
 

 

 

 

 
ABSTRACT—Many Artificial Neural Networks design 
algorithms or learning methods imply the minimization of an 
error objective function. During learning, weight values are 
updated following a strategy that tends to minimize the final 
mean error in the Network performance. Weight values are 
classically seen as a representation of the synaptic weights in 
biological neurons and their ability to change its value could be 
interpreted as artificial plasticity inspired by this biological 
property of neurons. In such a way, metaplasticity is interpreted 
in this paper as the ability to change the efficiency of artificial 
plasticity giving more relevance to weight updating of less 
frequent activations and resting relevance to frequent ones. 
Modeling this interpretation in the training phase, the 
hypothesis of an improved training is tested in the Multilayer 
Perceptron with Backpropagation case. The results show a 
much more efficient training maintaining the Artificial Neural 
Network performance.1 
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The idea proposed is to improve the basic error 
minimization algorithm used to train an Artificial 
Neural Network (ANN) [1] manipulating the error 
objective function in order to give more relevance to 
the less frequent training patterns generated around the 
threshold value and to subtract relevance to the 
frequent ones. So, if the objective is to minimize an 
expected error EM defined by the following expression:  
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where X is a random variable of the training input 
vectors ( )1 2, ,..., nx x x x= , ( )nx R∈ , where nR is 

the n-dimensional space and E(x) is the expression of a 
given error criterion as a function of the inputs applied 
in ANN training, then 
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1 1This research has been supported by the National 
Spanish Research Institution “Comisión 
Interministerial de Cienciay Tecnología-CICYT”as 
part of the project AGL2006-12689/AGR  
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From statistical inference theory applied to eq. 
(3), an estimator of E is given by: 
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where * , 1, 2,...,kx k N= , are independent 

sample vectors whose pdf is ( )*
Xf x , that we call 

Weighting Function and ( )*
Xf x  can be arbitrarily 

chosen by the designer if ( )* 0Xf x ≠  wherever 

( ) 0, ne x x R≠ ∀ ∈ . Note that from eq. (3) ( )*
Xf x  

is ideally given by [1]:  
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2.  WEIGHTING OPERATION 
What lies in eq. (4) is that an error objective 

function ( )kE x  can be weighted by a proper 

function ( )*
kw x  without affecting the final error 

objective. In fig. 1 we present a block diagram for the 
Weighted Training. 

On the hypothesis that by  giving more relevance 
in weight update to less frequent activations and 
resting relevance to frequent ones, Metaplasticity 
[2][3]is being modelled and therefore training can be 
improved making it faster and reducing the number of 
patterns necessary to complete the training. We decide 
to train a classifier and test for the case of a Multilayer 
Perceptron (MLP) the following weight functions:  
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and 

( )* ˆXw x Cy=  (7) 

 
Fig 1. Weighted training cycle 
 

In eq. (6) an inverse Gaussian function is 
proposed as weighting function as a standard 
assumption for the weighting function. In eq. (7) the 
network output is used and advantage is taken from 
the inherent a posteriori probabilities estimation for 
each input class of MLP outputs, so the statistical 
distribution of training patterns is used to quantify how 
frequent a pattern is. A, B, and C are parameters to be 
adjusted according to the training to converge, this 
parameters should be optimized depending on the 
application of the classifier, in our case we want to use 
the neural networks to classify Radar patterns. N1 
represents the number elements in the hidden layer of 
the MLP. 

3.  COMPUTER RESULTS 
Experiments have been carried out in order to 

evaluate the Backpropagation with Weighting (BPW) 
algorithm [4]. We present the results obtained from 
training groups of 100 MLPs applying a BPW 
algorithm consisting in Least Mean Square (LMS) 
criterion modified by the proposed weighting 
functions. 

3.1  General Characteristics of the Experiments 
The ANNs applied are MLPs with structure 

16/8/1 (that is 16 inputs, and one hidden layer of 8 
units).  The choice of the structure and the rest of the 
parameters of the network was the optimal solution for 
the given example application [1][5]. The activation 
function is sigmoidal logarithmic with scalar output in 
the range (0,1) and it is the same for all the neurons. 

For the training of the network we used balanced 
patterns of two classes, being class H0 noise patterns 

and being class H1 signal received with additive 
Gaussian noise. These patterns configure the problem 
of signal detection noise and the ANN acts as a binary 
detector. The application of the ANN is an elemental 
radar detection problem [5][6] when the basic 
parameter for the patterns is the Signal-to-Noise ratio, 
SNR, and the performance of the detectors is evaluated 
in terms of the Neyman-Pearson criterion. That is, 
maximizing probability of detection, Pd, for a fixed 
false alarm probability, Pfa. In the radar literature, 
performance is evaluated through the Detection curves 
(Pd vs. SNR), so we use the comparison between these 
detection curves to present the results of our method. 

In each experiment 100 networks were trained in 
order to achieve mean results that does not depend on 
initial random value of the weights of the ANN. Fig. 2 
shows the error evolution comparison of the network 
trained with BPW and classical BP training. Error is 
calculated as the rate of misclassified patterns of the 
test set out of the total number of patterns. The BPW 
training algorithm requires much less iterations to 
consider an ANN trained than the classical BP does, 
which shortens the total time of training.  

 
Fig 2. Classification error in training phase of BP and BPW 

 
In the following experiments, two different 

criterions were applied to stop the training: in one case 
it was stopped when the classification error reached 
zero (denoted as ism) and in the other the training was 
conducted with a fixed number of 3000 patterns (3ism). 
When inverse Gaussian function (6) was applied as 
Weighting function, the training was conducted as 
usual BP training, maintaining the expression of the 
error function to be minimized from the beginning to 
the end of the training.  Fig. 3 shows an example of 
NN training using only weighting function (6). But in 
the case of (7) the weighting function is not valid until 
the output of the network is a sufficiently good 
approximation of the a posteriori probabilities of the 
inputs. In the first iterations ŷ  can tend to values very 
close to zero, the training curve evolution freezes 
around error classification value of 0.1 or 0.2 and the 
MLP does not learn. So, in this second case, function 
(6) was applied till the error probability achieved a 
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value in the range of 0.1-0.2 and then switched to 
function (7) till the end of training. Fig. 4 shows the 
error evolution during the network training phase for 
the second case. As usual, three set of patterns have 
been used to design the network. A training set 
(composed of patterns of SNR = 13.2dB for class H1), 
a test set to calculate the error during training and a 
validation set to obtain the detection curves. 

 
Fig 3. Classification error in training phase with only one 

weighting function. 3ism  and ism have the same evolution. 
 

 
Fig 4. Classification error in training phase, threshold 0.2. 3ism ism 

have the same evolution. 
 
 

The detection probability for three different false 
alarm probability (probability of "decide H0 when 
input corresponds to H1") values related to the SNR are 
shown in fig. 5, 6 and 7, respectively. 

 
Fig 5. Detection probability, Pfa=10-2, threshold 0.2. 

 
Fig 6. Detection probability, Pfa=10-3, threshold 0.2. 

 
Fig 7. Detection probability, Pfa=10-4, threshold 0.2. 

 
The red line represents the theoretical maximum 

curve by Marcum theorem [6].  The green line 
represents average performance for the networks that 
were trained until the error probability reached zero 
and the blue line is used for the networks trained with 
the fixed number of patterns.  False alarm 
probabilities, Pfa, of 10-2, 10-3 and 10-4 have been 
considered. For the detection probability that 
corresponds to the false alarm probability of 0.01, we 
find that the results are noticeably better if the NNs 
were trained with the fixed number of patterns (3000) 
for all the values in relation to the SNR between 0 and 
8 dB.  In the case of false alarm probability of 0.001 
and 0.0001 we also get better results for training a 
network with the fixed number of patterns and the 
curve (blue) is much closer to the theoretical one (red).  
For the high SNR values the results could be improved, 
which could make a part of the future lines of 
investigation for this application.  

Fig. 8 shows the results obtained for setting the 
threshold for changing the weighting functions at 0.15.  
Again, we considered two criterions for stopping the 
training of a network. We can see that the decision to 
change the weighting function when the threshold 0.15 
was reached gave also satisfactory results. Again, the 
experiments were carried out for false alarm 
probability values 10-2, 10-3 and 10-4. The results 
obtained are better in the case of training a network 
with the fixed number of patterns, as it was with the 
threshold of 0.2. This seems to show that the optimum 
point to switch weighting functions is a matter of 
study.  
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Fig 8. Classification error in training phase, threshold 0.15. 3ism 

ism have the same evolution. 

3.2 The Best Obtained Network 
The error probability evolution of the best 

network obtained is shown in fig. 9.  Only 355 
iterations were needed to reach the zero classification 
error.  We can see that the network has a rapid error 
evolution to the zero value, with a low number of 
iterations. This allows us to save time and computing 
resources.  The threshold for changing the weighting 
function was in this case set to 0.2. 

 

 
Fig 9. Classification error in training phase, threshold 0.2, the best 

case. 
 

 
Fig 10. Detection probability, Pfa=10-2, threshold 0.2, the best case. 
 

 
Fig 11. Detection probability, Pfa=10-3, threshold 0.2, the best case. 

 

 
Fig 12. Detection probability, Pfa=10-4, threshold 0.2, the best case 
 

 
Fig. 10, 11 and 12 show the characteristics of 

trained network for false alarm probabilities, Pfa , of  
10-2, 10-3 and 10-4 ,respectively. We can see that the 
distance between two curves is less than 1 dB. Even 
though the number of iterations used was small, we 
could continue the training with a fixed number of 
patterns and obtain values even closer to the 
theoretical maximum. These results support, one more 
time, the superiority of the performance of NNs 
trained applying BPW criterion with two weighting 
functions.  

4.  CONCLUSIONS 
We test the hypothesis that weighting the error 

objective function giving more relevance to less 
frequent training patterns and subtracting relevance to 
frequent ones is a way to model of metaplasticity 
biological properties in artificial neurones. We apply 
the statistical distribution of training patterns to 
quantify how frequent a pattern is in an application of 
MLP with error Backpropagation training, finding that 
Weighting training requires much less training patterns 
maintaining the ANN performance. 
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