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ABSTRACT

In this paper, we derive the Hopf-Cole transformation
to the diffusion approximation. We find the analytic
solution to the one dimensional diffusion approxima-
tion and its Hopf-Cole transformation for a homoge-
nous constant background medium. We demonstrate
that for a homogenous constant background medium
in one dimension, the Hopf-Cole transformation im-
proves the stability of the inverse problem. We also
derive a Green’s function scaling of the higher dimen-
sional diffusion approximation for an inhomogeneous
background medium and discuss a two step recon-
struction algorithm.

Keywords: Radiative transport, optical tomography,
Hopf-Cole transformation, Green’s function scaling,
inverse problems.

1 INTRODUCTION

In the last decade research in the area of biomedical
optics has flourished. In particular there has been
considerable new development in bio-medical imag-
ing using optical tomography [11, 3, 8, 18]. Opti-
cal tomography is a way to probe highly scattering
media using low-energy visible or near infra-red light
(NIR) and then to reconstruct images of these media.
Light in the near-infrared range (wavelength from 700
to 1200 nm) penetrates tissue and interacts with it.
The predominant effects are absorption and scatter-
ing [12, 14, 6]. We assume: given a set of measure-
ments of transmitted light between pairs of points on
the surface of an object, there exists a unique distri-
bution of internal scatters and absorbers which would
yield that set. The formation of an image for the
optical properties of the tissue from a series of bound-
ary measurements is the inverse problem of Optical
Absorption and Scattering Tomography (OAST). The
widely accepted photon transport model is the radia-
tive transfer equation (RTE). The transport equation
is an integro-differential equation for the radiance and

has spatially dependent diffusion and absorption pa-
rameters as coefficients which are a priori unknown.
Hence the problem is to infer from the measurements
of the photon density on the boundary, the coefficients
of absorption and diffusion in the tissue.

A low order diffusion approximation to the trans-
port equation has been derived and studied in the
last several years. This is an approximation to the
transport equation by a parabolic differential equa-
tion in the time domain and by an elliptic differen-
tial equation in the frequency domain [3]. The diffu-
sion approximation to the transport equation has been
widely used to calculate photon migration in biological
tissues [15]. The existing computational methods for
the inverse problem for photon migration in biological
tissues are almost exclusively based on the diffusion
approximation [7].

It is well known that the diffusion based inverse
problem in optical tomography is exponentially unsta-
ble [20, 3]. In order to understand the effect of Hopf-
Cole transformation on the stability of the inverse
problem, we derive the Hopf-Cole transformation to
the diffusion approximation. We find the analytic so-
lutions of the one dimension diffusion approximation
and its Hopf-Cole transformation for a homogenous
constant background medium. The outline of the pa-
per is as follows. In section 2, we discuss the transport
model and its diffusion approximation. In section 3,
we derive the Hopf-Cole transformation to the diffu-
sion approximation and find the analytic solution for
a homogenous constant background medium in one di-
mension. In section 4, we derive the Green’s function
scaling of the diffusion approximation and discuss a
two-step reconstruction algorithm. In section 5, we
discuss our results and work in progress.

2 PHOTON TRANSPORT
MODEL

In optical imaging, low-energy visible light is used
to illuminate the biological tissue. The illumination
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of the tissue can be modelled as a photon transport
phenomenon. The process is described by the most
widely applied equation in optical imaging, the radia-
tive transfer or transport equation (RTE) [9, 16]:

1
c

∂φ

∂t
(~r, ŝ, t) + ŝ · ∇φ(~r, ŝ, t) + µ(~r)φ(~r, ŝ, t)

= D(~r)
∫

Sn−1
Θ(ŝ · ŝ′)φ(~r, ŝ′, t)dŝ′ + S0(~r, ŝ, t) (1)

together with the initial and boundary conditions,

φ(~r, ŝ, 0) = 0 in Ω× Sn−1 (2)
φ(~r, ŝ, t) = 0 in ∂Ω× Sn−1 ×R1 , (3)

n̂ · ŝ ≤ 0 , t ≥ 0

which describes the change of radiance φ(~r, ŝ, t) of the
photons at ~r ∈ Ω ⊂ Rn travelling in the direction
ŝ ∈ Sn−1, unit sphere in Rn, at time t. The parame-
ters µ and D are the sought-for absorption and scat-
tering tissue parameters, and c is the velocity of light.
The function Θ is the scattering phase function char-
acterizing the intensity of a wave incident in direction
ŝ′ scattered in the direction ŝ. Simpler deterministic
models can be derived from RTE by expanding the
density φ, source S0, and phase function Θ in spheri-
cal harmonics and retaining a limited number of terms
[19, 5, 4, 3]. The simplest is the time dependent dif-
fusion approximation P0 (DA):

1
c

∂φ0

∂t
(~r, t)−~∇·D(~r)~∇φ0(~r)+µa(~r)φ0(~r) = S0(~r)(4)

together with initial and boundary conditions,

φ0(~r, 0) = 0 in Ω× Sn−1 (5)

φ0(~r, t) + 2D(~r)
∂φ0

∂n
(~r, t) = 0, ~r ∈ ∂Ω, (6)

where spherical harmonics to first order for the ex-
pansion of φ and zeroth order for the expansion of S0

are used. The measurable quantity for the diffusion
approximation is

g(~r, t) = −D(~r)
∂φ0

∂n
(~r, t), ~r ∈ ∂Ω, t ≥ 0. (7)

Frequency-domain diffusion approximation can easily
be obtained by Fourier transforming the time-domain
equation. The frequency domain analog of equation
(4) is given by

−~∇·D(~r)~∇φ(~r, ω)+
(

µa(~r) +
iω

c

)
φ(~r, ω) = S0,(8)

where we made use of the relation

∂

∂t
≡ iω.

The frequency domain DE is elliptic where the time-
domain DE is parabolic, an important distinction for

numerical solutions. Furthermore, the diffusion ap-
proximation to the radiative transfer model can be
written in the time independent (dc) case as [3],

−~∇ ·D(~r)~∇φ(~r) + µa(~r)φ(~r) = S0(~r). (9)

The associated boundary condition is

n̂ ·D(~ζ)~∇φ(~ζ) + αφ(~ζ) = 0, (10)

where ~ζ is the position on the boundary, and n̂ is the
unit vector normal to the boundary and α is a calibra-
tion constant (which can be determined empirically by
matching the forward calculations to well controlled
experiments).

If we let Ω be the domain under consideration with
surface ∂Ω, we can define the forward problem as:
given sources S0 in Ω and q in Q, a vector of model
parameters, for example the coefficient of diffusion D
and the coefficient of absorption µa (i.e. q = (D, µa))
that belongs to a parameter set Q, find the data φm

on ∂Ω and the inverse problem as: given data φm on
∂Ω find q. We can recast the forward problem in an
abstract setting as the following parameter dependent
equation:

−~∇ ·D(~r)~∇φ(~r; q) + µa(~r)φ(~r; q) = S0(~r),

where ~r is in Ω, φ(q) is in an appropriate abstract
space H, and S0 represents a source or a forcing dis-
tribution. In general, measurement of φ(q) may not
be possible, only some observable part Cφ(q) of the
actual state φ(q) may be measured. In this abstract
setting, the objective of the inverse or parameter es-
timation problem is to choose a parameter q∗ in Q,
that minimizes an error criterion or cost functional
J(φ(q), Cφ(q), q) over all possible q in Q subject to
J(q) satisfying the diffusion approximation. A typical
observation operator is,

Cφ(q) = {φ(ζi, q)}N
i=1

where ζi is in ∂Ω and N is the number of measure-
ments. A typical cost functional Jλ is given as,

Jλ(q) =
N∑

i=1

|φ(ζi, q)− zi|2 + λ‖q − q0‖2

where zi is the measured photon density at the bound-
ary and λ is the regularization parameter. Now com-
posing φ(q) and Cφ(q) we obtain the parameter-to-
output mapping: T [φ] = Cφ. This is the nonlinear
mapping of diffusion based optical tomography in ab-
stract setting.

For example, in one dimension with Ω = [0, l], the
diffusion approximation with constant background is
the Strum-Louiville equation:

−∇2φ + q2φ = 0 (11)
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where q2 = µa/D is constant, with the Rubin bound-
ary condition:

φ(0)− α∇φ(0) = 0
φ(l) + α∇φ(l) = 0. (12)

The inverse problem is to estimate the scalar q from
the photon density z measured at x = 0 or x = l.

3 HOPF-COLE TRANSFOR-
MATION IN 1-D

In this section, we derive the Hopf-Cole [13, 17] trans-
formation to the diffusion approximation. We begin
by transforming φ:

∇ψ = D∇(ln(φ)) (13)

which is the Hopf-Cole transformation and converts
equation (11) and (12) to:

−∇2ψ − |∇ψ|2
D

+ q2D = 0 (14)

where q2 = µa/D is constant, with the Rubin bound-
ary condition:

α∇ψ(0) = D

α∇ψ(l) = −D. (15)

The problem (11) and (12) can be solved analytically
and the solution for x < η is:

φ(x, η; q) =
(eqη − γe−qη)(eqx − βe−qx)

2qD(β − γ)
(16)

where

γ =
e2lq

β

β =
1− αq

1 + αq
.

If we measure the solution at x = 0, then the inverse
problem is to estimate q from the data z measured
at x = 0. Therefore the parameter to output map is
given by,

Tq = Cφ(x, η; q)
= φ(0, η; q)

=
(eqη − γe−qη)(1 + β)

2(β − γ)
(17)

which is a nonlinear function of the parameter q as
expected. Similarly the solution of (14) and (15)is:

ψ(x; q) = Dln(β − e2qx)− qDx (18)
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Figure 1: Parameter Estimation and Regularization

and for a measurement at x = 0 the parameter to
output map is given by,

T̃ q = Cψ(x; q)
= ψ(0; q)
= Dln(β − 1). (19)

In Figure 1, we plot Jλ(q) for the 1D diffusion ap-
proximation with Rubin boundary conditions for a ho-
mogenous background medium with µa = 0.012mm−1

and D = 0.33mm. This is the simulation of the 1D
diffusion approximation on the interval (0, 43.0) with
q =

√
µa/D. We computed cost functional Jλ(q) =

|φ(0; q0)−φ(0; q)|+λ‖q‖2 for q0 = 0.1907mm−1 (corre-
sponding to µa = 0.012mm−1 and D = 0.33mm) over
a range of q starting from 0.14 to 0.4. The solid curve
represents J without regularization (λ = 0) and the
broken curve represents Jλ with regularization param-
eter λ = 10−6. From Figure 1, it is clear that with-
out regularization (λ = 0) the function J is rather
insensitive to parameter q =

√
µa/D (i.e. the numer-

ical method starting with an overestimate of the true
parameter is bound to fail). But with regularization
(λ = 10−6), Jλ is more convex. We note here that the
regularization has changed the problem so that we are
solving for a minimum qλ that is no longer the same
as the problem without regularization, mainly q0. In
Figure 2, we plot J(q) for the Hopf-Cole transforma-
tion of the diffusion approximation. Similar to Figure
1, the solid curve represents Jλ without regularization
(λ = 0) and the broken curve represents Jλ with reg-
ularization (λ = 1.0). From comparison of Figure 1
and 2, it is clear that for a homogenous constant back-
ground medium in one dimension, Hopf-Cole trans-
formation makes the cost functional Jλ more convex
with respect to the parameter q. The transformation
also changes the scale of the solution as expected from
equation (13). From Figure 2, it is also clear that
regularization (broken line) does not improve the con-
vexity of the cost functional (solid line) and that the
function J is more sensitive to parameter q =

√
µa/D

(i.e. the numerical method starting anywhere should
converge to the true parameter and hence improves
the stability of the inverse problem).
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Figure 2: Parameter Estimation Using Hopf-Cole
Transformation

4 GREEN’S FUNCTION
SCALING IN 2-D

In this section, we derive a Green’s function scaling of
the diffusion approximation. We begin by transform-
ing φ as,

φ = Πκ(Ψ), (20)

where Πκ is an invertible, in general nonlinear, trans-
formation that is twice continuously differentiable and
κ is a scaling constant. The goal is to find a suitable
Πκ to enhance the resolution so that Ψ is more uni-
form than φ in Ω. This also can be thought of as
preconditioning similar to the idea of boosting in dis-
torted born approximation [21, 10]. For example, if
Πκ(Ψ) = GΨ where G(~r, ~r0) represents the Green’s
function for the diffusion approximation (9), then the
diffusion approximation (9) transforms into:

−∇ · (a∇Ψ)− b · ∇Ψ = S′0 (21)

where S′0 = S − φ(~r0), a = DG(~r, ~r0), and b =
D∇G(~r, ~r0). The associated boundary condition
transforms into: n̂ ·

(
a(~ζ)∇Ψ(~ζ)

)
= 0 where ~ζ ∈ ∂Ω.

In what follows, we will refer to equation (21) as the
scaled diffusion approximation. There are several re-
marks in order. In the unscaled version, both µa and
D appear explicitly while in the scaled version, only
D appears explicitly. Of course, in the scaled ver-
sion, the dependence of µa and D is hidden in the
Green’s function G. One can take advantage of this
implicit-explicit dependence and consider a two-step
reconstruction algorithm analogous to distorted born
approximation [21, 10] discussed below. In Figure 3,
unscaled and scaled solution for D and µa distribution
are shown in Figure 3cd respectively, using the finite
element method. The scaled solution is obtained us-
ing the simplified free space Green’s function as an ap-
proximation for G, where constant background values
of the diffusion and absorption are used [1, 2]. The
change in uniformity due to scaling is evident from
looking at Figure 3.
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Figure 3: Diffusion coefficient (a), absorption coeffi-
cient (b), unscaled solution (c), scaled solution (d),
unscaled boundary data in log scale (e), and scaled
boundary data in log scale (f).

Both Hopf-Cole and Green’s function scaling can
be best studied in higher dimension using a two-
step reconstruction algorithm analogous to the dis-
torted born approximation. Given an initial guess
(D(0), µ

(0)
a ), the inverse problem will be solved by opti-

mizing J over µa, only using a forward solver for Equa-
tion (9) and getting an update µ

(1)
a . Using this new

set of parameters (D(0), µ
(1)
a ), the approximation to

the Green’s function G(D(0), µ(1)) will be computed.
This G(D(0), µ(1)) will be used to solve the optimiza-
tion problem J over D using the forward solver for
Equation (21) and obtaining an update for D(1). This
process will then continue until a tolerance is achieved.

5 CONCLUSION

We have shown that for a homogenous constant back-
ground medium in one dimension, the Hopf-Cole
transformation convexifies the cost functional J . How-
ever the Hopf-Cole transformation involves solving a
more complicated forward equation (it transforms the
linear problem into a nonlinear one, see equation 14).
Nevertheless the transformation improves the stability
of the inverse problem which is important because the
diffusion based inverse problem is severely ill-posed. A
typical reconstruction algorithm requires regulariza-
tion using Newton’s method, Kaczmarz method, con-
jugate gradient method, and so forth. Moreover, regu-
larization essentially changes the problem and may or
may not be the one that is desired physically and also
the problem of finding the right regularization may be
very difficult. Furthermore, the use of appropriate reg-
ularization technique is critical, which should warrant
that qλ approaches the true solution q as λ approaches
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0. The Hopf-Cole transformation leads to a compli-
cated nonlinear equation but it improves the stability
of the inverse problem without any regularization. We
also investigated a Green’s function scaling of the dif-
fusion approximation in higher dimension. We demon-
strated that the Green’s function scaling can be used
to enhance resolution by preconditioning the solution.
We are currently investigating the effect of the Hopf-
Cole/Green’s function transformations on the stabil-
ity of the inverse problem for an inhomogenous back-
ground medium in higher dimension using the two step
reconstruction algorithm discussed.
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