,179,679 1,744,273 1,927,880 1,868,208 1,778,699 1,861,323 11,475,478 1,231,414 51,735

G2

140.128.0.119 975,989 1,032,219 1,526,239 1,686,895 1,634,682 1,556,362 1,628,657 10,041,044 1,083,442 51,223

790.58

22.21 11.16 776.41

140.128.201.1 438,732 464,008 758,302 734,831 699,624 732,122 686,083 4,513,701 1,001,435 537,427 8.72
140.128.0.74 548,415 580,011 947,877 918,538 874,530 915,153 857,603 5,642,126 613,572 33,561

140.128.0.110 475,293 502,676 821,494 796,066 757,926 793,132 743,256 4,889,843 535,198 32,522
140.128.0.109 402,171 425,341 695,110 673,595 641,322 671,112 628,909 4,137,559 457,743 32,402

140.128.0.2 365,610 386,674 631,918 612,359 583,020 610,102 571,736 3,761,418 417,638 30,964
140.128.0.124 292,488 309,339 505,534 489,887 466,416 488,082 457,388 3,009,134 339,704 30,365
140.128.0.100 621,537 657,345 1,074,261 1,041,010 991,133 1,037,173 971,950 6,394,410 677,881 20,536

G3

140.128.0.99 511,854 541,343 884,685 857,302 816,228 854,143 800,430 5,265,985 560,760 19,417

621.93

26.64 36.82 1,184.34

140.128.0.98 168,992 178,728 283,044 269,483 282,001 264,267 292,085 1,738,600 179,041 313 6.45
140.128.0.97 189,213 180,632 217,001 255,023 312,012 255,763 364,102 1,773,746 180,945 313 G4

…

459.95

0.18 6.09 5001

140.128.0.95 93,860 99,268 149,674 156,626 146,777 162,227 157,206 965,638 99,349 81 7.17
140.128.0.93 94,025 100,234 153,247 179,621 158,140 186,203 201,001 1,072,471 100,316 82 G5

…

510.92

0.09 6.98 2605

140.128.0.91 76,119 80,504 127,021 119,033 131,563 127,491 121,383 783,113 80,514 10 11.62
140.128.0.78 76,197 87,045 132,015 120,031 148,014 198,171 125,003 886,476 87,055 10 G6

…

828.69

0.02 11.58 612

140.128.0.104 35,542 37,589 55,580 61,430 59,529 56,677 59,309 365,655 37,593 4 10.85
140.128.0.14 35,961 38,763 56,237 62,301 60,521 57,023 60,201 371,007 38,767 4 G7

…

773.87

0.02 10.82 498

140.128.0.24 20,155 21,317 17,418 16,879 16,070 16,817 15,759 124,417 21,318 1 6.16
140.128.0.103 21,111 21,974 18,024 17,693 19,012 17,028 16,800 131,642 21,976 2 G8

…

438.86

0.01 6.13 316

140.128.0.88 1,539 1,627 2,577 2,453 2,567 2,406 2,659 15,828 1,628 1 1.88
140.128.0.66 1,589 1,852 2,896 2,566 2,596 2,963 2,912 17,374 1,853 1 G9

…

134.00

0.01 1.86 302

140.128.0.66 508 537 847 794 877 850 809 5,222 537 0 1.24
140.128.0.78 611 612 917 812 896 876 819 5,543 612 0 G10

…

88.42

0.00 1.24 68

140.128.0.69 260 275 406 449 435 414 434 2,674 275 0 1.27
140.128.0.77 289 385 409 498 503 513 498 3,095 385 0 G11

…

90.54

0.00 1.27 -1

140.128.0.41 260 76 414 434 406 449 435 2,475 76 0 0.31
140.128.0.31 262 78 417 441 413 478 466 2,555 78 0 G12

…

21.93

0.00 0.31 -1

Sum 2,766,800 7,129.84 100 100 106.26

48 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 ISSN: 1690-4524ISSN: 1690-4524

Table 7. Packet statistics collected in experiment 2 for an event-collector’s source-IP accumulation table (the statistics of a group
on each field are summed up as a value so the statistics of a group are represented by a tuple) and the chi-square values.

group Past-
7th-day-size …

one-week

size=
7

1i=
∑ ith-

day size

current-
day-size

Past-10-sec
-size

10-sec
-base G% N% Chi-square

 %
Chi-square
for amount

G0 775,727,731 … 7,545,989,602 933,126,289 403 124,768 9.66 0.00 9.66 1.00
G1 1,190,306,386 … 11,578,855,894 1,338,557,993 378 191,449 14.82 0.00 14.82 1.00
G2 977,342,839 … 9,507,226,058 1,489,806,973 757 157,196 12.16 0.00 12.16 1.00
G3 963,328,802 … 9,370,902,748 1,629,936,147 1,513 154,942 11.99 0.00 11.98 0.99
G4 1,092,567,924 … 10,628,092,647 1,752,168,605 3,027 175,729 13.60 0.01 13.59 0.98
G5 1,042,673,876 … 10,142,741,984 2,290,023,921 5,484 167,704 12.98 0.01 12.96 0.97
G6 694,202,739 … 6,752,944,934 1,016,441,048 428 111,656 8.64 0.00 8.64 1.00
G7 652,538,289 … 6,347,648,721 1,215,619,256 24,155,732 104,955 8.12 49.51 210.93 229.15
G8 469,953,146 … 4,571,528,658 644,275,288 3,912,800 75,587 5.85 8.02 0.80 50.77
G9 90,838,914 … 883,647,024 85,890,491 6,371,047 14,611 1.13 13.06 125.89 435.06
G10 41,083,945 … 399,649,273 38,845,909 5,212,675 6,608 0.51 10.68 202.92 787.85
G11 35,461,674 … 344,957,920 33,529,910 5,217,066 5,704 0.44 10.69 238.87 913.69
G12 8,179,848 … 79,570,504 7,734,253 3,912,800 1,316 0.10 8.02 627.11 2,972.25

sum 78,153,755,968 48,794,110 100 100 1,490 5,381.84

Table 8. ICMP packet statistics collected in experiment 2 (Table 7) for an event-collector’s source-IP accumulation table

Table 9. TCP packet statistics collected in experiment 2 (Table 7) for an event-collector’s source-IP accumulation table

group Past-
7th-day-size …

one-week

size=
7

1i=
∑ i

day size

current-
day-size

Past-10-
sec-size

10-sec
-base G% N% Chi-square

%
Chi-square
for amount

0 733,470,189 … 7,545,989,602 1,267,727,034 1,491 124,768.35 17.29 22.61 1.64 121,804.13
1 592,522,265 … 6,095,908,074 1,024,113,313 1,416 100,792.13 13.97 21.48 4.04 97,979.04
2 624,405,787 … 6,423,927,851 1,079,221,393 1,138 106,215.74 14.72 17.25 0.43 103,952.82
3 664,447,439 … 6,835,879,003 1,148,430,699 699 113,027.10 15.66 10.60 1.64 111,633.39
4 697,472,387 … 7,175,641,846 1,205,513,314 507 118,644.87 16.44 7.69 4.66 117,632.81
5 409,245,418 … 4,210,343,809 707,338,188 557 69,615.47 9.65 8.44 0.15 68,506.77
6 241,072,455 … 2,480,169,294 438,840,485 787 41,008.09 5.68 11.93 6.86 39,449.74
7 173,795,110 … 1,788,015,533 313,429,275 0 29,563.75 4.10 0 4.10 29,563.75
8 28,278,362 … 290,929,655 54,477,746 0 4,810.34 0.67 0 0.67 4,810.34
9 22,647,119 … 232,995,056 42,732,464 0 3,852.43 0.53 0 0.53 3,852.43

10 22,657,515 … 233,102,005 41,554,000 0 3,854.20 0.53 0 0.53 3,854.20
11 31,934,980 … 328,549,178 57,179,951 0 5,432.36 0.75 0 0.75 5,432.36

 sum 43,641,450,907 6,595 721,584.84 100 100 26.01 708,471.78

group Past-
7th-day-size …

one-week

size=
7

1i=
∑ ith-

day size

current-
day-size

Past-10-sec
-size

10-sec
-base G% N% Chi-square

 %
Chi-square
for amount

G0 5,376,553 … 55,314,334 11,288,487 24,155,732 914.59 3.36 49.52 634.45 26,410.57
G1 5,052,214 … 51,977,507 10,864,524 3,912,800 859.42 3.16 8.02 7.50 4,551.86
G2 10,104,427 … 103,955,013 23,119,680 6,371,047 1,718.83 6.31 13.06 7.22 3,705.61
G3 20,208,855 … 207,910,027 42,121,136 5,212,675 3,437.67 12.62 10.69 0.30 1,515.34
G4 40,417,709 … 415,820,053 77,050,021 5,217,066 6,875.33 25.25 10.69 8.39 757.81
G5 73,225,911 … 753,352,997 139,605,969 2,137,200 12,456.23 45.74 4.38 37.40 140.52
G6 4,582,857 … 47,148,732 13,522,551 1,762,800 779.58 2.86 3.61 0.20 2,740.49
G7 1,128,951 … 11,614,727 7,933,432 12,800 192.04 0.71 0.03 0.65 65.65
sum 1,647,093,390 48,782,120 27,233.69 100 100 696.1 39,887.86

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 49ISSN: 1690-4524ISSN: 1690-4524

Table 10. UDP packet statistics collected in experiment 2 (Table 7) for an event-collector’s source-IP accumulation table

In Table 6 (experiment 1) Chi-square % field of the whole table is
106.26 which is very larger than 21.026, showing that there is an
attack. Also, from this table, we can realize that groups 0, 1, 2 and
3 are issuing DoS/DDoS attack since their

2{(10 sec) (10 sec)}
10 sec

past count base
base

− − − − − −
− −

 hugely exceed their

thresholds 1128.51, 1241.64, 790.58 and 621.93, respectively.
Further, we can discover that 140.128.0.132, 140.128.1.85,
163.23.75.125 and 140.128.201.1 issued the attack since their
past-10-sec-counts are the highest and are apart of the top 80% of
packets.

When a tuple’s 10-sec-base > Past-10-sec-count field or G% >
N%, and the corresponding frequency value is below a certain
threshold, even the corresponding chi-square % or chi-square for
amount exceeds the threshold, the tuple can be purged without
substantially affecting the chi-square computation.

In Table 7 (experiment 2), Chi-square for amount field of the
whole table is 5,381.84 which is larger than 21.026, illustrating
there is an attack. In this experiment, we would like to detect
specific protocol attack, so we can check Table 8 if icmp attack is
our concern. When detecting attacks, each cluster is compared
with its corresponding protocol baseline sub-profile. Thus, we can
discover a specific flooding attack, particularly when number of
the flooding attack packets is not significantly increased
compared with total packets currently collected in their source-IP
accumulation table. However, when attackers mix TCP, ICMP
and UDP flooding attacks, and each of them is not significant as
compared with its own baseline sub-profile, this method can not
discover such an attack. But the mixed attack can be discovered
by comparing the mixed baseline profile.

(2) Experiment 3
In experiment 3, we evaluate detection accuracies of different
tested security systems, including Kaspersky Anti-Hacker 1.8.180
(Kaspersky for short, by Kaspersky Labs), McAfee VirusScan
Home Edition 7.0 (McAfee VirusScan forshort, by McAfee, Inc),
Panda Titanium Antivirus 2005 (Panda Titanium for short, by
Panda software), Snort and AIDS. We gather 100 times of normal
traffic and 100 times of attack traffic of 10 seconds, respectively,
including DoS/DDoS resource consumption attack (i.e., TCP

flood and ICMP flood) and DoS/DDoS bandwidth consumption
attack (i.e., UDP flood). The attack intensities range between 500
and 15,000 packets/sec [22].

Table 11 shows the detection results. Kaspersky performs the best
(94.7%). But, if the detective host has been installed P2P software,
its false positive is then high up to 6.8 %.

When Kaspersky and Snort discover that there is an attack, they
throw the packets directly, and terminate the corresponding
sessions. Panda Titanium has a specific phenomenon. During the
experiment, it does not alert that there is an attack for many times
of attacks. The error (false-positives) for CIDS comes from when
G% and N% values are similar, consequently being treated as
normal traffic.

Table 11 Detection Accuracy of DoS/DDoS attacks

Statistics
Secu.

 Systems

True
Positive

False
Negative

False
Positive

True
Negative

Detection
Accuracy

Kaspersky 89.4% 100% 0% 10.6% 94.7%

McAfee
VirusScan 89.5% 100% 0% 10.5% 84.75%

Panda
Titanium 87.7% 100% 0% 12.3% 83.85%

Snort 89.5% 95.2% 4.8% 10.5% 82.35%

AIDS 92.76% 96.5% 3.5% 7.24% 94.63%

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we proposed a distributed detection architecture
called agent based intrusion detection system (AIDS), which uses
Goodness of fit test of chi-square test to detect DoS/DDoS attacks.
It analyzes amount and variation of source address that send
packets to us, and statistics of IP address distribution. If hackers
employ attack tools, for example, “Stacheldraht” to generate a
huge amount of packets of random source IP addresses. We check
to see whether its chi-square value exceed threshold.
Experimental results show that this method can effectively detect
DoS/DDoS attacks.

group Past-
7th-day-size …

one-week

size=
7

1i=
∑ ith-

day size

current-
day size

Past-10-
sec-size

10-sec
-base G% N% Chi-square

%
Chi-square
for amount

0 657,074,690 … 6,760,027,671 1,135,685,430 1,220 111,772.94 18.74 22.61 0.80 109,346.41
1 684,774,023 … 7,045,000,233 1,183,560,796 1,159 116,484.79 19.53 21.48 0.19 114,178.42
2 401,055,323 … 4,126,083,565 693,183,552 931 68,222.28 11.44 17.25 2.95 66,373.53
3 456,110,937 … 4,692,499,353 788,342,918 572 77,587.62 13.01 10.60 0.45 76,447.99
4 344,921,694 … 3,548,577,103 596,166,007 415 58,673.56 9.84 7.69 0.47 57,846.67
5 316,336,665 … 3,254,492,435 546,755,159 455 53,811.05 9.02 8.44 0.04 52,904.15
6 311,015,208 … 3,199,744,934 539,552,828 644 52,905.84 8.87 11.93 1.05 51,626.30
7 255,199,682 … 2,625,511,130 441,086,079 0 43,411.23 7.28 0 7.28 43,411.23
8 62,417,969 … 642,160,170 107,883,128 0 10,617.73 1.78 0 1.78 10,617.73
9 14,333,837 … 147,467,459 30,376,097 0 2,438.28 0.41 0 0.41 2,438.28

10 2,884,232 … 29,673,167 46,169,969 0 490.63 0.08 0 0.08 490.63
 sum 36,071,237,220 5,396 596,415.96 100 100 15.5 585,681.34

50 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 ISSN: 1690-4524ISSN: 1690-4524

In the future, we would like to study AIDS’s system behavior and
reliability and develop the behavior and reliability models, so
users can accordingly predict AIDS’s system behavior and
reliability before using it.

6. REFERENCES

[1] R.K.C. Chang, “Defending against Flooding-Based

Distributed denial-of-Service Attack: A Tutorial,” IEEE
Communication Magazine, October 2002, pp. 42-51.

[2] W.Y. Luo , “A Lightweight System of Detecting DoS/Probe
Attacks Based on Packet Header”, National Taiwan
University of Science and Technology, Dept. of Computer
Science and Information Engineering, Master thesis,2008.

[3] “2007 CSI Computer Crime and Security Survey,”
http://i.cmpnet.com/v2.gocsi.com/pdf/CSISurvey2007.pdf ,
June. 2007. (visit on 2009/6/24)

[4] “2008 CSI Computer Crime and Security Survey,”
http://i.zdnet.com/blogs/csisurvey2008.pdf, June 2008.
(visit on 2009/6/24)

[5] Guang Jin et al., “A Pi2HC mechanism against DDoS
attacks,” Communications and Networking in China, 2008,
Auguster 2008, pp. 225-229.

[6] Zhou, Zaihong et al., “A P2P-Based Distributed Detection
Scheme against DDoS Attack,” Education Technology and
Computer Science, March. 2009, pp. 304-309.

[7] I.B. Mopari et al., “Detection and defense against DDoS
attack with IP spoofing,” Computing, Communication and
Networking, December 2008, pp. 1-5.

[8] R.P Karrer et al., “Joint Application and Network Defense
against DDoS Flooding Attacks in the Future Internet,”
Future Generation Communication and Networking,
December 2008, pp. 11-16.

[9] A. Chonka et al., “Multi-Core Defense System (MSDS) for
Protecting Computer Infrastructure against DDoS Attacks,”
Parallel and Distributed Computing, Applications and
Technologies, 2008, December 2008, pp. 503-508.

[10] Shen Wang et al., “GA-Based Filtering Algorithm to Defend
against DDoS Attack in High Speed Network,” Natural
Computation, 2008, October 2008, pp. 601-607.

[11] R. Saad et al., “A collaborative peer-to-peer architecture to
defend against DDoS attacks,” Local Computer Networks,
2008, October 2008, pp. 427-434.

[12] F.Y. Leu, J.C. Lin and M.C. Li, “A Performance-Based Grid
Intrusion detection system,” Proc. the International
Computer Software and Applications Conference, 2005,
pp.525-530.

[13] L. Feinstein et al., “Statistical Approaches to DDoS Attack
Detection and Response,” Proc. DARPA Information
Survivability Conf. and Exposition, 2003, pp. 303–314.

[14] W. A. Jansen, “Intrusion Detection with Mobile Agents”,
National Institute of Standards and Technology, Apri1 2001.

[15] W. Jansen and T. Karygiannis, “Mobile Agent Security",
Computer Security Division, NIST Special Publication 800-
19, June 2001.

[16] J. Mirkovic and P. Reiher, “D-WARD: a source-end defense
against flooding Denial-of-Service attacks,” IEEE
Transactions Dependable and Secure Computing, vol. 2,
no.3, July 2005, pp. 216-232.

[17] J. Mirkovic, M. Robinson, P. Reiher, and G.. Oikonomou, “A
framework for collaborative DDoS defense,” Proc. of the
22nd Annual Computer Security Applications Conference,
2006, pp. 33-42.

[18] S. Chen, and Q. Song, “Perimeter-Based Defense against
High Bandwidth DDoS Attacks”, IEEE Transactions on
Parallel and Distributed Systems, Vol. 16, No. 7, 2005, pp.
526-537.

[19] S. Snap et al., “DIDS (Distributed Intrusion Detection
System) – Motivation, Architecture, and an Early
Prototype,” Proc. of National Computer Security Conference,
1991, pp. 167-176.

[20] J. Balasubbramaniyan, et al. “An Architecture for Intrusion
detection using Autonomous Agents,” Technical report No.
TR 98-05, Prudue University, 1009..

[21] G. Helmer et al. “Lightweight Agents for Intrusion
detection,” Journal of systems and Software, Elsevier, Vol.
67, 2003, pp. 109-122.

[22] R. Oliver, “Countering SYN Flood Denial-of-Service
Attacks,” Tech Mavens, Inc., August 2001. http://www.tech-
mavens.com/synflood.htm

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 2 - YEAR 2010 51ISSN: 1690-4524ISSN: 1690-4524

	GI137NK

