
GCL – An Easy Way for Creating Graphical User Interfaces

Mariusz TRZASKA

Polish Japanese Institute of Information Technology

Warsaw Koszykowa Str. 86, 02-008, Poland

ABSTRACT

Graphical User Interfaces (GUI) can be created using several

approaches. Beside using visual editors or a manually written

source code, it is possible to employ a declarative method. Such

a solution usually allows working on a higher abstraction level

which saves the developers‟ time and reduces errors. The

approach can follow many ideas. One of them is based on

utilizing a Domain Specific Language (DSL). In this paper we

present the results of our research concerning a DSL language

called GCL (GUI Creating Language). The prototype is

implemented as a library for Java with an API emulating the

syntax and semantics of a DSL language. A programmer, using

a few keywords, is able to create different types of GUIs,

including forms, panels, dialogs, etc. The widgets of the GUI

are built automatically during the run-time phase based on a

given data instance (an ordinary Java object) and optionally are

to be customized by the programmer. The main contribution of

our work is delivering a working library for a popular platform.

The library could be easily ported for other programming

languages such the MS C#.

Keywords: Graphical User Interfaces, declarative languages,

Domain Specific Languages (DSL), model, data, generic

programming.

1. INTRODUCTION

According to [1], Domain Specific Languages (DSL) offer an

expressiveness power usually focused on a particular

application or technical domain. They introduce special syntax

and semantics allowing for working on a quite high level of

abstraction. DSLs often employ a declarative approach which

means specifying a result to be achieved rather than steps that

lead to the result. In effect, a person using a DSL expects

improvement in the process of developing software. The

improvement could mean saving programmer‟s effort, better

quality of the system, shorter time to market, fewer errors, and,

last but not least, less typing.

The DSL concept is not quite new. In [2] we can find

information about roots of the DSLs in the Fortran language in

late 1950s. Even one of the most successful examples of the

idea, the SQL query language has been defined in 1970s but is

still widely used nowadays. Since 2000s we can observe the

rising popularity of DSL languages in a wide range of fields and

utilizations:

 As visualization tools. An interesting example developed

within the purely functional language Haskell is described in

[3]. The language provides a set of primitives and other

structures combining them into bigger structures. As a result,

it is possible to create different post-processing of images

together with animations;

 To specify content and behavior of advanced HMIs (Human

– Machine - Interactions). The language described in [4] has

been designed to generate prototypes especially for testing

usability. Thanks to simple visual syntax and semantics the

DSL acts as a common layer for all members of an

interdisciplinary software production team allowing them to

understand major aspects of a developed application;

 To develop distributed Web-based applications. The paper

[5] presents a system where domain experts directly

contribute to the development process by utilizing dedicated

DSLs. Hence a web application is composed from various

blocks which behavior is specified with the languages;

 To test software. In the case of a system described in [6], a

DSL has been used for the “mocking” process. It means

mimicking the behavior of some real objects linked with

tested objects;

 To create Graphical User Interfaces. This area is discussed in

Section 2.

The purpose of our work is creating a DSL named GCL (GUI

Creating Language), which will significantly reduce a

programmer‟s involvement during creating a GUI for a

business-intensive application. We believe that the created DSL

for Java is easy-to-use yet powerful and allows to define various

types of GUIs.

The rest of the paper is organized as follows. To fully

understand our motivation and approach some related solutions

are presented in Section 2. Section 3 briefly discusses key

concepts of the language and its implementation. Section 4

contains sample utilizations of GCL. Section 5 concludes.

2. RELATED SOLUTIONS

In our opinion, raising the level of abstraction is the most

significant goal of declarative solutions. Such an approach

considerably simplifies programmer‟s job and decreases the

number of errors. However, the common side effect is some

kind of uniformity of generated GUIs. This is caused by the fact

that the majority of the GUI appearance and behavior is defined

inside the library and the programmer only “guides” the tool

with some details. Of course, it is possible to create much more

customizable library. However that means providing a lot of

details by a programmer, which could cause the complexity

comparable to the classical methods.

The paper [7] introduces an interesting DSL called SWUL

(Swing User-interface Language). The language has been

81SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011ISSN: 1690-4524

developed using MetaBorg which provides a concrete syntax for

domain abstractions. It is based on a preprocessor concept: a

programmer utilizes a dedicated tool to transform a defined

DSL language into a “real” language, which is further compiled

using its native tools. Listing 1 presents a sample SWUL code.

Listing 1. A simple SWUL code

JFrame frame = frame {

title = " Welcome !"

content = panel of border layout {

 center = label { text = "Hello World"

}

 south = panel of grid layout {

 row = {

button { text = " cancel " }

button { text = "ok" }

 }

 }

}

};

The readability of the code is much better than a Java code with

Swing components. The structure of the GUI is more explicit

and roles of particular constructs are self-explanatory. However,

the level of abstraction is quite similar to that represented by

Java. A programmer who would like to implement a typical

GUI – model interaction (Create/Retrieve/Update/Delete) has to

write a similar amount of code like in pure Java. Another

disadvantage is the special pre-compiler which has to be utilized

every time before the “real” Java compilation occurs.

The paper [8] describes the DEUCE framework which utilizes

another DSL called SOUL defined on top of Smalltalk. The two

languages are used to implement the entire structure and

behavior of an application. The system allows for defining rules

which could concern different aspects including an

automatically generated GUI. For instance Listing 2 shows rules

describing some components relations among customers and a

shop.

Listing 2. Definition of component relations in DEUCE

group(customerInfo, <nameInput,

ageInput>).

group(nameInput, <customerLabel,

customerInputField>).

group(ageInput, <ageLabel,

ageInputField>).

above(customerInfo, shoppingBag).

above(shoppingBag, checkOutButton).

oneColumn(nameInput).

oneColumn(ageInput).

oneRow(<nameInput, ageInput>).

The idea is interesting but requires further research, especially,

considering performance for real-world applications. Another

uncertain aspect is the ability and usefulness to describe the

whole system using just rules.

There is also a big group of solutions introducing different

DSLs based mostly on the XML syntax. Interesting examples

are Aria [9] (the successor of the XUI), the Swing JavaBuilder

[10], eFace [11]. They utilize a dedicated file containing a

definition of the GUI which is created during run-time by the

library. In most cases there is also support for data-binding

which connects parts of the model and a widget. Listing 3

contains sample code in YAML [12] and Figure 1 presents the

generated dialog window. Notice a dedicated section for

binding names with GUI controls and validators.

Fig 1 The dialog window generated by the code from Listing

3

Two commercial technologies are also worth mentioning:

JavaFX [13] and WPF (with XAML for the MS C# language)

[14]. Both are claimed to be declarative and both are based on a

similar idea. A created GUI is defined using a separate file and

a special syntax. Although syntaxes are different, semantics and

the amount of information provided by a programmer are

similar. Roughly speaking even with a data binding technology

a programmer has to write quite a lot of a source code.

The above solutions are useful and in some cases provide higher

level of abstraction than pure Java. But even using such a DSL,

a programmer has to spend a lot of time on GUI creation. We

believe that our approach is sometimes a bit less powerful but

much simpler.

3. DESIGN AND IMPLEMENTATION

Our first attempt at declarative user interfaces (see the

senseGUI1 library described in [15]) was not based on a DSL,

but utilized Java annotations . The implemented library, based

on the annotated model (Java classes), was able to generate

different types of GUIs (frames, dialogs, panels). In our current

proposal, also for Java, we have decided to use a dedicated DSL

rather than marking a source code. Such a change is very useful

for a programmer:

 The process of defining the GUI takes place in one location:

a GCL statement. In the senseGUI library it was split

between a model definition and a library‟s method call;

 There is no need for modifying (marking with annotations) a

model (data) source code by the programmer. The code is

not always accessible (it could be shipped as e.g. a Java jar

file) and even if it is, modifications should be avoided

wherever possible.

1 The senseGUI library is freely available at:

http://www.mtrzaska.com/sensegui

82 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011 ISSN: 1690-4524

During the design process of the language we have tried to

make it simple yet powerful. Hence we have defined the

following general requirements:

 The number of different constructs is to be minimized,

 Most of the customization information is to be optional. It

could be achieved using some (carefully chosen) default

values,

 Orthogonality and reuse wherever possible, i.e. embedded

fields should be defined using “ordinary” fields properties.

 Support for important GUIs facilities like

internationalization (i18n) and validators.

Such an approach significantly reduces the number of special

cases and thus the size of documentation.

The overall goal of the GCL language is saving programmer‟s

time by generating a GUI. The library automatically creates

necessary controls based on the given model. The model is

defined by ordinary Java classes. A programmer passes a

model‟s instance (a Java object), optionally customizes it and

the library generates a widget. Using the widget, an end user of

the application is able to see the object‟s content and to modify

it. The design is language independent and could be

implemented for any language which supports reflection.

Listing 4. The GCL root statement

Create ComponentType for DataInstance

containing (Field01Type

Field01Descriptor, Field02Type

Field02Descriptor, ...)

Listing 4 presents the root statement of the GCL language. The

containing part is optional; if it is omitted, then default values

will be used. Below are descriptions of all parts of the

statement:

 The ComponentType could be one of the following:

o frame – an instance of the JFrame class,

o internalFrame – an instance of the JInternalFrame

class (same as „frame‟ but utilized in the MDI

applications),

o panel – an instance of the JPanel class; a panel could

be embedded in any other Java GUI,

o dialog – an instance of the modal JDialog class.

 The DataInstance is just the Java object for which we need a

GUI;

 The FieldType is one of the following:

o attribute - describes a given attribute, i.e.

attribute("firstName"),

o method - describes a given method, i.e.

method("getAge"),

 The FieldDescription is a combination of the following

modifiers:

Listing 3. Sample code in the YAML (Swing JavaBuilder).

JFrame(name=frame, title=frame.title, size=packed,

defaultCloseOperation=exitOnClose):

- JLabel(name=fNameLbl, text=label.firstName)

- JLabel(name=lNameLbl, text=label.lastName)

- JLabel(name=emailLbl, text=label.email)

- JTextField(name=fName)

- JTextField(name=lName)

- JTextField(name=email)

- JButton(name=save, text=button.save,

onAction=($validate,save,done))

- JButton(name=cancel, text=button.cancel,

onAction=($confirm,cancel))

- MigLayout: |

[pref] [grow,100] [pref] [grow,100]

fNameLbl fName lNameLbl lName

emailLbl email+*

>save+*=1,cancel=1

bind:

- fName.text: this.person.firstName

- lName.text: this.person.lastName

- email.text: this.person.emailAddress

validate:

- fName.text: {mandatory: true, label: label.firstName}

- lName.text: {mandatory: true, label: label.lastName}

- email.text: {mandatory: true, emailAddress: true, label:

label.email}

83SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011ISSN: 1690-4524

o resizeWidget(boolean) - Sets the widget's resizing

behavior wherever it should be resized horizontally

and vertically,

o setMethod(String) - Sets the method used to modify

the item's value (with the String parameter),

o as(String) - Sets a label for the item,

o asComplex(Field01Description, Field02Description,

...) - Treats the item as a complex one (a field

embedded in a field) and allows passing additional

information about an internal widget.

o order(int) - Sets an order for the item,

o usingWidget(String) - Sets a name of the Java class

(with a full package) which will be used as a widget

for showing the item; this is a simple customization

for the way particular type values are to be

presented,

o validate(Validator) - Sets a validator for the item,

o readOnly(boolean) - Indicates if the item should be

read-only,

o value(String) - Sets the default value. Used by Ad

Hoc GUI (see further). Ignored in GUIs based on

existing data models,

o type(Class<?>) - Sets a type of the field (in the case

of attributes it is the attribute's type; for methods

type of the returned valued). Normally, the type is

read from the structure of the data object. Hence,

this method is useful in Ad Hoc GUIs where there is

no data object connected,

o getMethod(String) - Gets the method,

o buttons(MultiObjectsListButton...) - Defines

additional buttons for multi-objects list. Ignored in

other cases.

In the case of popular programming languages like Java or MS

C#, a DSL could be implemented using one of the following

approaches:

 String-based. All DSL constructs are passed to the library as

strings. This way most implementations of the SQL

(including JDBC) work. Obvious disadvantages include: lack

of type-control, no context-sensitive help, no compilation

time errors checking, etc.;

 API-based. The idea makes use of a special design of the

library providing a DSL: classes, methods, interfaces. All of

them have special names which read separately sound quite

strange, but after connecting them together emulate

statements of the DSL language. All the concepts and

constructs are described in the [16].

Listing 5. Sample GCL statement in the API-based

implementation

JFrame frame =

create.frame.using(person).containing();

We believe that the second approach is more useful for a

programmer, hence we have implemented our GCL in that way.

A sample statement in a Java implementation could look like

the code in Listing 5 (the right side of the equal character).

It is worth noting that:

 As we mentioned earlier, particular parts of the API has quite

strange names, i.e. the containing method, but reading the

whole statement makes them sensible;

 Due to the Java restrictions we had to change a bit our

syntax. The “for” keyword has to be replaced with

something else;

 Another problem was caused by the fact that the return value

type of the whole statement (in the API-based

implementation – the containing method) is determined by

the second part – the type of the widget (i.e. frame). In terms

of the Java API it means that the return type of the last

method (containing) should be determined by another

element of the language. To solve the issue we introduced

different “paths” – each for every returned type;

This section described details specific to the design and

implementation of the DSL part of the library. General

information about analyzing business class structures,

generating GUI, etc. could be found in the [12].

4. SAMPLE UTILIZATIONS

Below we present a few sample utilizations of the GCL

language, together with short descriptions and snapshots of the

generated GUIs (the person is an instance of the typical business

Person class):

 The simplest possible utilization of the GCL. A generated

widget (in this case a frame/window) is totally based on

default values (Listing 6 and Figure 2). The usingOnly

statement is a shortcut for the using(person).containing()

(Listing 5) with an empty containing part.

Listing 6. Simplest GCL utilization #1

JFrame frame1 =

create.frame.usingOnly(person);

Fig 2 The window generated by the code from Listing 6

84 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011 ISSN: 1690-4524

Fig 3 The window generated by the code from Listing 7

 A customized frame for the same Person object with a

validator (Listing 72 and Figure 3). Thanks to the

orthogonality principle utilized during the design process,

validators could be applied to any field in the same manner

like other modifiers.

 A default frame showing automatically generated content for

the given instance of the Company class is presented in

Figure 4 and the code in Listing 8. One of the Company class

attribute called employees is a list with references to

employees. This case is reflected in the frame as an

automatically generated (and populated) list box with

buttons. Two of them are provided by the library and allows

editing or removing linked objects. A programmer is also

able to define custom buttons with various actions, i.e.

creating another employee.

 Ad Hoc GUIs. Aside of GUIs required by existing data

structures (i.e. Person class), a typical business application

also needs different dialogs and windows which do not have

explicit data structures. For instance a login dialog or a

database connection wizard usually do not utilize a dedicated

data (model) class. Such cases could be processed by the

GCL functionality called Ad Hoc GUIs. A user creates a

statement which generates a widget according to the given

definition. Of course it is possible to use all GCL constructs

like validators or many types of customizations. An example

is presented on Listing 9 and Figure 5. Note that:

2 Due to the readability, listings 7 – 12 are placed together at the

end of this section.

o Interface AdHocActionPerformed gives a possibility

of executing a custom method when the user clicks

the OK button.

o It is possible to provide default values,

o Different data types are processed using different

widgets (i.e. an enum with a combo box – the

Colors class in the example).

Fig 5 The window generated by the code from Listing 9

 This sample is very similar to the one presented on Listing 7

(and Figure 3) but supports internationalization (i18n): an

internationalized (using the Java message bundle) and

customized frame for the Person object with a validator

(Listing 10 and Figure 6).

Fig 6 The window generated by the code from Listing 10

 The last sample is similar to the one presented on Listing 8

but provides a custom button. Listing 11 contains

appropriate GCL code (notice the buttons modifier) and

Figure 7 the generated window. The buttons modifier

expects an object implementing the

MultiObjectsListButton interface (containing just 2

methods). Listing 12 presents the utilized (partial)

implementation which creates a new employee and connects

him with the company. Notice that the implementation uses

the GCL itself to get the new employee data.

Fig 4 The window generated by the code from Listing 8

85SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011ISSN: 1690-4524

Fig 7 The window generated by the code from Listing 11

Listing 7. Sample GCL utilization #2

JFrame frame = create.

 frame.

 using(person).

 containing(

 attribute("firstName").as("First name"),

 attribute("lastName").validate(new ValidatorNotEmpty()),

 attribute("higherEducation"),

 method("getAge").as("Age"));

Listing 8. Sample GCL utilization #3

JFrame frame = create.

 frame.

 using(company).

 containing(

 attribute("name").as("Name"),

 attribute("income"),

 attribute("employees"));

Listing 9. Sample GCL utilization #4

AdHocActionPerformed processAccept = new AdHocActionPerformed() {

 @Override

 public void Accept(Map<String, String> enteredData) {

 // Do something with the fields...

 }

};

Listing 9 – cont. Sample GCL utilization #4

frame = create.

 frame("Data", processAccept, "OK").

 containing(

 attribute("firstName").as("First name").value("Martin"),

 attribute("lastName").validate(new ValidatorNotEmpty()),

 attribute("higherEducation").type(boolean.class),

 attribute("values").type(Colors.class));

Listing 10. Sample GCL utilization #5

dialog = create.

 dialog.

 using(person).

86 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011 ISSN: 1690-4524

 containing(resourceBundle,

 attribute("firstName").as("Person.firstName"),

 attribute("lastName").as("Person.lastName"). validate(new ValidatorNotEmpty()),

 attribute("higherEducation").as("Person.higherEducation"),

 method("getAge").as("Person.getAge"));

Listing 11. Sample GCL utilization #6

frame = create.

 frame.

 using(company).

 containing(

 attribute("name").as("Name"),

 attribute("income"),

 attribute("employees").

 buttons(new ButtonCreateEmployee()).asComplex(

 attribute("lastName").as("Last name")

)

);

Listing 12. Sample implementation of the MultiObjectsListButton interface.

class ButtonCreateEmployee implements MultiObjectsListButton {

 public String getButtonLabel() {

 return "Create";

 }

 public void process(JList multiObjectsList, Collection<Object> objects) {

 Employee emp = new Employee();

 dialog = create.

 dialog.

 using(emp).

 containing(attribute("firstName"),

 attribute("lastName"));

 // [...]

 }

5. CONCLUSIONS AND FUTURE WORK

We have presented a Domain Specific Language called GCL.

The purpose of the language is to facilitate creation of Graphical

User Interfaces. Our research has been accomplished by the

working implementation3 for Java. However, the utilized

approach and design are generic enough to adopt GCL for other

platforms (like MS .NET and C#).

To our best knowledge, GCL is the only solution offering such a

high level of automation in creating typical, business-oriented

GUIs for a popular platform. In the simplest case, a

programmer, using just one GCL statement, is able to generate a

working widget (a window, a dialog or a panel) for a given data

instance (a typical Java class). Such an approach does not

impose utilizing complex, hard-to-use libraries or modifications

of business source codes.

We believe that Domain Specific Languages will gain in

popularity because of their simplicity and usefulness. Hence we

would like to continue our research in the field of DSLs and,

especially, GUIs creation. Our next goal is to modify GCL to

3 The GCL prototype is available at: http://gcl-

dsl.googlecode.com/

allow its utilization in web-oriented technologies like Google

Web Toolkit (GWT).

6. REFERENCES

[1] Deursen A.V., Klint P., Visser J: Domain-Specific

Languages: An Annotated Bibliography. ACM SIGPLAN

Notices, 2000. 35(6): p. 26-36.

[2] Visser E.: WebDSL: A Case Study in Domain-Specific

Language Engineering. Lecture Notes in Computer

Science 5235:291--373. 2008.

[3] Borgo R., Duke D., Runciman C., Wallace M.: The 2008

Visualization Design Contest: A Functional DSL for

Multifield Data. Manuscript submitted August 1 2008 for

IEEE Visualization Design Contest.

[4] Bock C., Gorlich D., Zuhlke D.: Using Domain-Specific

Languages in the Design of HMIs: Experiences and

Lessons Learned. Proceedings of the MoDELS'06

Workshop on Model Driven Development of Advanced

User Interfaces. Genova, Italy. 2006.

[5] Nussbaumer M., Freudenstein P., Gaedke M.: The Impact

of Domain-Specific Languages for Assembling Web

87SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011ISSN: 1690-4524

Applications. Engineering Letters Journal. Volume 13,

Issue 3. 2006. ISSN: 1816-093X.

[6] Freeman S., Pryce N.: Evolving an Embedded Domain-

Specific Language in Java. 21st ACM SIGPLAN

symposium on Object-oriented programming systems,

languages, and applications. October 22-26, 2006.

Portland, Oregon, USA. ISBN:1-59593-491-X. pp 855-

865.

[7] Bravenboer M., Visser E.: Concrete syntax for objects:

domain-specific language embedding and assimilation

without restrictions. Proceedings of the 19th annual ACM

SIGPLAN Conference on Object-oriented programming,

systems, languages, and applications OOPSLA '04.

October 24-28, 2004. Vancouver, Canada. ISBN

1581138319. pp 365-383.

[8] Goderis S., Deridder D., Van Paesschen E., D‟Hondt T.:

DEUCE - A Declarative Framework for Extricating User

Interface Concerns, in Journal of Object Technology,

Special Issue: TOOLS Europe 2007, vol. 6, no. 9, October

2007, pages 87-104.

[9] Aria - a framework for building Java and XML based

applications. http://www.formaria.org/

[10] The Swing JavaBuilder. http://code.google.com/p/

/javabuilders/.

[11] eFace - XAML/WPF for Java.

http://www.soyatec.com/eface/.

[12] YAML: http://en.wikipedia.org/wiki/YAML.

[13] K. Topley, JavaFX Developer's Guide (Addison-Wesley

Professional, 2010).

[14] A. Nathan, Windows Presentation Foundation Unleashed

(Sams, 2006).

[15] Trzaska M.: Automatically Creating Graphical User

Interfaces Using Extended senseGUI Library. Proceedings

of the Ninth IASTED International Conference on

Software Engineering and Applications (SEA‟08).

November 16 – 18, 2008, Orlando, Florida, USA. ISBN:

978-0-88986-776-5. pp. 112-117..

[16] Fowler M. Domain Specific Languages (work in progress).

http://martinfowler.com/dslwip.

88 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 9 - NUMBER 1 - YEAR 2011 ISSN: 1690-4524

http://www.formaria.org/
http://code.google.com/p/%20/javabuilders/
http://code.google.com/p/%20/javabuilders/
http://www.soyatec.com/eface/
http://en.wikipedia.org/wiki/YAML
http://martinfowler.com/dslwip

	NK583ME

