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ABSTRACT 

 

Intelligent transportation systems (ITS) are gaining 

acceptance around the world and the connected vehicle 

component of ITS is recognized as a high priority research 

and development area in many technologically advanced 

countries. Connected vehicles are expected to have the 

capability of safe, efficient and eco-driving operations 

whether these are under human control or in the adaptive 

machine control mode of operations. The race is on to 

design the capability to operate in connected traffic 

environment. The operational requirements can be met with 

cognitive vehicle design features made possible by 

advances in artificial intelligence-supported methodology, 

improved understanding of human factors, and advances in 

communication technology. This paper describes cognitive 

features and their information system requirements. The 

architecture of an information system is presented that 

supports the features of the cognitive connected vehicle. 

For better focus, information processing capabilities are 

specified and the role of Bayesian artificial intelligence is 

defined for data fusion. Example applications illustrate the 

role of information systems in integrating intelligent 

technology, Bayesian artificial intelligence, and abstracted 

human factors. Concluding remarks highlight the role of 

the information system and Bayesian artificial intelligence 

in the design of a new generation of cognitive connected 

vehicle. 

 

Keywords: intelligent transportation system, connected 

vehicle, cognitive vehicle, Bayesian method, artificial 

intelligence, safety, information system. 

 

1. INTRODUCTION 

 

Owing to a number of benefits of intelligent transportation 

systems (ITS), these are finding applications around the 

world. Technological advances continue to add intelligence 

in vehicle design and automation features are on the way 

[1]. Figure 1 presents levels of technological advances and 

approximate time frames. We are now in the midst of Level 

II and the latest form of ITS is centred on connected 

vehicles. These interact with each other (V2V), the 

roadside infrastructure (V2i), and beyond (V2X) by using 

wireless communications. The connected vehicle form of 

ITS is being accorded the status of high priority research 

and development (R&D) area in many technologically 

advanced countries due to the recognition that safe, 

efficient, and eco-driving operations can be achieved 

whether the vehicles are under human control or in the 

adaptive machine control mode of operation. Consequently, 

there is much competition in the automotive R&D field to 

design the capability to operate in connected traffic 

environment. 

Since fully autonomous driving is likely to be decades 

away, for now the challenge is to meet the operational 

requirements with cognitive vehicle design features that go 

beyond the connected vehicle capability. This paper 

presents ideas on adding cognitive features to the connected 

vehicle by using advances in artificial intelligence-

supported methodology, an improved understanding of 

human factors, and advances in communication technology. 

 

 

 

 

 

 

 

 

 

Figure 1. Levels of technological advances and context 

of connected cognitive vehicle design 
Source: Adapted from Khan, Bacchus, Erwin [1]  

 2. ADDING COGNITIVE FEATURES TO 

CONNECTED VEHICLES 

 

Cognitive features that will be desirable addition to the 

connected vehicle design are shown in Figure 2. In this 

paper, the term “cognitive” relates to action or faculty of 

“knowing”, “perceiving”, and “conceiving”. While 

connected vehicles do have much technological capability, 

without the addition of cognitive features, there is little 

chance of achieving comprehensive understanding of 

situations or finding optimality in actions – such as in the 

deployment of active safety measures. 

 

The rationale for developing cognitive vehicle features is 

provided next. 

 The full potential of smarter transportation valued by 

drivers, especially the young generation of drivers, 

cannot be achieved without the cognitive vehicle. 

 In the era of policy trends encouraging the convergence 

of transportation systems and services, the cognitive 

Level I: Pre-2010 (implemented or approved for 

implementation): Advisory/warning information 

systems, assisted driving systems, limited automation 

in driving).  

Level II: 2010-2025 (Advanced advisory and warning 

information systems; advanced assisted/ automated 

driving, connected cognitive vehicle with advanced 

automated driving features).  

Level III: 2025+ (Autonomous vehicle for real world 

applications, limited autonomous driving/specialized 

missions).  
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vehicle is the center point of future intelligent 

transportation. 

 Substantial investments in transportation systems are 

accounted for by sensors and communication devices. 

Without the cognitive vehicle, the instrumentation of 

transportation will be ineffective. 

 

On the basis of industry analyses and research studies, 

cognitive vehicle features of high market potential are 

defined in this paper. As a step in this direction, the 

following observations on improving vehicle design are 

noteworthy.    

 For improving safety, driver workload and distraction 

should be reduced. 

 Selected active safety features are likely to gain favour 

with the users, provided that their designs are improved 

substantially. 

 Advanced driver assistant (driver support) systems that 

take into account “driver intent” are necessary. 

 Automated non-distracted and non-aggressive driving 

feature, if activated by the driver for reasons of 

comfort, convenience and safety, will be a highly 

valuable design contribution.  

 Natural non-distracting driver-vehicle interface that 

reduces driver stress and workload is essential [5].  

 Ability to connect with other vehicles, infrastructure 

and devices is essential for future vehicles. 

The requirements defined above are used as a basis for 

identifying attributes of the cognitive vehicle, which in 

turn lead to specifying design features. Various research 

groups have expressed generally similar views on the 

attributes of the cognitive vehicle [2,3,4]. In arriving at the 

suggested list shown in Figure 2, current and recent 

developments in the use of artificial intelligence in vehicle 

design are taken into account.  

 

 

 

 

              Situational awareness (position, surroundings) 

              Ability to gather data and send out data 

              Ability to process data 

              Ability to cooperate/collaborate 

              Communication for active safety 

              Informing driver about situations 

               (warning, advice) 

              Diagnostic capability 

              In case of crash, capability to send and receive 

              information 

              Ability to provide non-distractive user interface 

              Capability to perform user-requested infotainment 
              tasks  
 
Figure 2.  Features of cognitive connected vehicle  

  
3. INFORMATION SYSTEM REQUIREMENTS 

 

 

                                   

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

              

                   Figure 3. Functions of the cognitive vehicle 

 

 

The information system will support the features and 

functions of the cognitive connected vehicle (Figure 3). 

This is a very demanding task and calls for capabilities of 

wide scope (e.g. real time operation, advanced 

communication technologies, data management, on-

demand internet access). 

 

A high level architecture of the information system is 

presented in Figure 4. In addition to serving the driver-

vehicle interface and the integrated multi-functional system 

design modules shown in Figure 3, the information system 

has to support the requirements of four functions noted in 

Figure 4. Data capture, processing, and dissemination tasks 

will be carried out using specially designed algorithms and 

technology components. The in-vehicle computing 

capability will be supplemented by cloud computing. 

       

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. High level information system architecture 

 

 

Driver assistant: safety and 

convenience features 

Driver-vehicle 

interface 

Advanced driving features 

(collaborative & cooperative 

driving) 

In-vehicle ITS platform 

Infotainment system design 

capability 

Information 

system 

Cognitive features 

Integrated multi-functional 

system design   

Driver 
assistant 

  

Advanced 
driving 
features 

ITS 
platform 

Info-
tainment 

Safety –
related 
data 

Driver 
comfort & 
convenience 
data 

Data on 
mobility, 
efficiency, 
productivity, 
eco-driving  

Data on 
business, social 
and 
entertainment 
functions  

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 11 - NUMBER 2 - YEAR 2013 55



4. ROLE OF BAYESIAN ARTIFICIAL 

INTELLIGENCE IN ENABLING COGNITIVE 

FEATURES 

  

The Bayesian methodology has successfully served as the 

foundation for system design and decision analysis in 

situations where uncertain “states of nature” are 

encountered and opportunities are available to refine 

knowledge of uncertain factors. For an introduction to 

Bayesian methodology, the reader is referred to reference 6. 

 

Korb and Nicholson [6] have defined artificial intelligent as 

the “intelligence developed by humans, implemented as an 

artefact”. Bayesian artificial intelligence integrates two 

facets of problem-solving in the design of cognitive 

features of the connected vehicle. The first one is the 

descriptive artificial intelligence which models a human 

action (e.g., non-distracted non-aggressive driving). The 

second is modelling our best understanding of what is 

“optimal” [6]. 

 

The Bayesian artificial intelligence is used in the research 

reported here to produce algorithms that enable driving as 

well or in certain situations better than humans can, while 

adapting to stochastic and changing driving environment 

states. Of course, it is realistic to recognize knowledge 

limitations and use available data to improve probabilities 

of uncertain states. 

 

In the use of Bayesian artificial intelligence, a three step 

approach is followed. The first step is to use algorithms for 

Bayesian analysis of driving missions. The second step is to 

compute expected gains/utilities. Finally, in the third step, 

on the basis of maximum gain/utility, the optimal course of 

action is identified. 

  

For better focus, example applications of Bayesian artificial 

intelligence in the driver assistant function are reported. 

Specifically, information processing and data fusion 

capabilities of this technology are illustrated for collision 

avoidance under human control and adaptive longitudinal 

control of the connected cognitive vehicle. 

 

5. DRIVER ASSISTANT EXAMPLES 

  

The first example is on enhancing safety under human 

control mode of driving by providing collision warnings. 

The second is on adaptive longitudinal control (i.e., under 

machine control) that serves safety as well as driver 

comfort/convenience objectives. 

 

The information system used here integrates intelligent 

technology and human factors and includes a self-

calibrating adaptive model. In the case of human control, 

the model is intended to be a part of a warning system for 

preventing rear and side swipe collisions. Next, the model 

capabilities are extended in the form of adaptive 

longitudinal control so as to go beyond the information 

needs of the driver assistant for serving the requirements of 

human control. That is, in the case of machine control, in 

addition to avoiding collisions, the capability of smooth 

driving is added. 

5.1 Human control 

 

The human control mode of operating the cognitive vehicle 

implies that the control of the vehicle remains with the 

driver. Therefore, the driver is expected to act upon the 

warning received and that active safety features are not 

automatically deployed. 

As noted earlier, cognitive vehicle features are required for 

designing an effective crash warning system. Specifically, 

the following requirements are to be met. 

 Information is available and is within reach on the 

complete situational context (consisting of vehicle, 

driver, and environment). 

 The technology and methodology should be able to 

deliver the capabilities of context awareness, adaptive 

interfaces, driver intention recognition, and driver 

monitoring [7].       

 Distance between vehicles in the longitudinal direction 

and between envelopes of vehicles in the transverse 

direction can be measured on a real time basis and the 

applicable critical distance can be defined under the 

dynamic driving, road and environmental conditions. 

 The methodology-technology combination has the self 

calibration capability (i.e., updating the probability of 

the driver to perceive the correct distance between 

vehicles vis-à-vis safe distance), can monitor driver 

attention or distraction on the basis of corrective 

actions taken (or not taken). 

 The system can decide on the optimal time to issue 

alert and the nature of alert. Progress has been made in 

developing technology that can alert the driver if there 

is potential for a crash. But, many researchers believe 

that their performance is in need of improvement in 

terms of reliability and optimal time for providing the 

alert messages. European researchers have pointed out 

that the driver warning systems should analyse driver 

intention information (i.e., actions) in order to establish 

if premature warnings should be suppressed. Likewise, 

research sponsored by the U.S. Department of 

Transportation has highlighted the importance of 

formally treating driver‟s intention by obtaining 

additional information on driver action or lack of action 

[7]. 

    

A Bayesian model advanced by Khan [7] goes a step 

beyond existing work by developing a probabilistic method 

for the identification of the optimal driver alert message as 

well as the timing of providing this message. The driver 

monitoring part of the system has the capability to 

recognize driver intention and the self-calibrating and 

adaptive features address the deficiencies of existing or 

proposed systems. Although the system has the capability 

to model the side-swipe collision case, due to space 

limitation, only the rear crash case is covered briefly in this 

paper. 

                The design features of the rear crash avoidance system are 

noted next. 

 Modelling the driving environment 

 Location of vehicles & separation distances 
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 Calculation of safety margins & driving states to avoid 

       crash 

 Bayesian model for driver warning & driver action 

       monitoring 

 Self-calibration 

 Analysis and timing of driver alerts 

 Timing of crash warning 

 Nature of warning message 

             

                According to system design, if a distracted or an aggressive 

driver approaches the threshold critical distance dc, a red 

alert is issued. To guarantee safety, dc is set to be higher 

than distance required for emergency stopping in case the 

leading vehicle stops abruptly or a stopped vehicle or a 

stationary object is encountered. The road condition, 

vehicle speed (affected by traffic, weather, and geometric 

design of the road), and other driving environmental factors 

determine the basis for setting the critical distance dc. At dc, 

if a distracted driver ignores a red alert warning and does 

not immediately decelerate to increase distance to the 

leading vehicle, there is approximately 0.5 probability of a 

rear collision. In order to increase the probability of safety 

margin, the designer can increase dc. Other distance 

thresholds are used in the algorithm for issuing alerts. 

These are d1.25c and d1.5c. 

A Bayesian algorithm is used for the identification of 

optimal driver alerts. These are the timing of crash warning 

(i.e., immediate or wait to learn about driver intent) and the 

nature of alert message (e.g., no alert message, amber alert, 

red alert). 

According to the design of the rear collision warning 

system, a check is made on distance between the subject 

vehicle and the leading vehicle. If the distance is less than 

or equal to 1.5 times the critical distance headway, the 

algorithm launches the Bayesian decision analysis.  

The system has the following alert message options: 

 a0  No alert massage is required 

 aA  Amber alert message implies deceleration so as to 

increase distance to achieve target d1.5c state.  

 aR Red alert message requires emergency braking in 

order to avoid a crash and to increase distance to 

achieve d1.5c if the lead vehicle is mobile. If the lead 

vehicle is stationary or if the warning was given in 

order to avoid collision with a stationary object, the 

driver will be able to stop the vehicle without a 

collision.   

 

Timing options for the driver alert are: 

 e0 (early applicable warning issued on the basis of 

initial information) 

 ew (the waiting mode so as to acquire and analyze 

additional information on the dynamics of vehicle-

following and then issue the appropriate warning, if 

applicable) 

Possible readings on the driver‟s correct perception of 

distance are as follows: 

 r0 (no new reading, if e0 is selected), 

 rc (corresponds to dc), r1.25c (corresponds to d1.25c), and 

r1.5c (corresponds to d1.5c). 

 

Prior probabilities of driving states, P’(d), can be computed 

by the imbedded logic of the system design. These are set 

on the basis of a check on the location of the vehicle in 

association with the automated calibration feature of the 

Bayesian model [7]. Alternatively, these can be assigned 

subjectively by the designer. 

Driver reliability of perceiving distance is expressed as 

P(r|d,e), the conditional probability, which serves the 

function of monitoring driver performance. That is, given a 

distance d, the probability that the driver will perceive it 

accordingly (i.e., r). If the driver is fully attentive and has 

excellent perception-reaction characteristics, the driver 

reliability would be high. 

According to the model, if the driver can maintain the 

target distance, the conditional probability P(rc|dc) will be 

high. If the driver is distracted, and/or has relatively poor 

perception-reaction capabilities, driver reliability would be 

low. 

In the self-calibrating mode, this probability is computed 

on the basis of maintaining safe distance and corrective 

action. On the other hand, in spite of decreasing distance to 

the lead vehicle (or a fixed object), if the driver does not 

take corrective action, the P(rc|dc,e) will become small. The 

same pattern applies to other combinations of r and d. As 

an alternative to the self-calibrating function, the 

conditional probabilities can be assigned by the designer on 

the basis of driving simulator studies. 

Here, the non-aggressive driving case is modelled and 

therefore, the driver‟s target is to maintain a safe d1.5c 

distance. On other hand, if the driver becomes distracted, a 

self-calibrating function used for estimating the conditional 

probability P(r|d,e) takes into account this mode of driving 

behavior. 

The conditional probabilities are used to calculate posterior 

probabilities for the case of additional information 

acquisition e. A gain (utility) matrix G(a,d) is used in 

association with prior & posterior probabilities to identify 

the optimal e & a combination.  

Figure 5 shows highlights of the algorithm for the crash 

warning system‟s real-time application and Table 1 

presents results for a freeway driving example. 

The results reflect non-aggressive but distracted driving on 

the freeway. At d1.5c, the driver is alert, given that it is the 

target distance that a non-aggressive driver wishes to 

maintain. However, due to distraction, the driver moves 

closer to the leading vehicle. 

The driver appears to start with a good perception of 

distance at d1.5c. But the driver keeps on proceeding to d1.25 

and d1c. Initially at d1.5c, driver reliability is high. But at 

d1.25 and d1c, the probability of correct perception becomes 

low. 
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Figure 5. Components of crash avoidance algorithm  

Table 1. Optimal courses of action 

Location of 
vehicle & 
prior 
probabilities 
 

d1.5c 

P’(d1.0c) = 
0.1 
P’(d1.25c) = 
0.2 
P’(d1.5c) = 
0.7 

d1.25c 

P’(d1.0c) = 
0.15 
P’(d1.25c) = 
0.7 
P’(d1.5c) = 
0.15 

d1.0c 

P’(d1.0c) = 
0.7 
P’(d1.25c)= 
0.2 
P’(d1.5c)= 
0.1 

Driver 
distraction 

Not 
distracted 

Somewhat 
distracted 

Distracted 

Optimal course 
of action 

ew & a0 ew & aA e0 &aR 

 

The optimal courses of action are shown in Table 1. As 

noted above, model results show that at d1.5c, the driver is 

driving in a non-distracted manner and that the warning 

system is in the monitoring mode (i.e., additional 

information is being gathered and that no alert message is 

required). As the driver reaches d1.25c in a somewhat 

distracted condition, the system is gathering additional 

information on driver intention and if confirmed, amber 

alert will be given. In spite of the amber alert, this 

distracted driver moves even closer to the leading vehicle 

(at d1.0c). The system has decided to issue a red alert 

without waiting for further information on driver action.      

 

5.2 Machine control 

 

As compared to the human control case, the following 

additional cognitive features are required for machine 

control [8].  

 In situations requiring deceleration, capability is 

required for deciding when to take corrective action 

and the level of deceleration (i.e. no deceleration 

required, normal deceleration, emergency deceleration 

necessary). 

 In situations requiring acceleration in order to reach the 

target safe distance to the leading vehicle, deciding 

when to take corrective action and the level of 

acceleration (i.e., no acceleration, normal acceleration, 

and high acceleration). 

 

The adaptive longitudinal control model developed in this 

research goes beyond the capabilities of existing adaptive 

cruise control systems. If the subject vehicle is following 

another vehicle which is not operating under longitudinal 

control, or if a vehicle from a neighbouring lane cuts in 

front of the subject vehicle, the system has to adapt and to 

accommodate these demands. 

Adaptive cruise control designs have been reported and 

some high-end model vehicles feature such equipment. 

However, there is a need to improve the mode of adaptation 

to prevailing traffic flow condition so as to ensure safety 

and at the same time to avoid abrupt speed changes while 

maintaining a target distance between vehicles in the 

vehicle-following driving environment. 

The variables for the longitudinal control model are: 

distance between vehicles (d), critical distance (dc), reading 

on d(r), reading that corresponds to dc (rc), early action 

requiring no waiting (e0), additional information acquisition 

(ew), maintain target distance (a0), normal 

deceleration/acceleration (aN), emergency deceleration (aE), 

and high acceleration(aH).  

The design features of the rear crash avoidance system are 

noted next. 

 Modelling driving environment 

 Location of vehicles & separation distances 

 Calculation of safety margins & driving states to avoid 

       Crash 

 Driving states for reaching the target distance 

 Bayesian model for driving control decisions 

 Self-calibration 

 Calculation of optimal timing and extent of speed 

change 

 Timing of speed change action 

 Extent of deceleration/acceleration  

In this paper, the primary focus is on the vehicle-following 

task, but the model is equally valid for maintaining target 

side-separation distance between vehicles.  

By using methodology, the system is able to identify 

driving states with potential for a rear crash. Vehicle speed, 

road condition and other driving environmental factors are 

used as a basis for this task. The longitudinal control model 

has the capability to automatically update key driving 

parameters, namely the probabilities of critical and longer 

distances, as well as the probability of correctly estimating 

distance to the leading vehicle (as a check on system 

malfunction). 

The Bayesian algorithm, shown in Figure 6 is used for the 

identification of optimal control actions. These are the 

timing of deceleration/acceleration action (i.e., immediate 

or wait) and the magnitude of speed change. In the case of 

deceleration, the options are: no action, normal deceleration 

Location & distance information; Montecarlo 

simulation of safety margins 

Prior probabilities P’(d) & self-calibration for 

updating of probabilities  

Conditional probabilities P(r|d,e) (these reflect 

driver reliability) & self-calibration of for updating 

of probabilities 

Computation of posterior probabilities P”(d|r,e) 

by using Priors and conditional probabilities    

Gain (utility) matrix G(a,d); calculation of expected 
gain & value of information. 
Identification of optimal e & a 
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and emergency deceleration. In the case of acceleration, the 

options are: no action, normal acceleration, and somewhat 

higher acceleration. According to formulation of the 

algorithm, the longitudinal control system in the vehicle-

following environment can be deployed any time to 

perform the following functions: 

 Decelerate to avoid collision 

 Accelerate to reach the target distance 

 Maintain the target distance to the leading vehicle 

Of course the transition from function to function is 

seamless and automatic under machine control. 

For an illustration of freeway driving, platoon average 

speed is 100 km/h (27.8m/sec). The time headway of 2 

seconds results in 55.6m distance available for emergency 

stopping. On the other hand, stopping distance required for 

emergency stopping at 7.0m/sec/sec of deceleration 

amounts to 55.2m. Since this distance is considered to be 

reasonable for emergency stopping and it is approximately 

the same as obtainable if a 2 second headway is maintained 

during an average cruising speed of 100 km/h, this distance 

is used here as dc for illustration purposes. Initial research 

suggests that the following distances should be used in the 

algorithm for decision-making regarding speed changes: 

d1.5c, d1.25c and d1c.  

The results presented in Table 2 suggest that the 

longitudinal control system correctly models the driving 

behaviour of a non-distracted and non-aggressive driver. 

The system can adapt to the demands of the traffic 

environment and yet maintains safe operating distances.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Components of longitudinal control algorithm  

 

Table 2. Driving environment and optimal actions 

Deceleration case Acceleration case 

d1.0c                                 e0&aE 
d1.25c                               eW&aN 
d1.5c                                 eW&a0 

d1.5c                               eW&a0 
 d1.75c                           eW&aN 
d2.0                             eW&aH 

 

6. CONCLUSIONS 

 

1. Information system design requirements should be 

shaped by the cognitive vehicle attributes and 

functions. The driver assistant cases illustrated in this 

paper point out the need for a well structured advanced 

technology-supported information system. 

2. The high level architecture presented here defines the 

role of the information system for the designing the 

various modules of a new generation of cognitive 

connected vehicle.  

3. The driver assistant example cases illustrate the 

integration of intelligent technology, Bayesian artificial 

intelligence, and abstracted human factors. 
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Prior probabilities (P’(d) & self-calibration for 

updating of probabilities  

Conditional probabilities P(r|d,e) (these reflect 

system reliability) & self-calibration of for updating 

of probabilities 

Computation of posterior probabilities P”(d/r,e) by 

using priors and conditional probabilities    

Gain (utility) matrix G(a,d); calculation of expected 
gain & value of information. 
Identification of optimal e & a 

 Location & distance information; Montecarlo 

simulation of safety margins 

 
Deceleration case Acceleration case 
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