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ABSTRACT

In this paper, we use both fuzzy optimization and norma smulation
methods to solve fizzy web planning modd problems, which are
queuing system problems for designing web servers. We apply fuzzy
probabilities to the queuing sysem models with customers arriva
rate| and servers service rate m and then compute fuzzy sysem
performance variables, including Utilization, Number (of requests) in
the System, Throughput, and Response Time For the fuzzy
optimization method, we apply two-step caculation, first use fuzzy
caculation to get the maximum and minimum values of fuzzy steedy
state probabilities, and then we compute the fuzzy system
performance varigbles. For the smulaion method, we use one-step
normd queuing theory to Smulate the whole system performance
and its variables. We ded with queuing systems with a Sngle server
and multiple servers cases, and compare the results of these two
cases, giving amathematical explanation of the difference.

Keywords: Fuzzy Optimization, Normd Smulation, Queuing
Theory, and Web Planning Moddl.

1. INTRODUCTION

In this section, we introduce first fuzzy sets, fuzzy numbers, notations
(section 1.1), and findly the queuing system models (section 1.2).

1.1 Fuzzy Notation

To indicate that a st is fuzzy, we place a bar over the symbol
representing the fuzziness, as.a; . If a set is known precisdy, then
we can denote it as a; = a; . Nevertheless, for smplicity and
uniformity, we il write a;; as a; in some contexts. So, a,x,Y ...
al represent fuzzy sets. If A is a fuzzy st, we define A(x)T [0,1]
as the membership function of A , for evaluating a real number x.
Andaa-cutof A, written as Ala], is defined as {x| A(x) 2 a },
for 0 £ a £1 A fuzzy number N is a fuzzy subset of the red
numbers satisfying:
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1) N(x)=1for somex (normalized); and
2) Na] isaclosed, bounded, interval, foral 0 £a £ 1.

A triangle fuzzy number T = (au/a2/as) b defined by three
numbers a; < az < as , where the graph of y =T(x) is a triangle with
baseontheinterva [ &, as ] and vertex at x= a2 (T(a) =1). All the

fuzzy numbers we used in this paper are triangle fuzzy numbers
[1[21(3]-

1.2 Queuing Models

From traditiona queuing system, we know that it has customers
arival rae with Poisson probability distribution, which means that
there is a poditive congtant | so that the probability of m arrivals of

customers per unit ime is |™* &)/ mi . And the servers service
timeis exponentia distributed with serviceratem

In our model, we regard the web system as a finite-queuing system,
the Internet users as the customers, and web servers as the servers
[4][5]. The website accepts a most M number of users' requests at
atime, where M is the number of users in the system and in the
queue. To apply the fuzzy probability in our system, we get that the
customers arivad rate is | and servers service rate ism, then to
compute the fuzzified system performance varigbles: Utilization (U ),
Number (of requests) in the System (N ), Throughput (X ), and
Response Time (R ). To smplify our computation, we will compute
the one-server case and two-server case with the capacity of
accepting M= 4 usersin one time at most.

2. WEB PLANNING MODELSAND SYSTEM
PERFORMANCE

In this section, we describe the system models of the one-server
cae and two-server cae and their characterigtics, system
performance variables formula according to arrival rate and service
rate.
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2.1 Single-Server Case

In sngle-server case, the whole system has only one web server.
We assume that the infinite number of users around the world visit
the webgite with average arriva rate of | (Poisson arrival), and the
average service rate of m(exponential service time) (see Figure 1). If
the number of users arriving at the same time exceeds the limit of the
system buffer, the users will get “server is busy” response and leave
the sysem.

211 Markov Chain for Single-Server case: We
regard the single server system as a Markov chain (see Figure 2)
and assume that:

State k 2> k customersin the system;
P (1, J - Probability of trandtion from dtate of | to state
of J

User

\ Arrivd rate | ‘ H ‘
_—>

Server
Figurel. Single-Server queuing model
I I | I
OlO]ORO
m m m m

Figure2. Statetranstion diagram —
Infinite user gfinite queue/single server

Oueue/Buffer

User

2.1.2 Property of the single-server Markov chain:
Assuming that the internd time period d is smdl enough, i.e. in the
limit asd =0, we get the gtate transition probability expressons|[6]:

P(0,0) =1-1; P(M,M)=1-m
P@.j+1) =1; (0<=] <M)
PG.)=1-1-m (0<j<M)
P@.j-)=m (0<j<=M)

P (i, j) = O (for all other i, j).

It isactudly atri-diagonal Markov chain matrix (see Figure 3).

So, inthelimit asd - 0, trangitions exist only between adjacent
States. And | , mare flow rates between states.
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Figure 3. Tri-diagonal Markov chain matrix (single-server)

2.1.3 Equilibrium analyss of single-server system:
We want to obtain the probahility of being in sate k, denoted as. P
(k).

At equilibrium, we have loca balance equations between two states
(k, k+1)[6]:

I *P(k)=m* P(k+1), (fordlk)

Letr =1 /mwe get:

P(K)=r* * P(0), and kg P(K) = 1. Thus

=0

Probability of being in gate k:

P(K) = ll;hzﬂ*rk k=0, 1, %4, M e (2.11)
Server utilization:

M
U=1-P(0) = _Llfi_lr-Mrﬂ .................................. (2.1-2)

Average number of requestsin the server:

Y ey = TEMAIM M+ *r M+ i
N= & k* Pk = e (2.1-3)

Average server throughput:

X=U*m= @11

To [ ML o s

Average response time:
R=N/x = M- (M+D*rt+l
mt @- rM)*(@-r)

2.2 Multiple-Server Case

In multiple-server case, the whole system has C pardlel and identica
web servers. We Hill assume that the infinite number of users around
the world vigt the webste with average arrival rate of | (Poisson
arivd), and dl the servers average service rate are m(exponentid
sarvice time) (see Figure 4). Also, if the number of users arriving at
the same time exceeds the limit of the system buffer, the users will
then get “servers are busy” response and leave the system.

2.2.1 Markov Chain for multiple-Server case: The
multiple-server case Markov chain is Smilar to the single server case
(see Figure 5). Still we assume that:

State k = k customers in the whole system (including dl
sarvers);

P (1, J - Probability of trandtion from dtate of | to state
of J.
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But here the difference is that departure rate is proportiond to the
number of serversin use.

2.2.2 Property of the multiple-server Markov chain:
Similar to Sngle-server case, we assume that the internal time period
d issmadl enough, i.e. d 20, we can get Sate trandtion probability
like these:

P00 =1-1; PM,M)=1-Cm
P(@,j+1) =1 (for0<=j <M);
P@,j-1) =j*m (for0<j<=C);
PG j)=1-1-j*m (for0<j<=C);
P(,j-1) =C*m (for C<j<=M);
PG, )=1-1-C*m (forC<j<M);
P (i, j) = O (for dl otheri, j).

Trangtions again occur only between adjacent dtates and the
trandtion matrix is gill a tri-diagond Markov chain matrix (see
Figure 6).

2.2.3 Equilibrium analysis of multi-server system:
Similar to Sngle-server case, we denote the probability of being in
satek as: P (k). At equilibrium, the balance equations between two
states (k-1, k) become:

|
m 2m 3m

|
Cm Cm Cm

| *P(k-)=k*m*P(k) (for0<k<=C);
| *P(k-1)=C* m* P(k) (for C<k<=M);

Andaganletr =1 /mweget:

Probahility of being in Sate k:
(For 0<=k <=C)

PO *r*/k!
P(k) =
P(0)* C**rX/Cl (ForC<k<=M) ....(22-1)

Server
\ Arrival rate | f

User —>—>HH

/ Queue/Buffe

User
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Server
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Figure 4. Multiple-Server queuing model
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Figure6. Tri-diagonal Markov chain matrix (multiple servers)
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Using k%i'op(k) =1, weget:

P R _ -1
iéglﬁ-'- rC*(CM C+l _ rM C+l)l:|

PO)= 8 5t — 17 eererimnnens 2.2-2
O= g acrercn 4 (222

Server utilization:

UZ1-P (0) oot e e (2.2-3)

Average number of requestsin the server:

N = kéﬁ'ok* UK -« oo e e (2.2-4)

Average server throughput:

X = :é:k*m* P(K) +C* kch>(|<) ........................ (2.2-5)

Average response time:

R =N/ X i e e (2.2-6)

3. FUZZY OPTIMIZATION OF THE WEB SYSTEM

Up to now, the system is a crisp one. In redlity, people often
describe the user arivd rate and server sarvice time in a fuzzy
language. So we want to apply the fuzzy probability into our system
[1[2][3], fuzzify the arrivd rate | and service rate mand denote
themas I and min respect, then we use the fuzzy calculation theory
to compute the fuzzified system peformance vaiables Utilization
(U), Number (of requests) in the System (N '), Throughput (X ),
and Response Time (R ).

For fuzzy cdculation in our problem, we have the following two
methods:

One-step method. We begin with the crisp formula of U,
N, X, R, which are directly the function of | and mand
subgtitute values from M and C into them to get
expressions from which the maximum and minimum vaue
of U, N, X, R can be determined and utilized as the find
fuzzy reslltof U ,N, X and R .

Two-gep method. Fird, we compute the fuzzy Steedy
state probebility P(k) according to T and m. Then using
the crigp formulae for U, N, X, R as a function of P (k),
but now employing fuzzy aithmetic, we compute fuzzy
results, U, N, X and R .

3.1 One-server example

For illustration purposes, we let M=4 and fuzzy number T =(3/ 4/
5), m=(5/6/ 7). According to formulas 2.1-1 to 2.1-5, we have
done the following two cases fuzzy optimization:

3.1.1 One-Step optimization: Udng the direct function
of | and mtheformulaof U, N, X, Rare(r =1/m:

U = rL-r4 . N = r[4r®- 5r4+1 .
To1-r5 T @-rHa-r)
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1 (-9 . Ro A4S- 5441
- rHa-r) -’

A direct, sSmple computation of U , N, X and R (apha zero cut)
can be effected in MATLAB optimization toolbox. The results
appear insee Table 1.

3.1.2 Two-step optimization: Unlike one-step method,
we first compute the fuzzy steady state probability P(k) according to
the fuzzy number T =(3/4/5), m=(5/ 6/ 7). From equation 2.1-
1 and M=4, we know that:

P(K) = 11':5*r'< k=0, 1, ¥4, 4

The fuzzy results for these fuzzy probabilitiesarein Teble 2.
After obtaining fuzzy dteady dtate probabilities, we next need to

compute the (final) fuzzy sysem performance variablesU ,N , X
and R .

U 0] =[min (4 p)). max (4 P09
N [0] = [min ( & k* R09), max (& k* PO )
X [0 =[min (& m* R ), max (& m* P9 )
R [0=(min( & k* P19/ & m* P,

max( & k* )/ & m* P ),

All these object functions are subject to the constraints.
P(k)’[ m [o], O0<= k<: 4' md kéjoqk) :1;

Using MATLAB, we get the optimization result in Table 1.

Table 1. Fuzzy system performance variables (single-server;
methods, one- and two-step). See Table 2 for intermediate
stepsin thetwo-step case.

Alpha Zero Cut
One-step method Two-step method
u [0.4202, 0.8000] [0.4202, 0.8000]
N [0.6767, 2.0000] [0.6767, 2.0000]
X [2.8314, 4.5432] [2.1010, 5.6000]
R [0.2300,0.5000] [0.1208, 0.9519]

3.2 Two-server example
Like the one-server case, in order to exemplify the computation, we

again let M=4 and employ fuzzy arrival and servicerates, I =(3/ 4/
5), m= (5/ 6/ 7). According to formulas 2.2-1 to 2.2.6, we've
computed both one-step and two-gtep fuzzy optimizations in the
manner we now describe.
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Table 2. Fuzzy steady state probability (two-step method) —
intermediate value preceding final valuesin Table 1.

Alpha Zero Cut
Single-server Two-ser ver
PO [0.2000,0.5798] [0.3478, 0.6475]
[=0) [0.2000,0.2608] [0.2775, 0.3503]
=¢) [0.1065,0.2000] [0.0595, 0.1739]
2€) [0.0456,0.2000] [0.0127, 0.0870]
P& [0.0196,0.2000] [0.0027, 0.0435]

3.2.1 One-Step optimization: Using the expressions for
| and mtheformulaof U,N, X, Rare(r =1 /m):

U—1-A+r ru_

= (r +r2 +33/4+r4/2)/§+r+?—(8—rr)9
X=m*(r+r2+r3/2+r“/4)/§+r+W—(—rLr 8- 1)0.
2-1) g

(r+r2+33%/4+r4/2

R= mrf +r2+r3/2+r4/4)°

Using MATLAB, we get thedphazerocutof U , N, X and
R (see Table 3 below).

3.2.2 Two-step optimization: From equation 2.2-1 and
M=4, we get:

P(0) = §+r+ -’ ;

-1) H
P =r*8+ +r2*8-r3L‘1'1.
W= der ety
P(2_r op 4128 )t
2'8 X
_r3,é 2x(g- 3t
PE)= §L+r+ §
5 2« (8- r9g*
P(4)_—*§L+r i

Then we compute the fuzzy steady state probability P(k) according to
the fuzzy numbers T = (3/4/5), m= (5/6/7) (see Table 2).

Then Smilar to one-server case, we compute the fuzzy system
performance variablesU , N , X and R asfollowing;

U (0] =[min (4 pk)). max (4 P9

N 0] =[min( 4 k* Pk, mac (4 k* Pl
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X[0]=[min(m* P@) + 2m* & P(K)),
max (m* R + 21 & R )L
R [0l=[min (4 k* P/ R + 2m & RK)),
max (& k* RI/(m P+ am & RI) )]
All these object functions are subject to the congtraints.
P(OT P[0, 0<=k<=4,and & PO =1;

Using MATLAB, we get the optimization result in Table 3.

Table 3. Fuzzy system performance variables (two servers;
methods, one- and two-step). See Table 2 (again) for
intermediate stepsfor the two-step case.

Alpha Zero Cut
One-step method Two-step method
[0.3525, 0.6522] [0.3525, 0.6522]
[0.4456, 1.1304] [0.4456, 1.1304]
[2.9737, 4.9223] [2.1370, 6.6962]
[0.1489, 0.2364] [0.0665, 0.5291]

x|zl cl

3.3 Comparison of One-gep and Two-step Results

From the computation results of both one- and two-server cases, we
see that the fuzzy utilization and number of users requests are the
same in both one-step and two-step methods. Meanwhile, the
system throughput and average response time are broader in two-
gtep than in one-step method.

There are two possible reasons related to the computation results:

From the equations of system performance variables, we
can seethat U and N are the function of only the

ratio ¢) of user arrival rate () and server service rate
(m; but X and R arethe function of r and| or m

In two-step method, we first compute the fuzzy steady
dete probability, then the fuzzy sysem performance
vaiables. Thus, this computation has an additiond fuzzy
gep, which results in increesed and expanded fuzzy
spreed (in both left and right Sides of the fuzzy numbers).

4. Simulation method

We have dso implemented another gpproach dealing with these fuzzy
problems, i.e. a sandard (stochedtic) simulaion. Unlike fuzzy
optimization, Smulation is based on traditional queLing modes, usng
gatistica and experimental methods to generate an internd picture of
the system from which we gather the (datisticd) data for andyzing
system performance variables[7][8].

4.1 Simulation Software

Severa software packages can be found for smuletions purpose.
We use the widdly known simulation languages, GPSS-H and SLX
(an Object Based language which dso includes the heart of GPSS-
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H) [8]. SLX stands for Simulation Language with eXtenghility, it isa
well-conceived, layered smulation system. Users of the upper layers
can ignore lower layers.

Smulation languages such as GPSS and SLX have built-in
probability functions that we can directly employ in our problem, eg.,
exponentid functions for inter-arrivd and service times. Random
number generators can be assgned to these functions to alow
aopropriate replication cagpabilities. On the output side frequency
distributions often are generated automaticaly and graphs of them are
easy to obtain, i.e,, with only afew satements.

Mode strategy and subsequent program development for our web
planing modds ae easy to incorporate into these software
packages by high-level congructs. The Poisson arrivd and service
rates are rendered in terms of exponentid inter-arrivd intervas and
sarvice time distributions, compatible with the mathematics of our
situations and readily defined in the language.

Also in these languages, there are a variety of blocks or statements,
which are conjugates of each other, defining the sarting and ending
events of an activity: joining a queue (in SLX, eg.) is represented by
enqueue block with the user-defined queue name and leaving is
represented by a depart block with the name (See Figure 7).

Arrivas cusomer
ia = rv_expo (random-stireaml, arriva rate)
util_time = stop_time;

Enqueue queue;

Seize (Enter) server(s);

Departure queus;

Advance rv_expo (random-stream2, service rate);
Release (Leave) server(s);

Figure 7. Some statements structures of SLX

4.2 Simulation examples

According to the same generd plan as above, we use SLX to
implement smulation to obtain fuzzy results for Utilization (U ),
Number (of requests) in the System (N ), Throughput (X ), and
Response Time (R ). Again, we let M=4 and employ fuzzy number
I =(3/4/5), m=(5/6/7)inillugrations.

In smuldion, we do not need to smulate dl combinations of fuzzy
number of T and mto get some of our desired results. We just use
the middle points of arrivd rate and service rate to tackle the
problems. We dart the smulation using the structure in figure 7;
repest the smulation for certain number of loops. We then tabulate
al the satistica data of server Utilization (U), average Number of
requests (N) in the sysem, sygem Throughput (X), and average
Response Time (R). Through andyss, we get the maximum and
minimum of dl four variables, dong with ther mean vaues. (See
Table 4. Also, the (entire) distribution curves of U, N, X, R are
made available. Additiona variations of these themes produce
additiona output vaues and the indghts acquired through their
interpretations enrich the overall computational scheme.

ISSN: 1690-4524

Table 4. Fuzzy system performance variables (Smulation)

Alpha Zero Cut

Single-Ser ver Two-Ser ver

[0.4114, 0.7934] [0.3592, 0.6472]

[0.6617, 1.9846] [0.4494, 1.0914]

[2.8333, 4.5417] [2.9583, 4.9983]

|| x|zl Cl

[0.2277, 0.5016] [0.1406, 0.2397]
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4.3 Advantages of using smulation

Comparing the smulaion results to those of fuzzy optimization, in the
one-step optimization case (both one- and two-server situations) we
see that there is a very good match. There are some decided
advantages in usng smulation over the fuzzy computation [8].

Smulation itsdf is more naturd than fuzzy computation in the
sense of queuing mode theory. It provides not only the correct
results, but also tells how the queuing system worksin redlity;

Smulaion languages can provide much automatic output
from their dtatistics running data and can provides more
daigtics that fuzzy computation cannot get, like data
distributions;

Smulation languages have a set of built-in files and ligts thet
are used to store an agenda (a list of future events). One or
more lists are used to keep track of dynamic (movable
smuldion) entities that, a any given moment, are ready to
move but, say, are blocked from moving, as in the case of
entities that would enter a server were it avalable. The
languages readily handle severd complexities, eg., baking
and preemption, which we may utilizein our future studies.

5. CONCLUSIONS

We have first presented fuzzy optimization methods to solve web
planning queuing problems. In fuzzy optimization, we presented both
a one- and a two-step computationad method. In the former case,
fuzzy number is introduced after conventiona argument up to the
system peaformance vaues themsdves. In the latter case, we
compute fuzzy system steady state probabilities as an intermediate
step and then proceed, via fuzzy arithmetic, to the find results. The
latter method produces results with a broader fuzzy spread because
of the additiond fuzzy arithmetic.

Also, we have conddered both singer-server and multiple-server
cases and gave a detailed description of the syslem performance
vaidbles in both cases. And we have illustrated some typica
examples to make procedures easier to understand.

Findly, we covered a conventional Smulation based method to solve
fuzzy problems, which may be a “fird” in the fuzzy probability fidd.
Usng examples in both sngle and two-server cases, we
demondrated that conventiond sSmulation is appropriate, and
effective, in fuzzy probability modding. In some ingtances, such as
developing (output) data distributions, it seems to have proven to be
better.
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