
Fuzzy Optimization and Normal Simulation for
Solving Fuzzy Web Queuing System Problems

Xidong Zheng, Kevin Reilly
Dept. of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL, 35294, USA

205-934-2213
zhengx, reilly@cis.uab.edu

and

James J. Buckley

Department of Mathematics
University of Alabama at Birmingham

Birmingham, AL, 35294, USA
205-934-2154

buckley@math.uab.edu

ABSTRACT

In this paper, we use both fuzzy optimization and normal simulation
methods to solve fuzzy web planning model problems, which are
queuing system problems for designing web servers. We apply fuzzy
probabilities to the queuing system models with customers arrival
rate λ and servers’ service rate µ, and then compute fuzzy system
performance variables, including Utilization, Number (of requests) in
the System, Throughput, and Response Time. For the fuzzy
optimization method, we apply two-step calculation, first use fuzzy
calculation to get the maximum and minimum values of fuzzy steady
state probabilities, and then we compute the fuzzy system
performance variables. For the simulation method, we use one-step
normal queuing theory to simulate the whole system performance
and its variables. We deal with queuing systems with a single server
and multiple servers’ cases, and compare the results of these two
cases, giving a mathematical explanation of the difference.

Keywords: Fuzzy Optimization, Normal Simulation, Queuing
Theory, and Web Planning Model.

1. INTRODUCTION

In this section, we introduce first fuzzy sets, fuzzy numbers, notations
(section 1.1), and finally the queuing system models (section 1.2).

1.1 Fuzzy Notation
To indicate that a set is fuzzy, we place a bar over the symbol
representing the fuzziness, as: ija . If a set is known precisely, then

we can denote it as: ija = ija . Nevertheless, for simplicity and

uniformity, we still write ija as ija in some contexts. So, Y,x,a …

all represent fuzzy sets. If A is a fuzzy set, we define)x(A ∈ [0,1]
as the membership function of A , for evaluating a real number x.
And a α-cut of A , written as][A α , is defined as {x| α≥)x(A },

for 0 ≤ α ≤ 1. A fuzzy number N is a fuzzy subset of the real
numbers satisfying:

1))x(N = 1 for some x (normalized); and

2)][αN is a closed, bounded, interval, for all 0 ≤ α ≤ 1.

A triangle fuzzy number T = (1a / 2a / 3a) is defined by three
numbers 1a < 2a < 3a , where the graph of y =)x(T is a triangle with

base on the interval [1a , 3a] and vertex at x= 2a ()a(T 2 =1). All the
fuzzy numbers we used in this paper are triangle fuzzy numbers
[1][2][3].

1.2 Queuing Models
From traditional queuing system, we know that it has customers’
arrival rate with Poisson probability distribution, which means that
there is a positive constant λ so that the probability of m arrivals of
customers per unit time is !m/e*)(m λ−λ . And the servers’ service
time is exponential distributed with service rate µ.

In our model, we regard the web system as a finite-queuing system,
the Internet users as the customers, and web servers as the servers
[4][5]. The website accepts at most M number of users’ requests at
a time, where M is the number of users in the system and in the
queue. To apply the fuzzy probability in our system, we get that the
customers’ arrival rate is λ and servers’ service rate is µ , then to

compute the fuzzified system performance variables: Utilization (U),
Number (of requests) in the System (N), Throughput (X), and
Response Time (R). To simplify our computation, we will compute
the one-server case and two-server case with the capacity of
accepting M= 4 users in one time at most.

2. WEB PLANNING MODELS AND SYSTEM
PERFORMANCE

In this section, we describe the system models of the one-server
case and two-server case and their characteristics, system
performance variables formula according to arrival rate and service
rate.

34 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 ISSN: 1690-4524

2.1 Single-Server Case
In single-server case, the whole system has only one web server.
We assume that the infinite number of users around the world visit
the website with average arrival rate of λ (Poisson arrival), and the
average service rate of µ (exponential service time) (see Figure 1). If
the number of users arriving at the same time exceeds the limit of the
system buffer, the users will get “server is busy” response and leave
the system.

2.1.1 Markov Chain for Single-Server case: We
regard the single server system as a Markov chain (see Figure 2)
and assume that:

• State k à k customers in the system;
• P (I, J) à Probability of transition from state of I to state

of J.

2.1.2 Property of the single-server Markov chain:
Assuming that the internal time period δ is small enough, i.e. in the
limit as δ à0, we get the state transition probability expressions [6]:

• P (0, 0) = 1 - λ; P (M, M) =1 - µ;
• P (j, j+1) = λ; (0 <= j <M)
• P (j, j) = 1 - λ - µ; (0 < j < M)
• P (j, j-1) = µ; (0 < j <=M)
• P (i, j) = 0 (for all other i, j).

It is actually a tri-diagonal Markov chain matrix (see Figure 3).

So, in the limit as δ à 0, transitions exist only between adjacent
States. And λ, µ are flow rates between states.

µ−µ
λµ−λ−µ

λµ−λ−µ
λλ−

100
10

01
001

L
L

MMMMM
L
L

2.1.3 Equilibrium analysis of single-server system:
We want to obtain the probability of being in state k, denoted as: P
(k).

At equilibrium, we have local balance equations between two states
(k, k+1)[6]:
λ * P (k) = µ * P (k+1), (for all k)

Let ρ = λ/µ, we get:

P (k)= ρk * P (0), and ∑ =
=

M

0k
1)k(P . Thus:

Probability of being in state k:

P (k) = k
1M *

1
1 ρ

ρ−
ρ−

+ k=0, 1, …, M …………….…..(2.1-1)

Server utilization:

U = 1 – P (0) = 1M

M

1
]1[*

+ρ−
ρ−ρ . . . … … … … … ….………… (2 .1-2)

Average number of requests in the server:

N = ∑
=

M

0k
)k(P*k =

)1(*)1(
]1*)1M(*M[*

1M

M1M

ρ−ρ−
+ρ+−ρρ

+

+
… …...(2.1-3)

Average server throughput:

X = U * µ = 1M

M

1
)1(*

+ρ−
ρ−λ … … … … … … … . . … . . … … .… (2.1-4)

Average response time:

R = N /X =
)1(*)1(*

1*)1M(*M
M

M1M

ρ−ρ−µ
+ρ+−ρ +

… … … … … …...(2.1-5)

2.2 Multiple-Server Case
In multiple-server case, the whole system has C parallel and identical
web servers. We still assume that the infinite number of users around
the world visit the website with average arrival rate of λ (Poisson
arrival), and all the servers’ average service rate are µ (exponential
service time) (see Figure 4). Also, if the number of users arriving at
the same time exceeds the limit of the system buffer, the users will
then get “servers are busy” response and leave the system.

2.2.1 Markov Chain for multiple-Server case: The
multiple-server case Markov chain is similar to the single server case
(see Figure 5). Still we assume that:

• State k à k customers in the whole system (including all

servers);
• P (I, J) à Probability of transition from state of I to state

of J.

Figure 3. Tri-diagonal Markov chain matrix (single-server)

Figure 2. State transition diagram —
Infinite users/finite queue/single server

λ λ λ λ

µ µ µ µ

21 M 0

Figure1. Single-Server queuing model

Arrival rate λ

Queue/Buffer

User

User

User

Server

Service rate µ

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 35ISSN: 1690-4524

But here the difference is that departure rate is proportional to the
number of servers in use.

2.2.2 Property of the multiple-server Markov chain:
Similar to single-server case, we assume that the internal time period
δ is small enough, i.e. δ à0, we can get state transition probability
like these:

• P (0, 0) = 1 - λ; P (M, M) =1 - Cµ;
• P (j, j+1) = λ (for 0 <= j < M);
• P (j, j-1) = j * µ (for 0 < j <= C);
• P (j, j) = 1 - λ - j * µ (for 0 < j <= C);
• P (j, j-1) = C * µ (for C < j <= M);
• P (j, j) = 1 - λ - C * µ (for C < j < M);
• P (i, j) = 0 (for all other i, j).

Transitions again occur only between adjacent states and the
transition matrix is still a tri-diagonal Markov chain matrix (see
Figure 6).

2.2.3 Equilibrium analysis of multi-server system:
Similar to single-server case, we denote the probability of being in
state k as: P (k). At equilibrium, the balance equations between two
states (k-1, k) become:

• λ * P (k-1) = k * µ * P (k) (for 0 < k <= C);
• λ * P (k-1) = C* µ * P (k) (for C < k <= M);

And again let ρ = λ/µ, we get:

 Probability of being in state k:
 P (0) * ρk / k! (For 0 <= k <=C)
P (k) =
 P (0) * CC-k * ρk / C! (For C < k <= M) … .(2.2-1)

µ−µ
λµ−λ−µ

λµ−λ−µ

λµ−λ−µ
λµ−λ−µ

λµ−λ−µ
λµ−λ−µ

λλ−

C1C00
C1C00

0C1C00

00C1C00
00C1C0

002120
001
001

LLLLLL
LLLLL

LLLL
MMMMMMMMMM

LLL
LLLL

MMMMMMMMMM
LLLL
LLLLL
LLLLLL

Column C

λ λ λ λ

Figure 5. State transition diagram — Infinite users/finite queue/multiple servers

λ λ λ

C+1

Cµ

0 1 2

µ 2µ 3µ

M

Cµ

C

Cµ Cµ

Row C Row C

Column C

Figure 6. Tri-diagonal Markov chain matrix (multiple servers)

Figure 4. Multiple-Server queuing model

Arrival rate λ

User

User

User

Queue/Buffe

Server

Service rate µ

C Servers

Server

Service rate µ

36 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 ISSN: 1690-4524

Using ∑ =
=

M

0k
1)k(P , we get:

P (0) =
1

1C

0k
CM

1CM1CMCk

)C(*C!*C
)C(*

!k

−
−

=
−

+−+−

 ∑

ρ−
ρ−ρ+ρ ..… .……..…..(2.2-2)

Server utilization:
U = 1 – P (0) … … … … … … … … … … . . … .……..….….(2.2-3)

Average number of requests in the server:

N = ∑
=

M

0k
)k(P*k . . … … … … … … … … … … . … …….…….(2.2-4)

Average server throughput:

X = ∑µ+∑ µ
=

−

=

M

Ck

1C

0k
)k(P**C)k(P**k … … … . … ………..(2.2-5)

Average response time:
R = N / X ……………… … … … … … . . . … ………..……(2.2-6)

3. FUZZY OPTIMIZATION OF THE WEB SYSTEM

Up to now, the system is a crisp one. In reality, people often
describe the user arrival rate and server service time in a fuzzy
language. So we want to apply the fuzzy probability into our system
[1][2][3], fuzzify the arrival rate λ and service rate µ and denote
them as λ and µ in respect, then we use the fuzzy calculation theory
to compute the fuzzified system performance variables: Utilization
(U), Number (of requests) in the System (N), Throughput (X),
and Response Time (R).

For fuzzy calculation in our problem, we have the following two
methods:

• One-step method. We begin with the crisp formula of U,

N, X, R, which are directly the function of λ and µ and
substitute values from M and C into them to get
expressions from which the maximum and minimum value
of U, N, X, R can be determined and utilized as the final
fuzzy result ofU , N , X and R .

• Two-step method. First, we compute the fuzzy steady
state probability)k(P according to λ and µ . Then using
the crisp formulae for U, N, X, R as a function of P (k),
but now employing fuzzy arithmetic, we compute fuzzy
results, U , N , X and R .

3.1 One-server example
For illustration purposes, we let M=4 and fuzzy number λ =(3 / 4 /
5), µ = (5 / 6 / 7). According to formulas 2.1-1 to 2.1-5, we have
done the following two cases fuzzy optimization:

3.1.1 One-Step optimization: Using the direct function
of λ and µ, the formula of U, N, X, R are (ρ = λ/µ):

U = 5

4

1
]1[

ρ−
ρ−ρ

; N =)1)(51(
]154[45

ρ−ρ−
+ρ−ρρ ;

X = 5

4

1
)1(

ρ−
ρ−λ ; R =

)1)(1(
154

4

45

ρ−ρ−µ
+ρ−ρ .

A direct, simple computation of U , N , X and R (alpha zero cut)
can be effected in MATLAB optimization toolbox. The results
appear in see Table 1.

3.1.2 Two-step optimization: Unlike one-step method,
we first compute the fuzzy steady state probability)k(P according to

the fuzzy number λ =(3 / 4 / 5), µ = (5 / 6 / 7). From equation 2.1-
1 and M=4, we know that:

P (k) = k
5 *

1
1 ρ

ρ−
ρ− k=0, 1, …, 4

The fuzzy results for these fuzzy probabilities are in Table 2.

After obtaining fuzzy steady state probabilities, we next need to
compute the (final) fuzzy system performance variables U , N , X
and R .

U [0] = [min (∑
=

4

1k
)k(p), max (∑

=

4

1k
)k(p)];

N [0] = [min (∑
=

4

1k
)k(P*k), max (∑

=

4

1k
)k(P*k)];

X [0] = [min (∑ µ
=

4

1k
)k(P*), max (∑ µ

=

4

1k
)k(P*)];

R [0]=[min (∑ µ∑
==

4

1k

4

1k
)k(P*/)k(P*k),

max(∑ µ∑
==

4

1k

4

1k
)k(P*/)k(P*k)],

All these object functions are subject to the constraints:

P (k) ∈)k(P [0], 0 <= k <= 4, and 1)k(P
4

0k
=∑

=
;

Using MATLAB, we get the optimization result in Table 1.

Table 1. Fuzzy system performance variables (single-server;
methods, one- and two-step). See Table 2 for intermediate
steps in the two-step case.

 Alpha Zero Cut

 One-step method Two-step method

U [0.4202, 0.8000] [0.4202, 0.8000]

N [0.6767, 2.0000] [0.6767, 2.0000]

X [2.8314, 4.5432] [2.1010, 5.6000]

R [0.2300,0.5000] [0.1208, 0.9519]

3.2 Two-server example
Like the one-server case, in order to exemplify the computation, we
again let M=4 and employ fuzzy arrival and service rates, λ =(3 / 4 /
5), µ = (5 / 6 / 7). According to formulas 2.2-1 to 2.2.6, we’ve
computed both one-step and two-step fuzzy optimizations in the
manner we now describe.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 37ISSN: 1690-4524

Table 2. Fuzzy steady state probability (two-step method) –
intermediate value preceding final values in Table 1.

 Alpha Zero Cut

 Single-server Two-server

)0(P [0.2000,0.5798] [0.3478, 0.6475]

)1(P [0.2000,0.2608] [0.2775, 0.3503]

)2(P [0.1065,0.2000] [0.0595, 0.1739]

)3(P [0.0456,0.2000] [0.0127, 0.0870]

)4(P [0.0196,0.2000] [0.0027, 0.0435]

3.2.1 One-Step optimization: Using the expressions for
λ and µ, the formula of U, N, X, R are (ρ = λ/µ):

U = ()
()

132

28
8*11

−

ρ−
ρ−ρ+ρ+− ;

 N = ()
()

ρ−
ρ−ρ+ρ+ρ+ρ+ρ+ρ 28

8*1/)2/4/3(
32

432 ;

X = () ()
()

ρ−
ρ−ρ+ρ+ρ+ρ+ρ+ρµ 28

8*1/4/2/*
32

432 ;

R = ()4/2/*
)2/4/3(

432

432

ρ+ρ+ρ+ρµ
ρ+ρ+ρ+ρ .

Using MATLAB, we get the alpha zero cut of U , N , X and
R (see Table 3 below).

3.2.2 Two-step optimization: From equation 2.2-1 and
M=4, we get:

P (0) = ()
()

132

28
8*1

−

ρ−
ρ−ρ+ρ+ ;

P (1) = ()
()

132

28
8*1*

−

ρ−
ρ−ρ+ρ+ρ ;

P (2) = ()
()

1322

28
8*1*2

−

ρ−
ρ−ρ+ρ+ρ ;

P (3) = ()
()

1323

28
8*1*4

−

ρ−
ρ−ρ+ρ+ρ ;

P (4) = ()
()

1324

28
8*1*8

−

ρ−
ρ−ρ+ρ+ρ .

Then we compute the fuzzy steady state probability)k(P according to

the fuzzy numbers λ = (3 / 4 / 5), µ = (5 / 6 / 7) (see Table 2).

Then similar to one-server case, we compute the fuzzy system
performance variables U , N , X and R as following:

U [0] = [min (∑
=

4

1k
)k(p), max (∑

=

4

1k
)k(p)];

N [0] = [min (∑
=

4

1k
)k(P*k), max (∑

=

4

1k
)k(P*k)];

X [0] = [min (∑µ+µ
=

4

2k
)k(P*2)1(P*),

max (∑µ+µ
=

4

2k
)k(P*2)1(P*)];

R [0]=[min (∑µ+µ∑
==

4

2k

4

1k
))k(P*2)1(P*/()k(P*k),

max (∑µ+µ∑
==

4

2k

4

1k
))k(P*2)1(P*/()k(P*k)],

All these object functions are subject to the constraints:

P (k) ∈)k(P [0], 0 <= k <= 4, and 1)k(P
4

0k
=∑

=
;

Using MATLAB, we get the optimization result in Table 3.

Table 3. Fuzzy system performance variables (two servers;
methods, one- and two-step). See Table 2 (again) for
intermediate steps for the two-step case.

 Alpha Zero Cut
 One-step method Two-step method

U [0.3525, 0.6522] [0.3525, 0.6522]

N [0.4456, 1.1304] [0.4456, 1.1304]

X [2.9737, 4.9223] [2.1370, 6.6962]
R [0.1489, 0.2364] [0.0665, 0.5291]

3.3 Comparison of One-step and Two-step Results
From the computation results of both one- and two-server cases, we
see that the fuzzy utilization and number of users requests are the
same in both one-step and two-step methods. Meanwhile, the
system throughput and average response time are broader in two-
step than in one-step method.

There are two possible reasons related to the computation results:

• From the equations of system performance variables, we

can see that U and N are the function of only the
ratio (ρ) of user arrival rate (λ) and server service rate
(µ); but X and R are the function of ρ and λ or µ;

• In two-step method, we first compute the fuzzy steady
state probability, then the fuzzy system performance
variables. Thus, this computation has an additional fuzzy
step, which results in increased and expanded fuzzy
spread (in both left and right sides of the fuzzy numbers).

4. Simulation method

We have also implemented another approach dealing with these fuzzy
problems, i.e. a standard (stochastic) simulation. Unlike fuzzy
optimization, simulation is based on traditional queuing models, using
statistical and experimental methods to generate an internal picture of
the system from which we gather the (statistical) data for analyzing
system performance variables [7][8].

4.1 Simulation Software
Several software packages can be found for simulations purpose.
We use the widely known simulation languages, GPSS-H and SLX
(an Object Based language which also includes the heart of GPSS-

38 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 ISSN: 1690-4524

H) [8]. SLX stands for Simulation Language with eXtensibility, it is a
well-conceived, layered simulation system. Users of the upper layers
can ignore lower layers.

Simulation languages such as GPSS and SLX have built-in
probability functions that we can directly employ in our problem, e.g.,
exponential functions for inter-arrival and service times. Random
number generators can be assigned to these functions to allow
appropriate replication capabilities. On the output side frequency
distributions often are generated automatically and graphs of them are
easy to obtain, i.e., with only a few statements.

Model strategy and subsequent program development for our web
planning models are easy to incorporate into these software
packages by high-level constructs. The Poisson arrival and service
rates are rendered in terms of exponential inter-arrival intervals and
service time distributions, compatible with the mathematics of our
situations and readily defined in the language.

Also in these languages, there are a variety of blocks or statements,
which are conjugates of each other, defining the starting and ending
events of an activity: joining a queue (in SLX, e.g.) is represented by
enqueue block with the user-defined queue name and leaving is
represented by a depart block with the name (See Figure 7).

4.2 Simulation examples
According to the same general plan as above, we use SLX to
implement simulation to obtain fuzzy results for Utilization (U),
Number (of requests) in the System (N), Throughput (X), and
Response Time (R). Again, we let M=4 and employ fuzzy number
λ = (3 / 4 / 5), µ = (5 / 6 / 7) in illustrations.

In simulation, we do not need to simulate all combinations of fuzzy
number of λ and µ to get some of our desired results. We just use
the middle points of arrival rate and service rate to tackle the
problems. We start the simulation using the structure in figure 7;
repeat the simulation for certain number of loops. We then tabulate
all the statistical data of server Utilization (U), average Number of
requests (N) in the system, system Throughput (X), and average
Response Time (R). Through analysis, we get the maximum and
minimum of all four variables, along with their mean values. (See
Table 4). Also, the (entire) distribution curves of U, N, X, R are
made available. Additional variations of these themes produce
additional output values and the insights acquired through their
interpretations enrich the overall computational scheme.

Table 4. Fuzzy system performance variables (Simulation)

 Alpha Zero Cut
 Single-Server Two-Server

U [0.4114, 0.7934] [0.3592, 0.6472]

N [0.6617, 1.9846] [0.4494, 1.0914]

X [2.8333, 4.5417] [2.9583, 4.9983]

R [0.2277, 0.5016] [0.1406, 0.2397]

4.3 Advantages of using simulation
Comparing the simulation results to those of fuzzy optimization, in the
one-step optimization case (both one- and two-server situations) we
see that there is a very good match. There are some decided
advantages in using simulation over the fuzzy computation [8].

• Simulation itself is more natural than fuzzy computation in the

sense of queuing model theory. It provides not only the correct
results, but also tells how the queuing system works in reality;

• Simulation languages can provide much automatic output
from their statistics running data and can provides more
statistics that fuzzy computation cannot get, like data
distributions;

• Simulation languages have a set of built-in files and lists that
are used to store an agenda (a list of future events). One or
more lists are used to keep track of dynamic (movable
simulation) entities that, at any given moment, are ready to
move but, say, are blocked from moving, as in the case of
entities that would enter a server were it available. The
languages readily handle several complexities, e.g., balking
and preemption, which we may utilize in our future studies.

5. CONCLUSIONS

We have first presented fuzzy optimization methods to solve web
planning queuing problems. In fuzzy optimization, we presented both
a one- and a two-step computational method. In the former case,
fuzzy number is introduced after conventional argument up to the
system performance values themselves. In the latter case, we
compute fuzzy system steady state probabilities as an intermediate
step and then proceed, via fuzzy arithmetic, to the final results. The
latter method produces results with a broader fuzzy spread because
of the additional fuzzy arithmetic.

Also, we have considered both singer-server and multiple-server
cases and gave a detailed description of the system performance
variables in both cases. And we have illustrated some typical
examples to make procedures easier to understand.

Finally, we covered a conventional simulation based method to solve
fuzzy problems, which may be a “first” in the fuzzy probability field.
Using examples in both single- and two-server cases, we
demonstrated that conventional simulation is appropriate, and
effective, in fuzzy probability modeling. In some instances, such as
developing (output) data distributions, it seems to have proven to be
better.

 Arrivals: customer
 iat = rv_expo (random-stream1, arrival rate)

 util_time = stop_time;
 Enqueue queue;

 Seize (Enter) server(s);

 Departure queue;

 Advance rv_expo (random-stream2, service rate);

 Release (Leave) server(s);

Figure 7. Some statements structures of SLX

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 39ISSN: 1690-4524

6. REFERENCES

[1] J.J. Buckley, Kevin Reilly, and Xidong Zheng, Fuzzy
Probabilities for Web Planning, Soft Computing, In press.

[2] J.J. Buckley, Fuzzy Probabilities and Fuzzy Sets for Web
Planning. Physica-Verlag, Heidelberg, Germany, 2004.

[3] J. J. Buckley, Fuzzy Probabilities: New Approach and
Applications, Physica-Verlag, Heidelberg, 2002.

[4] Xidong Zheng, K. Reilly, J. J. Buckley, Comparing Genetic
Algorithms And Exhaustive Methods Used In Optimization
Problems For Fuzzy Probability-Based Web Planning Models.
In Proc. The International Conference On Artificial Intelligence,
Las Vegas Nevada, USA, June 2003,pp.463-468.

[5] Xidong Zheng, K. Reilly, J. J. Buckley, Applying Genetic
Algorithms To Fuzzy Probability-Based Web Planning Models.
In Proc. ACMSE’03, Savanna, Georgia, USA, March 2003,
pp.241-245.

[6] D. A. Menase and V. A. F. Almeida, Capacity Planning for
Web Performance: Metrics, Models and Methods, Prentice-
Hall.

[7] K. Reilly, J. J. Buckley, X. Zheng, and F. Hernandez, Monte
Carlo, Statistics, and Fuzzy Uncertain Probabilities. In Proc.
2002 Huntsville Simulation Conference, San Diego, CA, 2002.
Society for Computer Simulation, Int'l. 6 pp. In press.

[8] J.O.Henriksen and R.C.Crain. GPSS/H Reference Manual, 4th
edition. Wolverine Software, Inc., Alexandria, VA, 1995.

40 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 2 ISSN: 1690-4524

	P107425

