
Fuzzy Optimization and Normal Simulation for  
Solving Fuzzy Web Queuing System Problems 

 
 

Xidong Zheng,  Kevin Reilly  
Dept. of Computer and Information Sciences 

University of Alabama at Birmingham 
Birmingham, AL, 35294, USA 

205-934-2213 
zhengx, reilly@cis.uab.edu 

 
and 

 
James J. Buckley 

Department of Mathematics 
University of Alabama at Birmingham 

Birmingham, AL, 35294, USA 
205-934-2154 

buckley@math.uab.edu 
 
 
 

ABSTRACT 
 

In this paper, we use both fuzzy optimization and normal simulation 
methods to solve fuzzy web planning model problems, which are 
queuing system problems for designing web servers. We apply fuzzy 
probabilities to the queuing system models with customers arrival 
rate λ and servers’ service rate µ, and then compute fuzzy system 
performance variables, including Utilization, Number (of requests) in 
the System, Throughput, and Response Time. For the fuzzy 
optimization method, we apply two-step calculation, first use fuzzy 
calculation to get the maximum and minimum values of fuzzy steady 
state probabilities, and then we compute the fuzzy system 
performance variables. For the simulation method, we use one-step 
normal queuing theory to simulate the whole system performance 
and its variables. We deal with queuing systems with a single server 
and multiple servers’ cases, and compare the results of these two 
cases, giving a mathematical explanation of the difference. 
 
Keywords: Fuzzy Optimization, Normal Simulation, Queuing 
Theory, and Web Planning Model. 

 
 

1. INTRODUCTION 
 

In this section, we introduce first fuzzy sets, fuzzy numbers, notations 
(section 1.1), and finally the queuing system models (section 1.2). 
 
1.1 Fuzzy Notation 
To indicate that a set is fuzzy, we place a bar over the symbol 
representing the fuzziness, as: ija . If a set is known precisely, then 

we can denote it as: ija = ija . Nevertheless, for simplicity and 

uniformity, we still write ija  as ija  in some contexts. So, Y,x,a …  

all represent fuzzy sets. If A is a fuzzy set, we define )x(A ∈ [0,1] 
as the membership function of A , for evaluating a real number x. 
And a α-cut of A , written as ][A α , is defined as {x| α≥)x(A }, 

for 0 ≤  α ≤ 1. A fuzzy number N is a fuzzy subset of the real 
numbers satisfying:  

1)    )x(N = 1 for some x (normalized); and 

2)    ][αN  is a closed, bounded, interval, for all 0 ≤ α ≤ 1.  
 
A triangle fuzzy number T = ( 1a / 2a / 3a )  is defined by three 
numbers 1a < 2a < 3a , where the graph of y = )x(T is a triangle with 

base on the interval [ 1a , 3a ] and vertex at x= 2a  ( )a(T 2 =1). All the 
fuzzy numbers we used in this paper are triangle fuzzy numbers 
[1][2][3].  

 
1.2 Queuing Models 
From traditional queuing system, we know that it has customers’ 
arrival rate with Poisson probability distribution, which means that 
there is a positive constant λ so that the probability of m arrivals of 
customers per unit time is !m/e* )(m λ−λ . And the servers’ service 
time is exponential distributed with service rate µ. 
 
In our model, we regard the web system as a finite-queuing system, 
the Internet users as the customers, and web servers as the servers 
[4][5]. The website accepts at most M number of users’ requests at 
a time, where M is the number of users in the system and in the 
queue. To apply the fuzzy probability in our system, we get that the 
customers’ arrival rate is λ and servers’ service rate is µ , then to 

compute the fuzzified system performance variables: Utilization (U ), 
Number (of requests) in the System (N ), Throughput (X ), and 
Response Time ( R ). To simplify our computation, we will compute 
the one-server case and two-server case with the capacity of 
accepting M= 4 users in one time at most. 

 
 

2. WEB PLANNING MODELS AND SYSTEM 
PERFORMANCE 

 
In this section, we describe the system models of the one-server 
case and two-server case and their characteristics, system 
performance variables formula according to arrival rate and service 
rate.  
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2.1 Single-Server Case 
In single-server case, the whole system has only one web server.  
We assume that the infinite number of users around the world visit 
the website with average arrival rate of λ (Poisson arrival), and the 
average service rate of µ (exponential service time) (see Figure 1). If 
the number of users arriving at the same time exceeds the limit of the 
system buffer, the users will get “server is busy” response and leave 
the system. 
 

2.1.1 Markov Chain for Single-Server case: We 
regard the single server system as a Markov chain (see Figure 2) 
and assume that: 
 

• State k à k customers in the system; 
• P (I, J) à Probability of transition from state of I to state 

of J. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

2.1.2 Property of the single-server Markov chain:  
Assuming that the internal time period δ is small enough, i.e. in the 
limit as δ à0, we get the state transition probability expressions [6]: 
 
• P (0, 0)  = 1 - λ;  P (M, M) =1 - µ; 
• P (j, j+1)  = λ;  (0 <= j  <M) 
• P (j, j) = 1 - λ - µ;  (0 < j < M)  
• P (j, j-1) = µ;    (0 < j <=M) 
• P (i, j) = 0 (for all other i, j). 

 
It is actually a tri-diagonal Markov chain matrix (see Figure 3). 
 
So, in the limit as δ à 0, transitions exist only between adjacent  
States. And λ, µ are flow rates between states. 
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2.1.3 Equilibrium analysis of single-server system: 
We want to obtain the probability of being in state k, denoted as:  P 
(k).  
 
At equilibrium, we have local balance equations between two states 
(k, k+1)[6]: 
λ * P (k) = µ * P (k+1),     (for all k) 
 
Let ρ = λ/µ, we get:    

P (k)= ρk  * P (0), and ∑ =
=

M

0k
1)k(P . Thus: 

 
Probability of being in state k: 

P (k)  = k
1M *

1
1 ρ

ρ−
ρ−

+      k=0, 1, …,  M   …………….…..(2.1-1) 

 
Server utilization: 

U  = 1 – P (0)  = 1M

M

1
]1[*

+ρ−
ρ−ρ . . . … … … … … ….………… (2 .1-2) 

 
Average number of requests in the server: 

N = ∑
=

M

0k
)k(P*k = 

)1(*)1(
]1*)1M(*M[*

1M

M1M

ρ−ρ−
+ρ+−ρρ

+

+
… …...(2.1-3) 

 
Average server throughput: 

X = U * µ = 1M

M

1
)1(*

+ρ−
ρ−λ … … … … … … … . . … . . … … .… (2.1-4) 

 
Average response time: 

R = N /X = 
)1(*)1(*

1*)1M(*M
M

M1M

ρ−ρ−µ
+ρ+−ρ +

… … … … … …...(2.1-5) 

 
2.2 Multiple-Server Case 
In multiple-server case, the whole system has C parallel and identical 
web servers. We still assume that the infinite number of users around 
the world visit the website with average arrival rate of λ (Poisson 
arrival), and all the servers’ average service rate are µ (exponential 
service time) (see Figure 4). Also, if the number of users arriving at 
the same time exceeds the limit of the system buffer, the users will 
then get “servers are busy” response and leave the system. 
 

2.2.1 Markov Chain for multiple-Server case: The 
multiple-server case Markov chain is similar to the single server case 
(see Figure 5). Still we assume that: 

 
• State k à k customers in the whole system (including all 

servers); 
• P (I, J) à Probability of transition from state of I to state 

of J. 
 

Figure 3. Tri-diagonal Markov chain matrix (single-server) 

Figure 2. State transition diagram —  
Infinite users/finite queue/single server 

λ λ λ λ 

µ µ µ µ 
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Figure1. Single-Server queuing model 
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But here the difference is that departure rate is proportional to the 
number of servers in use. 
 

2.2.2 Property of the multiple-server Markov chain: 
Similar to single-server case, we assume that the internal time period 
δ is small enough, i.e. δ à0, we can get state transition probability 
like these: 
 

• P (0, 0)  = 1 - λ;   P (M, M) =1 - Cµ; 
• P (j, j+1)  = λ       (for 0 <= j < M);   
• P (j, j-1)   = j * µ           (for 0 < j <= C); 
• P (j, j) = 1 - λ - j * µ      (for 0 < j <= C); 
• P (j, j-1)   = C * µ         (for C < j <= M); 
• P (j, j) = 1 - λ - C * µ      (for C < j < M); 
• P (i, j) = 0 (for all other i, j). 
 

Transitions again occur only between adjacent states and the 
transition matrix is still a tri-diagonal Markov chain matrix (see 
Figure 6). 
 

2.2.3 Equilibrium analysis of multi-server system: 
Similar to single-server case, we denote the probability of being in 
state k as:  P (k). At equilibrium, the balance equations between two 
states (k-1, k) become: 

• λ * P (k-1) = k * µ * P (k)    (for 0 < k <= C); 
• λ * P (k-1) = C* µ * P (k)    (for C < k <= M); 
 
And again let ρ = λ/µ, we get:  
 
 Probability of being in state k: 
    P (0) * ρk / k!               (For 0 <= k <=C) 
P (k) =      
    P (0) * CC-k * ρk / C!    (For C < k <= M)  … .(2.2-1) 
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Figure 5. State transition diagram — Infinite users/finite queue/multiple servers  
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Figure 6. Tri-diagonal Markov chain matrix (multiple servers) 

Figure 4. Multiple-Server queuing model 
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Using ∑ =
=

M

0k
1)k(P , we get: 

P (0) = 
1

1C

0k
CM

1CM1CMCk

)C(*C!*C
)C(*

!k

−
−

=
−

+−+−





 ∑

ρ−
ρ−ρ+ρ ..… .……..…..(2.2-2) 

 
Server utilization: 
U = 1 – P  ( 0 )    … … … … … … … … … … . . … .……..….….(2.2-3) 
 
Average number of requests in the server: 

N = ∑
=

M

0k
)k(P*k . . … … … … … … … … … … . … …….…….(2.2-4)  

 
Average server throughput: 

X = ∑µ+∑ µ
=

−

=

M

Ck

1C

0k
)k(P**C)k(P**k … … … . … ………..(2.2-5) 

 
Average response time: 
R = N /  X  ……………… … … … … … . . . … ………..……(2.2-6) 

 
 

3. FUZZY OPTIMIZATION OF THE WEB SYSTEM 
 

Up to now, the system is a crisp one. In reality, people often 
describe the user arrival rate and server service time in a fuzzy 
language. So we want to apply the fuzzy probability into our system 
[1][2][3], fuzzify the arrival rate λ and service rate µ and denote 
them as λ and µ in respect, then we use the fuzzy calculation theory 
to compute the fuzzified system performance variables: Utilization 
( U ), Number (of requests) in the System (N ), Throughput (X ), 
and Response Time ( R ). 
 
For fuzzy calculation in our problem, we have the following two 
methods: 
 
• One-step method.  We begin with the crisp formula of U, 

N, X, R, which are directly the function of λ and µ and 
substitute values from M and C into them to get 
expressions from which the maximum and minimum value 
of U, N, X, R can be determined and utilized as the final 
fuzzy result ofU , N , X  and R . 

• Two-step method. First, we compute the fuzzy steady 
state probability )k(P  according to λ and µ . Then using 
the crisp formulae for U, N, X, R as a function of P (k), 
but now employing fuzzy arithmetic, we compute fuzzy 
results, U , N , X  and R . 

 
3.1 One-server example 
For illustration purposes, we let M=4 and fuzzy number λ =(3 / 4 / 
5), µ = (5 / 6 / 7). According to formulas 2.1-1 to 2.1-5, we have 
done the following two cases fuzzy optimization: 
 

3.1.1 One-Step optimization: Using the direct function 
of λ and  µ, the formula of U, N, X, R are (ρ = λ/µ): 
 

U  = 5

4

1
]1[

ρ−
ρ−ρ

;                N = )1)(51(
]154[ 45

ρ−ρ−
+ρ−ρρ ; 

 

X = 5

4

1
)1(

ρ−
ρ−λ ;                   R = 

)1)(1(
154

4

45

ρ−ρ−µ
+ρ−ρ . 

 
A direct, simple computation of U , N , X  and R (alpha zero cut) 
can be effected in MATLAB optimization toolbox. The results 
appear in see Table 1. 
  

3.1.2 Two-step optimization: Unlike one-step method, 
we first compute the fuzzy steady state probability )k(P according to 

the fuzzy number λ =(3 / 4 / 5), µ = (5 / 6 / 7). From equation 2.1-
1 and M=4, we know that: 
 

P (k)  = k
5 *

1
1 ρ

ρ−
ρ−       k=0, 1, …, 4  

 
The fuzzy results for these fuzzy probabilities are in Table 2. 
 
After obtaining fuzzy steady state probabilities, we next need to 
compute the (final) fuzzy system performance variables U , N , X  
and R . 
 

U [0] = [min ( ∑
=

4

1k
)k(p ), max ( ∑

=

4

1k
)k(p )]; 

N [0] = [min ( ∑
=

4

1k
)k(P*k ), max ( ∑

=

4

1k
)k(P*k )]; 

X [0] = [min ( ∑ µ
=

4

1k
)k(P* ), max ( ∑ µ

=

4

1k
)k(P* )]; 

R [0]=[min ( ∑ µ∑
==

4

1k

4

1k
)k(P*/)k(P*k ),  

max( ∑ µ∑
==

4

1k

4

1k
)k(P*/)k(P*k )], 

 
All these object functions are subject to the constraints:    

P (k) ∈ )k(P [0], 0 <= k <= 4, and 1)k(P
4

0k
=∑

=
; 

 
Using MATLAB, we get the optimization result in Table 1.  

 
 
Table 1. Fuzzy system performance variables (single-server; 
methods, one- and two-step). See Table 2 for intermediate 
steps in the two-step case. 

 Alpha Zero Cut 

 One-step method Two-step method 

U  [0.4202, 0.8000] [0.4202, 0.8000] 

N  [0.6767, 2.0000] [0.6767, 2.0000] 

X  [2.8314, 4.5432] [2.1010, 5.6000] 

R  [0.2300,0.5000] [0.1208, 0.9519] 

 
 

3.2 Two-server example 
Like the one-server case, in order to exemplify the computation, we 
again let M=4 and employ fuzzy arrival and service rates, λ =(3 / 4 / 
5), µ = (5 / 6 / 7). According to formulas 2.2-1 to 2.2.6, we’ve 
computed both one-step and two-step fuzzy optimizations in the 
manner we now describe. 
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Table 2. Fuzzy steady state probability (two-step method) – 
intermediate value preceding final values in Table 1.  

 Alpha Zero Cut 

 Single-server Two-server 

)0(P  [0.2000,0.5798] [0.3478, 0.6475] 

)1(P  [0.2000,0.2608] [0.2775, 0.3503] 

)2(P  [0.1065,0.2000] [0.0595, 0.1739] 

)3(P  [0.0456,0.2000] [0.0127, 0.0870] 

)4(P  [0.0196,0.2000] [0.0027, 0.0435] 
 
 

3.2.1 One-Step optimization: Using the expressions for 
λ and  µ, the formula of U, N, X, R are (ρ = λ/µ): 
 

U  = ( )
( )

132

28
8*11

−







ρ−
ρ−ρ+ρ+− ; 

 N = ( )
( ) 








ρ−
ρ−ρ+ρ+ρ+ρ+ρ+ρ 28

8*1/)2/4/3(
32

432 ; 

X = ( ) ( )
( ) 








ρ−
ρ−ρ+ρ+ρ+ρ+ρ+ρµ 28

8*1/4/2/*
32

432 ;  

R = ( )4/2/*
)2/4/3(

432

432

ρ+ρ+ρ+ρµ
ρ+ρ+ρ+ρ . 

 

Using MATLAB, we get the alpha zero cut of U , N , X  and 
R (see Table 3 below).  
 

3.2.2 Two-step optimization: From equation 2.2-1 and 
M=4, we get: 
 

P (0) = ( )
( )

132

28
8*1

−







ρ−
ρ−ρ+ρ+ ; 

P (1) = ( )
( )

132

28
8*1*

−







ρ−
ρ−ρ+ρ+ρ ; 

P (2) = ( )
( )

1322

28
8*1*2

−







ρ−
ρ−ρ+ρ+ρ ; 

P (3) = ( )
( )

1323

28
8*1*4

−







ρ−
ρ−ρ+ρ+ρ ; 

P (4) = ( )
( )

1324

28
8*1*8

−







ρ−
ρ−ρ+ρ+ρ . 

 
Then we compute the fuzzy steady state probability )k(P according to 

the fuzzy numbers λ = (3 / 4 / 5), µ = (5 / 6 / 7) (see Table 2). 
 
Then similar to one-server case, we compute the fuzzy system 
performance variables U , N , X  and R as following: 
 

U [0] = [min ( ∑
=

4

1k
)k(p ), max ( ∑

=

4

1k
)k(p )]; 

N [0] = [min ( ∑
=

4

1k
)k(P*k ), max ( ∑

=

4

1k
)k(P*k )]; 

X [0] = [min ( ∑µ+µ
=

4

2k
)k(P*2)1(P* ),                                               

max ( ∑µ+µ
=

4

2k
)k(P*2)1(P* )]; 

R [0]=[min ( ∑µ+µ∑
==

4

2k

4

1k
))k(P*2)1(P*/()k(P*k ),                                          

max ( ∑µ+µ∑
==

4

2k

4

1k
))k(P*2)1(P*/()k(P*k )], 

 
All these object functions are subject to the constraints:    

P (k) ∈ )k(P [0], 0 <= k <= 4, and 1)k(P
4

0k
=∑

=
; 

 
Using MATLAB, we get the optimization result in Table 3. 
 
 
Table 3. Fuzzy system performance variables (two servers; 
methods, one- and two-step). See Table 2 (again) for 
intermediate steps for the two-step case. 

 Alpha Zero Cut 
 One-step method Two-step method 

U  [0.3525, 0.6522] [0.3525, 0.6522] 

N  [0.4456, 1.1304] [0.4456, 1.1304] 

X  [2.9737, 4.9223] [2.1370, 6.6962] 
R  [0.1489, 0.2364] [0.0665, 0.5291] 

 
 
3.3 Comparison of One-step and Two-step Results 
From the computation results of both one- and two-server cases, we 
see that the fuzzy utilization and number of users requests are the 
same in both one-step and two-step methods.     Meanwhile, the 
system throughput and average response time are broader in two-
step than in one-step method.  
 
There are two possible reasons related to the computation results: 
 
• From the equations of system performance variables, we 

can see that U and N are the function of only the  
ratio (ρ) of user arrival rate (λ) and server service rate 
(µ); but X and R are the function of ρ and λ or µ; 

• In two-step method, we first compute the fuzzy steady 
state probability, then the fuzzy system performance 
variables. Thus, this computation has an additional fuzzy 
step, which results in increased and expanded fuzzy 
spread (in both left and right sides of the fuzzy numbers). 

 
 

4. Simulation method 
 
We have also implemented another approach dealing with these fuzzy 
problems, i.e. a standard (stochastic) simulation. Unlike fuzzy 
optimization, simulation is based on traditional queuing models, using 
statistical and experimental methods to generate an internal picture of 
the system from which we gather the (statistical) data for analyzing 
system performance variables [7][8]. 
 
4.1 Simulation Software  
Several software packages can be found for simulations purpose. 
We use the widely known simulation languages, GPSS-H and SLX 
(an Object Based language which also includes the heart of GPSS-
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H) [8]. SLX stands for Simulation Language with eXtensibility, it is a 
well-conceived, layered simulation system. Users of the upper layers 
can ignore lower layers. 
   
Simulation languages such as GPSS and SLX have built-in 
probability functions that we can directly employ in our problem, e.g., 
exponential functions for inter-arrival and service times. Random 
number generators can be assigned to these functions to allow 
appropriate replication capabilities. On the output side frequency 
distributions often are generated automatically and graphs of them are 
easy to obtain, i.e., with only a few statements.  
 
Model strategy and subsequent program development for our web 
planning models are easy to incorporate into these software 
packages by high-level constructs. The Poisson arrival and service 
rates are rendered in terms of exponential inter-arrival intervals and 
service time distributions, compatible with the mathematics of our 
situations and readily defined in the language. 
 
Also in these languages, there are a variety of blocks or statements, 
which are conjugates of each other, defining the starting and ending 
events of an activity: joining a queue (in SLX, e.g.) is represented by 
enqueue block with the user-defined queue name and leaving is 
represented by a depart block with the name (See Figure 7). 
 
 

 
 

 

 

 

 

 

 

 
 
 
 
4.2 Simulation examples  
According to the same general plan as above, we use SLX to 
implement simulation to obtain fuzzy results for Utilization ( U ), 
Number (of requests) in the System (N ), Throughput (X ), and 
Response Time (R ). Again, we let M=4 and employ fuzzy number 
λ = (3 / 4 / 5), µ = (5 / 6 / 7) in illustrations.  
     
In simulation, we do not need to simulate all combinations of fuzzy 
number of λ  and µ to get some of our desired results. We just use 
the middle points of arrival rate and service rate to tackle the 
problems. We start the simulation using the structure in figure 7; 
repeat the simulation for certain number of loops. We then tabulate 
all the statistical data of server Utilization (U), average Number of 
requests (N) in the system, system Throughput (X), and average 
Response Time (R). Through analysis, we get the maximum and 
minimum of all four variables, along with their mean values. (See 
Table 4). Also, the (entire) distribution curves of U, N, X, R are 
made available. Additional variations of these themes produce 
additional output values and the insights acquired through their 
interpretations enrich the overall computational scheme. 

Table 4. Fuzzy system performance variables (Simulation) 

 Alpha Zero Cut 
 Single-Server Two-Server 

U  [0.4114, 0.7934] [0.3592, 0.6472]  

N  [0.6617, 1.9846] [0.4494, 1.0914] 

X  [2.8333, 4.5417] [2.9583, 4.9983] 

R  [0.2277, 0.5016] [0.1406, 0.2397] 
 
 
4.3 Advantages of using simulation 
Comparing the simulation results to those of fuzzy optimization, in the 
one-step optimization case (both one- and two-server situations) we 
see that there is a very good match. There are some decided 
advantages in using simulation over the fuzzy computation [8]. 
 
• Simulation itself is more natural than fuzzy computation in the 

sense of queuing model theory. It provides not only the correct 
results, but also tells how the queuing system works in reality; 

• Simulation languages can provide much automatic output 
from their statistics running data and can provides more 
statistics that fuzzy computation cannot get, like data 
distributions; 

• Simulation languages have a set of built-in files and lists that 
are used to store an agenda (a list of future events). One or 
more lists are used to keep track of dynamic (movable 
simulation) entities that, at any given moment, are ready to 
move but, say, are blocked from moving, as in the case of 
entities that would enter a server were it available. The 
languages readily handle several complexities, e.g., balking 
and preemption, which we may utilize in our future studies.  

 
 

5. CONCLUSIONS 
 
We have first presented fuzzy optimization methods to solve web 
planning queuing problems. In fuzzy optimization, we presented both 
a one- and a two-step computational method. In the former case, 
fuzzy number is introduced after conventional argument up to the 
system performance values themselves. In the latter case, we 
compute fuzzy system steady state probabilities as an intermediate 
step and then proceed, via fuzzy arithmetic, to the final results. The 
latter method produces results with a broader fuzzy spread because 
of the additional fuzzy arithmetic. 
 
Also, we have considered both singer-server and multiple-server 
cases and gave a detailed description of the system performance 
variables in both cases. And we have illustrated some typical 
examples to make procedures easier to understand. 
 
Finally, we covered a conventional simulation based method to solve 
fuzzy problems, which may be a “first” in the fuzzy probability field. 
Using examples in both single- and two-server cases, we 
demonstrated that conventional simulation is appropriate, and 
effective, in fuzzy probability modeling. In some instances, such as 
developing (output) data distributions, it seems to have proven to be 
better. 
 
 

         Arrivals: customer 
 iat = rv_expo (random-stream1, arrival rate)  

    util_time = stop_time; 
    Enqueue queue; 

    Seize (Enter) server(s); 

    Departure queue; 

    Advance rv_expo (random-stream2, service rate); 

    Release (Leave) server(s); 
 

Figure 7. Some statements structures of SLX 
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