Quantum Effectiveness Revealed by Quantitative Electroencephalogram (QEEG) as Applied in Academics, Corporate Consulting and Everyday Life

Jeffrey L. FANNIN, Ph.D.
Center for Cognitive Enhancement
5681 W. Beverly Lane – Suite 102
Glendale, AZ 85306
(602) 548-9092

ABSTRACT
This paper presents research data that demonstrates changes in neuronal patterns to achieve optimally balanced brain performance. The optimally balanced brain state is applied in academics, consulting and business coaching to change subconscious belief patterns that tend to minimize effective thought and behavior. This kind of research might well be very important and useful in processes oriented toward integrating academic, consulting, business coaching activities, and similar processes. It may also be significant in finding ways of integrating research and education. The author based his conclusion on the documentation of one hundred twenty-five cases where data was gathered over a 12 month period, in three different locations, with different EEG technicians, using two different types of EEG equipment; the p-value is <=0.010. Consequently the conclusions are well supported. The creation of the essential neuropathways, indicated by the author might certainly help in processes oriented to integrate academic informing in its three main components (research, education and consulting), as well as in improving the performance of each of these three activities.

Keywords: QEEG, Quantum, PSYCH-K®, Thought, Brain Mapping, Subconscious, Belief Patterns

1. INTRODUCTION
Philosophers have pondered the mind/body problem for centuries. Words like mind, consciousness, thought, intelligence and awareness get bantered around in an effort to begin to put some understanding and relationship to the mind/body conundrum. These words are commonly used in a variety of contexts, trying to define the words, or provide a variety of interpretations to what the relationship means. It is more important that the neuroscience jargon be kept to a minimum, and facilitate communication offering greater understanding of what is happening in the process or the experience being measured with our scientific tools. The first consideration should be the anatomical and functional process of consciousness. We begin our understanding by distinguishing between the operation of consciousness and the content of consciousness [1]. The general operation of consciousness (GOC) is characterized by longer time intervals and relatively time invariant processes such as sleep, wakefulness, arousal, and coma. The GOC is a relatively tonic state, with slow adjustments of the levels of arousal (i.e., on the order of minutes and hours), such as changes in levels of awareness and/or drowsiness and are mediated by reticular-limbic and thalamic excitatory control systems. In contrast, the content of consciousness (COQ) is defined as the momentary collection of sensations and thoughts that we would call the "present moment," which is temporally and hierarchically nested within the GOC and is mediated by the coherent activation of large ensembles of neurons.

William James referred to the content of consciousness as the specious present, which he defined as that "interval of time (about 1 to 7 seconds) when an event that belonged to the present is distinctly perceived as the past" [2]. A finer temporal grain of the content of consciousness is provided by the psychophysical experiments of Efron [3], [3a] that demonstrated an approximately 20- to 200-ms perceptual frame in which nearly simultaneous events were integrated into a perceptual whole event [4], [4a].

This work was reviewed and summarized in a publication entitled, Functional Landscapes of the Brain: An Electrotopographic Perspective, in which the results of both spatial principal components analysis (SPCA) and temporal principal component analyses
with Varimax rotation (TPCVA) analyses were presented in a series of experiments [5], [5a].

Grossberg and Somers did mathematical and simulation studies by demonstrating that zero phase locking between connected networks occurs whenever two conditions are met: (a) there is strong coupling and (b) there is some form of delay (or inhibition) involved in the coupling between networks [6]. Other studies have postulated a specific role of feedback and feedforward inhibition in the creation of synchronized zero phase locked neural activity [7] [7a]. Thus, strong coupling and delays appear to be necessary. Studies completed at the National Institutes of Health involved the neuronal mechanisms by which human voluntary movements occur using multimodal registration of EEG, MRI, and PET. EEG coherence and phase measures were obtained, before and after finger movements, and specific patterns of neuronal activation were observed to correlate with the allocation of resources that underlay the finger movements. A neural network switching model was developed in which loops of cells behaved similar to spinning tops or gyroscopes. The justification for this view was standard neural network models that involve nearly instantaneous switching dynamics that could not explain the computation of strong second derivatives involved in the dynamics of neuronal switching, and essential elements in the establishment of zero phase lag coherent neural activity. However, precisely which brain regions (e.g., thalamus, reticular formation, limbic cortex, etc) control the spatial and temporal distribution of inhibitory and excitatory drives at a given moment of time, is very complicated, and likely task specific [8] [8a].

Cognitive physiology has been the prevailing view in neuroscience since William James (1890). Many scientific perspectives consider consciousness to be the result of sensory input brought into the brain by different sensory afferents; the very function becomes the basis for cognition [9]. Some have looked at cognition as an intrinsic functional state of the brain. It has been proposed that consciousness is an onerific-like internal functional state modulated, rather than generated by the senses [9a]. As a child we may remember the sound of a curtain fluttering in the dark and how it could evoke worrisome images that were immediately dispelled when the lights were turned on. Understanding that the internal events we perceive as thinking, imagining or remembering are related to an intrinsic activity. A large percentage of the connectivity in the brain is recurrent and that much of its activity is related to intrinsic connectivity not necessarily related to the immediacy of sensory input.

We are aware that when we are very tired, we fall asleep very quickly, and while asleep an extraordinary strong stimulus is given us (i.e. an alarm clock), we can then awaken remarkably fast. Understanding that the substrate capable of supporting the speed of these two events must be electrical in nature, in the sense of the electrical activity of neurons and the synaptic input that initiate or terminate such activity. This would bring into question, what is the basic difference between being awake and being asleep? This question would provide the fundamental clues as to the nature of consciousness.

Being asleep does not support the feeling of self-existence. We might also equate consciousness with cortical function almost on an exclusive basis. One additional assumption related to consciousness is that it is a global function state of the brain relating to more cortical activity. Perhaps the energy measured in the brain relating to consciousness and the creation of a unified brain function may be both resonant and have properties of oscillation.

2. THALAMOCORTICAL GAMMA-BAND RESONANT COLUMNS

In recent years, studies have shown that coherent electrical activity in the cortex is relevant to the function of resonance when considering its relationship to cognitive thought [10]. This work proposed that coherent events occur at the cortical level, and such cortical events are the primary binding substrate [11]. Other experimental results illustrate that the binding event must not be cortical but rather thalamocortical [12]. The use of magnetoencephalography (MEG) in humans and extracellular and intracellular recordings in cats in vivo, indicate that such activity is supported by resonance between thalamic and cortical structures at gamma-band frequencies (i.e. with frequencies between 20 and 50 Hz), and are often centered close to 40 Hz [13]. The results of this study favored the hypothesis that cognitive events depend on activity involving thalamocortical resonant columns. These neuronal mechanisms are responsible for high-frequency thalamic oscillations that support the synchronization of thalamocortical structures and its relationship to coherence.

In physics, coherence is a property of waves that enables stationary (i.e. temporally and spatially constant) interference. More generally, coherence describes all properties of the correlation between physical quantities of a wave. When interfering, two waves can add together to create a wave of greater amplitude than either one
(constructive interference, see Figure 1) or subtract from each other to create a wave of lesser amplitude than either one (destructive interference, see Figure 2), depending on their relative phase. Two waves are said to be coherent if they have a constant relative phase. The degree of coherence is measured by the interference visibility, a measure of how perfectly the waves can cancel due to destructive interference. Cancellation is virtual or local since a wave cannot have negative energy.

Constructive Interference as seen in Figure 1, for example, would be like two sets of ripples moving across the surface of water toward each other. Both wave A and B are moving toward each other with their ripples in phase, in this case both waves are leading with their negative amplitude. Their cycle patterns are aligned. The waves merge together at the interface where two ripples meet. The consequences of this merger, the waves are drawn with one above the other as seen in middle depiction “B.” The amplitude of A is +1, the amplitude of B is also +1. Add the two together, and the resulting amplitude of the composite wave, seen in depiction “C” is +2. Likewise, where A is -1 so is B, together the total amplitude will be -2. The resulting higher amplitude composite is seen in depiction “C.”

Destructive Interference, as seen in Figure 2, for example, the ripples derived from the first pebble, labeled as wave A in depiction B, are moving from left to right. Wave B in depiction B, moving right to left, represents the ripples from a second pebble dropped shortly after the first. Since the pebbles did not enter the water at the same time, the waves will not be aligned when they merge at the interface, they will be “out of phase.” Wave A is leading with a negative amplitude and Wave B is leading with a positive amplitude. Where they meet the waves are a mirror image of each other, the high amplitude (+1) of one wave is aligned with the low amplitude (-1) of the other, and vice versa. As shown in depiction C, the amplitude values of each wave cancel each other out, so that the composite wave having 0 amplitude is no wave at all [40].

3. OSCILLATORY PROPERTIES OF THALAMIC CELLS

Nearly twenty years ago it was suggested that there is an intrinsic neuronal element with the oscillatory or resonant properties related to a neuronal network that facilitates the occurrence of coherence between interconnected elements [14]. Llinas explains that the intrinsic electrical properties of thalamic neurons support high-frequency (20-50 Hz) subthreshold oscillations when thalamic neurons are depolarized beyond -45mV [15]. Previous studies in vivo describe oscillations in both relay and reticular thalamic neurons [16]. In their work, the relationship between electrophysiological properties were not fully understood. Understanding the basis of the dendrite conductance is a key issue for fast oscillation in thalamocortical cells. They depend on the activation of voltage-dependent calcium conductance [17]. This demonstrates that neurons exhibit active membrane oscillations and are part of intrinsic oscillation properties of the thalamic cells. These findings are in accordance with previous work reporting that thalamic cells display highly rhythmic activity in the gamma range of frequencies [18].

Active dendritic oscillations are functionally significant, in that they return input from the cortex to thalamic neurons providing a unique opportunity for resonance between intrinsic dendritic oscillation and rhythmic synaptic inputs [19]. We can conclude from
this that coherence of fast rhythms in thalamocortical loops might depend on the patterns of synaptic inputs and on the responsive state of the neurons.

When considering the neuronal circuit oscillating in the Gamma band (40-60 Hz), the neurons in specific thalamic nuclei establish cortical resonance by direct activation of pyramidal cells and feedforward inhibition through the activation of 40 Hz inhibitory interneurons in layer IV. These oscillations re-enter the thalamus via layer VI pyramidal cell axon collaterals, producing thalamic feedback inhibition via the reticular nucleus [20]. In layer V, pyramidal cells return oscillations to the interthalaminal nuclei in the gamma-band and are capable of recursive activation [21]. It is understood that neither of these two circuits alone can generate cognition. This would offer the notion that there is a specific organization of the thalamocortical system that when it receives special input activity, resonance occurs. After optimal activation occurs in the thalamocortical loop, then oscillation in the gamma-band is easily recognized over the cortex by its oscillation characteristics. Thereby, causing the sites to peak and become a cognitive component that is capable of optimal activity.

The body of work preceding the study presented here suggests that there are several different rhythmic and oscillatory functions that travel between the thalamus and the cortex. They function on the basis of temporal coherence and the simultaneity of neuronal firing. In turn, the neuronal firing is based on the passive and active dendritic conduction, and would provide a mechanism for global binding. Such a system would provide the content that relates to the external world, and the non-specific system would give rise to a context that is more concerned with alertness. Together they would generate a single cognitive experience [22].

4. THE ISSUE OF ZERO PHASE LOCKING

E. Roy John presents information related to zero phase locking of coherent neural activity during perception and memory that is of great significance to understanding the brain’s ability to provide for optimal performance, and what I would characterize as the whole-brain state [23] what is especially unique and important is the finding of five spatial principal components (SPCs) capable of accounting for 90% of the variance of scalp voltage patterns that reflect coherent activation of large ensembles of neurons. The fact that the SPCs were similar during different cognitive tasks and in different subjects suggests fundamental subsets of organized neural resources that are common to all people performing these tasks. This suggests further that these SPCs reflect a binding process that brings together spatially distributed fragments of the past to evaluate and experience the immediate present in a brain state [24].

Oschman says that atoms are measured by their vibration, while in constant motion. They create wave patterns similar to the expanding ripples from pebbles thrown into a pool of water. Each atom is unique because the distribution of its negative and positive charges coupled with its spin rate, generates a specific frequency pattern [25]. Bruce H. Lipton adds an important point to the phase locking issue with consideration of destructive and constructive interference patterns. He explains that the behavior of energy waves is important in biomedicine because vibrational frequencies can alter the physical and chemical properties of an atom. An example of destructive interference would be when a pebble is dropped into water and the waves are moving outward to the right. Shortly after the first pebble is dropped, a second pebble is dropped. Since the pebbles do not hit the water at the same time, the waves will not be aligned; they will be out-of-phase. Constructive interference would be similar except that when the second pebble hits the water, the ripples moving outward are in-phase and come together to create higher amplitude of the composite wave. Lipton explains when you want to enhance, rather than stop atoms, you find a vibration that creates harmonic resonance [27].

5. THE COHERENT VIBRATIONS OF THE AXONS’ GLYCOCALY-X

Axons have a repeating structure, spaced at fixed intervals, and specifically designed to amplify the signal from the thalamus by activating the gate-channel complex, embedded in the axon’s membrane. One particular membrane structure that should give rise to coherent energy waves is the glycocaly-x, or sugar coating, which is composed largely of glycoproteins, or proteoglycans. These include a number of derivatives of chondroitin sulfate and heparan sulfate. All of these structures are inside the myelin sheath of each axon. Glycoproteins have an uncharged protein end, which dissolves in the fatty membrane, and a very negatively charged sugar end, which sticks out into the external fluid, somewhat like a ball on a rubber stick [28]. Bruce Lipton explains that together, these sugars form the bulk of the glycocaly-x. There is a gate/channel complex that changes conformation to briefly allow ions into the axon during a nerve impulse, thus causing the nerve cell to depolarize. It then returns to its original shape when the impulse has passed. When this gate/channel complex in the membrane moves rapidly in response to a nerve impulse, the charged sugar ends that line the axonal membrane should all vibrate back and forth. These glycoproteins are either directly or indirectly connected to the channel protein. As the channel opens and then closes in response to each
impulse, its kinetic energy is transferred to the glycoprotein and to other surrounding structures, which vibrate and emit an electromagnetic wave, until this motion is damped out. Other vibrational modes and frequencies as well as the related electromagnetic waves, result from the movements of charged atoms within the membranes. Lipton says this is roughly analogous to what happens every time we open, then slam a door shut. Some of the kinetic energy is transferred to the surrounding walls, where it vibrates their internal layers, as well as the surface structures [29]. External energy oscillations will undoubtedly affect the structures, combining to create a condition that is both subject to resonance and oscillation, resulting in the crating of a unified whole-brain state.

6. THE ZERO-POINT FIELD AND ENTANGLEMENT

For centuries, the Newtonian perspective that the universe was mechanistic and things works in a comfortable and predictable manner has long been replaced by quantum theories. We understood that subatomic particles were not solid little objects like billiard balls; Einstein taught us that they are vibrating packets of energy that sometimes acted like a particle and sometimes acted like a wave. Heisenberg presented the notion that quantum particles are omnipresent. Quantum physicists discovered a strange property in the subatomic world called nonlocality to describe the properties of what we now call quantum entanglement. This refers to a quantum entity such as an individual electron influencing another quantum particle instantaneously, over any distance, despite there being no exchange of force or energy. It also suggested that quantum particles once in contact, retain a connection even when separated, so that the actions of one will always influence the other, no matter how far they are separated [30].

Pribram presented ideas that the mind and consciousness are not just local events. Rather, they exist as part of a constantly changing fundamental field that he termed the biofield [31]. Noted physicist David Bohm based his analysis of the nonlocal field on empirical evidence of quantum theory [32]. Pribram agreed with Bohm’s idea that there is an implicate order to the universe that pertains to all matter. As it pertains to brainwave activity he proposed that there are holonomic overlapping patches of holographic structures in the cortical surface layers of the brain, which would transform inputs from perception and thoughts into slow electrical potentials presented in EEG brain wave patterns. Bohm also suggested that several different types of fields, each operating at many spatial and temporal frequencies, may well be involved. He said that the characteristics of the particular type of oscillation would partially determine the range and resolution of the potential information transfer; this has yet to be understood. Quantum fields do not diminish as quickly over distance as electromagnetic fields do in the brain [33].

7. INTRODUCTION TO QUANTUM EFFECTIVENESS

Various correlations exist between their subsystems and the distinguish ability of different quantum states. This is then applied to analyzing quantum information processing. While quantum correlations, or entanglement, are clearly of paramount importance for efficient pure state manipulations, mixed states present a much richer arena and reveal a more subtle interplay between correlations and how to distinguish between them. The current work explores a number of issues related to identifying the important ingredients needed for quantum information processing [34].

We do not generally understand why events we observe around us are correlated in the first place. Correlations themselves are very simply quantified within the framework of Shannon’s information theory. Suppose we repeatedly perform measurements on a given system, at different instants of time. Let us record the outcomes of our observations as a sequence. Different sequences of outcomes will naturally have different probabilities associated with them.

Correlations now mean that this probability will most generally not be expressible as a product of probabilities of subsequences. Shannon introduced the notion of mutual information in order to quantify how correlated different observations are [35].

For simplicity, if we divide measurements into two groups, A and B, each of them having a well defined probability distribution, respectively, as well as a joint probability distribution, then the mutual information between A and B is defined. This is the well-known Shannon entropy model. There is a certain degree of subtlety in trying to extend Shannon’s mutual information to more than two different sets of outcomes. The concept of mutual information is so general that it can easily be extended to quantum systems [36]. This leads us to the notion of quantum mutual information, which, for a general state and is defined. However, in quantum mechanics, we must discriminate between different forms of correlations, a distinction that has no counterpart in classical information theory.

First of all there is entanglement. Given a bipartite quantum state (where there are two separate entities with substrates), entanglement by the states of the form...
Robert M. Williams M.A., originator of PSYCH-k®, explains the significance of subconscious belief patterns. Our beliefs, usually subconscious, are the cumulative effect of life-long “programming.” As a result of past conditioning, we sometimes think and behave in self-defeating ways. Conscious thoughts can be changed easily by simply receiving information: reading a book, having a conversation, or seeing the results of actions. However, if conscious information were all that was needed to lead satisfying and successful lives, most of us would already be doing that. Unless changes are made at the subconscious level, however, repeating undesired reactions and behaviors will likely continue. Subconscious beliefs have far reaching consequences, both positive and negative, in every aspect of life. They affect our moods, relationships, job performance, self-esteem, and even physical health. It is imperative to know how to change self-limiting beliefs into self-enhancing beliefs that support our goals and aspirations. Williams explains, “PSYCH-k® is a mind/body interface process that gives us control over the detrimental effects of past experiences, freeing us from those habitual reactive behaviors that no longer serve us.” [41].

9. QEEG AND QUANTUM EFFECTIVENESS

Our research gathering documented of one hundred twenty-five (125) cases, data gathered over 12 months in three different locations, with different EEG technicians using two different types of EEG equipment; the result of this investigation produced a p-value is <=0.010.

A baseline of EEG data was established for each case. Using EEG caps calibrated by Electro-Cap International, standard procedure was to inject each of the 10-20 international systems for electrode placement with standard electro-gel making contact with the scalp and the electrode. Ensuring that the dc-offset voltages were within acceptable range, three (3) baseline readings of five (5) minutes each was recorded; five minutes eyes closed and five minutes with the brain on task (reading silently in a magazine).

A Certified PSYCH-K® Facilitator, used standard PSYCH-K® practices to achieve the whole-brain state with the subject. Following the intervention of the PSYCH-K® energy balance, a post-intervention EEG
was recorded in the same manner as the EEG baseline stated above. Raw EEG data was artifacted to eliminate eye movement, tongue movement, swallowing or other unwanted disturbances in the EEG. Standard EEG artifacting criteria was used and accomplished by an experienced qualified EEG technician. A minimum of 1 minute of artifacted clean data (although data presenting at .90 or above is considered acceptable; standards for artifacted data for this study must meet or exceed .95 in both Split-Half examination and on Test-Retest examination).

Statistical analysis was performed by NeuroStat, a function of the NeuroGuide program from Applied Neuroscience. NeuroStat allows for individual independent t-tests to be performed. The following are several examples from the base of 125 cases examined for the whole brain condition. The independent t-test compares condition A to condition B and shows if there are differences in the dominant brain function (consider the discussion of Shannon’s method above).

In all of the depictions shown here the legend is the same. The RED represents the dominant brainwave pattern prior to the facilitation of the PSYCH-K® energy balance. The BLUE represents the dominant brainwave pattern after the energy balance had been facilitated. The thickness of the line, indicates level of P-factor, see legend below figures.

The whole-brain state is considered to be the combination of RED; condition A, dominance prior to energy balance. And condition B, dominance after the energy balance was facilitated.

Due to the space restriction of this work it is not possible to provide a comprehensive treatment of this work. However, the amount of data collected and the unique properties it represents, afford us the opportunity evaluate and continue to understand what it means and the nature of its potential. As a result of this data, programs are being implemented to significantly improve performance in the areas of academic life, corporate life, health care, as well as sports performance.

Clearly there is more to learn and understand in this robust field of study. More scientific papers are forthcoming to better identify the nature and result of this work, and its relationship to neuroscience. Practical applications of changing subconscious belief patterns have existed for over two decades; today we can measure them and graphically demonstrate their efficacy, lending to further understanding and utilization of this important aspect of human existence in virtually all walks of life.

“In the seventh century, Rene Descartes had the notion that the physical body was made out of matter and the mind was made out of an unidentified, but clearly immaterial substance. Because he could not identify the nature of the mind, Descartes left behind an irresolvable philosophical conundrum: since only matter can affect matter, how can an immaterial mind be connected to a material body?” [42].

Only now we begin to understand! -JLF-
References

[9] Llinas, R., Ribary, U., Contreras, D., & Pedrocchi, L. The neuronal basis for consciousness. Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016.

