
Advancing Software Development for a Multiprocessor

System-on-Chip

Stephen Bique

Department of Mathematics and Computer Science, Virginia State University

Petersburg, Virgina 23806 USA

ABSTRACT

A low-level language is the right tool to de-

velop applications for some embedded systems.

Notwithstanding, a high-level language provides

a proper environment to develop the program-
ming tools. The target device is a system-on-

chip consisting of an array of processors with

only local communication. Applications include

typical streaming applications for digital signal

processing. We describe the hardware model and

stress the advantages of a flexible device. We

introduce IDEA, a graphical integrated develop-

ment environment for an array. A proper foun-

dation for software development is a UML and
standard programming abstractions in object-

oriented languages.

Keywords: multiprocessor, system-on-chip, digital

signal processing, Unified Modeling Language

1. PROGRAM AT THE RIGHT

LEVEL

What is the right level of programming? It is the

level of the programming language (from ma-

chine language or instruction set architecture to

a high-level language) that minimizes the pro-

gramming effort to write a satisfactory imple-

mentation starting from a problem specification.

As recommended long ago, programming should

not be overly constrained by current technology
[1]. To minimize the programming effort, a pro-

grammer looks for useful tools to map solutions

to a programming language or a combination

of software and hardware, and seeks to avoid

spending time dealing with the details of a pro-

gramming language implementation or adapting

a solution to fit the choices made by hardware

designers.

Incredible technological advances continue to

bring new and improved devices to the market-

place. A programmer’s toolbox includes high-

level languages and useful tools such as opti-
mizing compilers, which have proven successful.

Often the programmer has a good chance to find

the right tool for a given task.

What are the programmer’s chances of find-

ing the right tool? Given a little training, a

uniprocessor, a dual processor, a simple embed-

ded system or a supercomputer and a common

programming task, the programmer will find the

right tool with high probability. Parallelizing

compilers are useful to translate sequential code

to run on a parallel computer.

Despite the successes with program-

ming uniprocessors and the advantages of

architecture-independent parallel programming

[12], there is no assurance that high-level

languages are always the right tools. A common
pitfall is expecting to get good performance

from high-level languages, despite their well-

known advantages in software development

[4]. Increasingly, it is feasible to build an

embedded system, such as an FPGA-based

custom computing machine, capable of deliv-

ering unprecedented performance. Low-level

programming is generally necessary to achieve
peak performance for applications with regular

data dependences on a multiprocessor system-

on-chip (MPSoC) with only local interconnects.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 358 ISSN: 1690-4524

Tools are urgently needed that help to do the

low-level programming, which cannot always be

avoided. Today a programmer will find lim-
ited support to exploit the potential parallelism

for applications with regular data dependences

on an MPSoC with only local interconnects and

distributed memory. Even if the programmer is

handed an optimal solution involving a systolic

algorithm, to map that solution efficiently onto

a suitable MPSoC, a programmer will not likely

be able to employ any high-level language and
instead must rely a small set of low-level tools,

which are written specifically for that device and

have limited functionality.

2. HARDWARE/SOFTWARE

CO-DESIGN

Pure software solutions are not practical for

some real-time compute-intensive applications.

On the other extreme, custom-built hardware that

cannot be reconfigured has limited applications.

A sound platform lies on a bridge between these

two extremes, i.e., a combination of software and
general-purpose hardware. The main goals are to

• provide a flexible device,

• enhance software development,

• more easily measure performance, and

• advance the introduction of real-time

compute-intensive applications.

Designers use hardware description languages

(HDL) to model hardware at the register trans-

fer level and gate level. As hardware becomes
more complicated, not only does a hardware en-

gineer need to know more about programming,

but also a programmer needs to know more about

hardware design. Designing hardware and soft-

ware separately is increasingly costly and diffi-

cult. Hardware/software co-design is the devel-

opment of the software and hardware in paral-

lel. Co-design encompasses a wide variety of
approaches depending on the hardware problem

and is key design technology for digital systems

[6].

An instruction set architecture (ISA) provides a

good vehicle to design concurrently the hard-

ware and compiler. The Unified Modeling Lan-
guage (UML) is a standard modeling tool. UML

structural diagrams are useful to describe mod-

els of parallel computers [11]. After the initial

exploration of the hardware design, a UML is a

proper foundation for software development.

Reconfiguration during execution could be in-

vestigated for configurable computing machines

(CCMs) using only standard programming ab-

stractions (constructors, destructors) found in

object-oriented languages [2]. C++ is a suitable
programming language to model the hardware

and support dynamic reconfiguration. C++ mod-

els

• are useful for high-level behavioral model-

ing,

• add new capabilities to hardware descrip-

tion languages (HDL) such as VHDL and

Verilog, and

• can be translated into HDL models using

existing tools [7].

For some other models, existing sets of library
routines such as SystemC may be incorporated

into a system to enhance interfacing with hard-

ware description languages. However, a com-

plete set of tools should be developed freely

without overly adapting the system to fit the re-

quirements of any language or set of library rou-

tines.

3. HARDWARE MODEL

Although a general-purpose computer is de-

signed for a wide range of applications, the tar-

get applications for an embedded system fall into

a smaller set. Presumably, hardware design is
based on the target applications. Reconfigura-

tion technology offers benefits but complicates

design.

The hardware model is a scalable prototype of

the target device. Currently, the chosen model is

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 3 59ISSN: 1690-4524

an array of processors with only local communi-

cation. The intended applications are primarily

streaming applications for digital signal process-
ing involving systolic computations such as com-

puting matrix products via an efficient parallel

algorithm in real-time.

A multiprocessor system-on-chip (MPSoC) is

an integrated circuit (IC) that contains multiple

instruction-set processors and that implements

the functions of a complete electronic system.

Heterogeneous processors could be used so that

different modules would contain different types

of processors as in an application-specific in-

tegrated circuit (ASIC). Heterogeneous proces-
sors are useful to support task level parallelism.

However, the scope of the current investigation

does not include general application-specific in-

tegrated circuits (ASICs) or general tools for par-

allel programming, e.g., techniques to transform

a sequential program into a parallel program.

While employing such techniques may be use-

ful in some way to program the target device,
developing such general methods is not highly

relevant for the chosen model of computation.

The chosen class of MPSoCs includes ICs con-
sisting of a large array of nearly identical mod-

ules with a communication network that matches

the structure of the array. Each module is the

same except possibly for a couple components.

Each component handles data at the level of

words. A typical module contains an instruction-

set processor and other common objects such as

registers. Some modules may contain a memory

unit instead of a processor. The memory access
protocol could be either first-in, first-out (FIFO)

or content-addressable memory (CAM). In any

case, each module is similar in terms of the lay-

out of the components.

The communication network consists of global

horizontal (rows) and vertical (columns) wires

with switches. Just as FPGAs can be seen as

the archetypical programmable SoCs, the objects

in modules are connected via a scalable switch-

based network and the routing approach is both

deterministic and static. This means that every
connection between objects must be determined

before execution of any code involving commu-

nication between those objects. The actual route

between objects is arbitrarily (not deterministi-

cally) decided subject only to the hardware lim-

itations and the requirements of the program-
ming solution. To avoid long propagation de-

lays, reduce energy requirements, and improve

reliability, only local objects in nearby modules

may be connected. The compiler (or program-

mer) should check that there only a small number

of interconnections exist between connected ob-

jects. Since only local connections are allowed,

communication protocols or mechanisms such as
channels provided by SystemC are irrelevant.

The communication network is comprised of a

data and control network. Data (as words) and

control (as bits) streams replace the familiar in-
struction sequence of the von Neumann com-

puter. Data (including addresses) travel over a

large number of dedicated wires and control in-

formation travels over separate wires. Objects in

a module handle data at the level of words and

control information at the level of bits.

The design choice for the operation of the MP-

SoC is both synchronous and asynchronous.

Each module operates synchronously in the

sense that a clock cycle must be the same for

each module to permit systolic (i.e., highly reg-

ular and continuous) operation. A simple de-

sign strategy is to assume that one clock cycle is
the maximum time needed to carry out any op-

eration or to safely delay data or control infor-

mation. Each module operates asynchronously

in the sense of self-synchronization of computa-

tions.

Self-synchronization is based on static data flow

principles developed by Jack Dennis [3]. Each

processor waits for all inputs before processing,

automatically becomes active as soon as all in-

puts are available, and becomes disabled if it is

unable to deliver any of its outputs. Automatic

synchronization simplifies optimization and ver-

ification.

The scope of our work includes the initial explo-

ration of the hardware design. After the initial

exploration is complete, a standard way to spec-

ify the hardware model is structural diagrams
of the UML. Instead of building tools to design

such MPSoCs, the task is to build tools based

on the UML to study and program such systems.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 360 ISSN: 1690-4524

Although the design is fixed, flexibility of the de-

vice is highly advantageous.

4. Flexibility

It is not practical to build an embedded system

with more resources or components than needed.

Based on knowledge and experience, a hardware

engineer will make many decisions to design a
board that meets the specifications. Developing

software after the board is designed is expensive

and development will be restrained by the deci-

sions that the hardware designer has made.

We seek to free programming from the bounds

imposed by a particular device or a program-

ming language. This goal can be achieved by

constructing a flexible device that has more re-

sources than would be practical to place and

route on an IC. Next, we briefly discuss the ben-

efits of this strategy for the chosen hardware
model.

A programmer ought to be afforded as much
freedom as possible to implement different pro-

gramming solutions to address difficult program-

ming issues. I/O problems are often ignored. For

example, how many I/O ports should be used? A

hardware engineer might argue that only a small

number of ports should be provided to reduce

production costs. Arbitrarily fixing the number

of ports or their location will severely limit the

programming solutions. An alternative approach
is to allow as many I/O ports as appropriate for

the chosen hardware model so that a programmer

could utilize different I/O ports.

The only true measure of performance is the total

time needed to solve a problem. A fast solution

that only solves part of a problem may not yield

the best performance after taking into account

the total time to perform the remaining parts. A

more flexible device will allow the investigation

of more ways to combine different parts of a so-

lution.

One way to deal with resource conflicts is to

provide extra resources. Use as many resources
as needed to develop a working implementa-

tion. Develop useful tools to visually inspect and

modify an implementation to reduce the number

of resources used. In this way, it is possible to

develop an implementation for any desired con-

figuration. In other words, allow the number of
any available resource to be specified but treat

the number more as a goal rather than a prereq-

uisite.

Routing refers to the process of defining connec-

tions between objects. Based on programming

experience, routing is a time consuming task for

the chosen hardware model. To achieve opti-

mal performance for suitable applications, pre-

cise timing requirements must be met. Every

connection must meet both the requirements im-
posed by both the hardware and the desired pro-

gramming solution. The programming effort to

satisfy such requirements varies inversely to the

number of available resources.

In particular, using regular structures helps to

achieve systolic flow. To reduce the program-

ming effort, provide useful tools to map such

regular structures to the hardware. It may be im-

possible to use the same repeated structures or
even find any solution due to resource conflicts

when the number of dataflow paths is small.

The same tools can be used to program different

devices. Reusing the same tools will reduce soft-

ware development costs and training expenses.

New tools and enhancements will be more bene-

ficial because the software is more widely used.

Although it will be necessary to make some

choices and impose some limitations, unnec-

essary details and arbitrary restrictions on the

physical design should be avoided. For exam-

ple, allow the user to specify various parameters,
such as the size of the array, instead of fixing

them. Programmers can ignore many details that

the hardware designer must add to the device,

e.g., a programmer needs to know information

at the I/O level, not necessarily at to the gate or

switch level [8].

A processor in a module could be a general-

purpose reduced instruction set computing

(RISC) processor, an application-specific

processor, a digital signal processor (DSP) or
a configurable extensible processor that uses

firmware [10]. Designing a processor is a task

for a hardware engineer. Systolic algorithms

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 3 61ISSN: 1690-4524

typically involve only a small number of in-

structions. Depending upon the application area,

the programmer may customize the instruction
set to include any small set of instructions that

are needed. Reconfiguration data may be stored

locally using for example extra sets of registers.

Ultimately, we seek to advance the introduction

of new devices. Programming studies are needed

to justify the construction of new embedded sys-

tems. The primary purpose of our work is to en-

hance such studies.

5. Graphical IDE

A graphical programming development environ-

ment (PDE) enhances embedded programming

especially if the IC has a large area. Such a

graphical integrated development environment

for an array (IDEA) will include a comprehen-

sive set of tools and permit flexibility of the de-
vice via parameterization. IDEA will be used

by programmers to more quickly develop time-

varying compute-intensive applications, starting

from configuration of the device to testing via

simulation.

A graphical PDE helps to visualize and design

a program. CAD software is helpful to make at

least some of the low-level definitions instead of

writing every definition in a low-level language.

A programmer should be able to use templates

and the mouse to configure each element (drag
and drop, etc.). An experienced programmer

should find that the tools are relatively easy to

learn and easy to use.

IDEA will be developed without dependence on

a particular hardware system. This means it will

be necessary to provide a clock-accurate simula-

tor but it also means the system will be simpler

and more portable without dependence on a par-

ticular machine language. This approach allows

the programmer to focus on the essential compu-

tations and avoid unnecessary details of resource
management.

The foundation is structural diagrams to specify
the hardware model. All tools will be written

in C++ or java. Using constructors and destruc-

tors will permit reconfiguration of objects. The

Library

C
o
n
fi

g
u
ra

to
r

M
P

S
o
C

Preprocessor

Compiler

Linker

GUI Debugger

Simulator

routingAutomatic

Novel Tools

Macros

Editor

(ISA)Configurator

Processor

GUI

front

end

Disk

Figure 1

programming development environment (PDE)

is depicted below:

Besides basic tools such as a compiler, novel

tools to simplify low-level programming are

needed. Tools are needed, not to eliminate low-

level programming, which is necessary, but to

simplify the task by alleviating the tedium. For

instance, an automated routing tool is useful to

make intermediate connections between objects.
In addition, tools based on macros would be use-

ful to transform definitions from one region to

other regions of the device.

A programmer should be able to visualize a sim-

ulation to observe the changes in state during

every cycle. A GUI debugger will be useful

to visually fix programming errors in the usual

edit-compile-test cycle. In addition, a program-

mer should be able to visually inspect the routing
to improve an implementation by reducing the

number of resources used. For example, if extra

buses are needed in only a couple modules, try to

reroute so that those extra buses are not needed.

Ideally, there exists a good match between the

program and hardware structures. A sound start-

ing point for digital signal processing is a sig-

nal flow graph (SFG) that shows both the data

flow and the timing requirements [9]. A typi-

cal SFG exhibits regular structure. An array also
possesses a regular structure. As an array has

corners and edges, typically some adjustments

are required around them. A programmer might

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 362 ISSN: 1690-4524

manually create templates by explicitly mapping

a repeated “slice” of a SFG to one of more pos-

sible configurations for the device. Novel tools
should be developed to automatically map a SFG

to an array using such specified templates.

To compare different implementations and ul-

timately justify the introduction of a new de-

vice, performance metrics are useful. Such met-

rics can be defined and calculated in different

ways. Yet metrics should not be an afterthought.

Instead, metrics should be automatically com-

puted.

6. Future Work

We proposed a methodology for a particular

hardware model. A similar approach may be ap-
plied to other models. After the initial explo-

ration of the hardware model, design a flexible

prototype device and provide a UML descrip-

tion. Build a graphical integrated development

environment to enhance software development.

Write the tools in an object-oriented language

such as C++ and employ standard programming

abstractions (constructors, destructors).

We expect to be able to build more effective tools

by taking advantage of the peculiarities of a fixed
model and typical patterns of computation using

that model. In addition to the essential tools to

program a device, add novel tools to the PDE to

simplify low-level programming. Study relevant

algorithms and heuristics to build more effective

tools. For a particular embedded system, the pe-

culiarities of the system may allow a special al-

gorithm or heuristic to yield better performance
than can be expected in general.

Ultimately, the goal is demonstrate faster appli-
cations on more efficient devices. Case studies

are needed to verify correctness, assess usabil-

ity, and improve the tools. Future work will in-

clude studying different ways to implement dy-

namic reconfiguration and temporal partitioning.

Large problems could be implemented on a de-

vice with insufficient resources via reconfigura-

tion so that parallel solutions are combined se-
quentially [5]. An alternative approach is to use

time division multiplexing, which utilizes each

resource to combine more than one value.

Parallel computers remain most promising to

meet the extreme computing demands beyond

the limits of uniprocessors. Programming par-
allel computers poses unique challenges. A

promising way to meet these challenges is to en-

hance software development for MPSoCs.

References

[1] J. Backus, Can programming be liberated from the

von neumann style? a functional style and its alge-

bra of programs, Communications of the ACM 21
(1978), no. 8, 613–641.

[2] P. Bellows and B. Hutchings, Jhdl - an hdl for re-

configurable systems, Proceedings of the IEEE Sym-
posium on FPGAs for Custom Computing Machines
(FCCM ’98) (Washington, DC, USA) (Kenneth L.
Pocek and Jeffrey Arnold, eds.), IEEE Computer So-
ciety Press, 1998, pp. 175–184.

[3] J.B. Dennis, Dataflow supercomputers, IEEE Com-
puter Magazine 13 (1980), no. 11, 48–56.

[4] John L. Hennessy and David A. Patterson, Com-

puter architecture: A quantitative approach, third
ed., Morgan Kaufmann Publishers, 2003.

[5] Bingfeng Mei, Serge Vernalde, Hugo De Man,
and Rudy Lauwereins, Design and optimization of

dynamically reconfigurable embedded systems, 1st
Int. Conf. on Engineering of Reconfigurable Sys-
tems and Algorithms (ERSA), CSREA Press, 2001,
pp. 78–84.

[6] G. De Micheli and M. Sami, Hardware-software

codesign, 1996.

[7] D. Mitchell, Interfacing vhdl and verilog designs to

c++ models, ECN Magazine (2002), 89.

[8] , Modeling with c++, Integrated Communi-
cations Design (iCD) (2002), 5 pages.

[9] Peter Pirsch, Architectures for digital signal process-

ing, John Wiley & Sons, Inc., New York, NY, USA,
1998.

[10] Chris Rowen, Performance and flexibility for

multiple-processor soc design, Multiprocessor
System-on-Chips (Ahmed A. Jerraya and Wayne
Wolf, eds.), Morgan Kaufmann Publishers, 2005,
pp. 113–151.

[11] M. Scherger, J. Potter, and J. Baker, On using the

uml to describe the masc model of parallel compu-

tation., PDPTA (Hamid R. Arabnia, ed.), CSREA
Press, 2000.

[12] D.B. Skillicorn, Architecture-independent parallel

computation, IEEE Computer 23 (1990), no. 12, 38–
51.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 3 63ISSN: 1690-4524

	P171747

