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ABSTRACT 
 

As computer communication networks become a prevalent part 
in our daily life, the importance of efficient design of those 
networks becomes more evident.  One of the critical issues in 
the network design process is the topological design problem 
involved in establishing a centralized data communication 
network with best performance and low costs.  It can be 
recognized as a degree-constrained minimum spanning tree and 
it has been shown to be NP-hard.  The degree-constrained 
minimum spanning tree problem commonly appears as a 
subproblem in the design of centralized data communication 
networks, and so the development of effective algorithms has 
received much attention in the research literature.  To achieve 
effectiveness in solving degree-constrained minimum spanning 
tree, a solution algorithm based on cross-decomposition is 
proposed in this paper.  The computational results are analyzed 
to demonstrate the effectiveness of the proposed algorithm.  It 
shows a great promise in the design of centralized data 
communication networks. 
 
Keywords: Cross-decomposition, minimum spanning tree, 
degree-restriction, mixed integer linear programming, network 
design.  

 
 

1. INTRODUCTION 
 

The minimum spanning tree problem is a fundamental problem 
in the design of centralized data communication networks.  
Many variations of the minimum spanning tree problem occur 
in the field of communication networks and computer networks.  
One of them is the degree-constrained minimum spanning tree 
(DCMST) problem which is concerned with determining a 
minimum total edge weight spanning tree whose vertices satisfy 
specified degree restrictions in a given edge-weighted graph G.  
The DCMST problem is of high practical importance.  This 
problem may arise for instance when designing an electrical 
circuit (Narula and Ho [4]):  connect n terminals with the 
minimum amount of wire, where the number of wires incident 
to terminal i can be at most a given number of wires (the degree 
constraint).  The problem of finding a DCMST also arises in 
many other areas such as transportation, communication, 
plumbing, sewage, etc (Gavish [2], Narula and Ho [4], 
Savelsbergh and Volgenant [5], and Kawatra [3]).   

 

2.  PROBLEM FORMULATION 
 

Consider the following single-commodity flow formulation of 
the degree-constrained minimum spanning tree (DCMST) 
problem (Gavish [2]): 
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where Xij = 1 if arc (i , j) is included in the minimum spanning 
tree and 0 otherwise,  
yij is the flow on the arc (i , j), and given a subset of nodes S, for 
every node k, k∈S, an upper bound, and  
rk is an upper bound (≥1) imposed on the  number of arcs that 
can be incident to node k, where S is a subset of the nodes of the 
network.   
Notationally, if (• ) is an optimization problem, we let v(• ) be 
its optimal solution value, v (• ) its incumbent objective value 
and F(• ) its feasible region.   
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3.  CROSS DECOMPOSITION 
 

Dual Decomposition (Lagrangian Relaxation) 
Dual decomposition of (Problem 1) is outlined below.  The 
formal Lagrangian dual of (Problem 1) relative to yij ≤ (n-1)Xij   
is given by (D) 
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i.e., the inner minimization problem (D) is defined as the dual 
subproblem and the dual master problem can be written as:  
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{xd, d∈DDA} is the set of extreme points of  F(DS(u)). 

 
Primal (Benders’)  Decomposition 
Primal decomposition of (Problem 1) is implemented as 
follows: 
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For any fixed value of x, the inner minimization problem (P) is 
a linear program which is called the primal or Benders’ 
subproblem.  By dualizing this linear program (PS(x)) we may 
rewrite (P) as: 
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Primal mater problem can be written as: 
(MAP) 
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In the above formulation, {vd & ud, d∈DPA} is the set of 
extreme points of F(PSD(x)).  The constraints of the primal 
master problem are called the Benders’ cuts or primal cuts and 
are generated by the dual solutions of the primal subproblem. 
Note that if F(PSD(x)) is unbounded, in other words, if  u goes 
to infinity with (n-1)Xu finite (i.e., PS((x)) is infeasible), then 
add the regularity constraint (i.e., iv M≤∑ , where M is very 
large number) to the problem and solve (PSD(x)) again.   

 
Cross Decomposition 
Cross decomposition is a hybrid of Benders’ decomposition and 
Lagrangian relaxation, in which the subproblem of each 
algorithm serves the purpose of the master problem of the other.  
That is, Benders’ subproblem receives xk from the Dual 
subproblem rather than from the Benders’ master problem.  
Likewise, the Dual subproblem receives the necessary 
Lagrangian multipliers uk from the Benders’ subproblem, rather 
than from the Dual master problem.  The complete details of the 
cross decomposition algorithm are shown as below.   
 
Step 1: Initialize 
Initialize the iteration counter k to zero.  Set ξ  to 1 where ξ  is 
a counter that is used in testing for “stalling”, i.e., a failure to 
converge.  Set 0 ( )Pv u= = +∞ , where 0u  is the incumbent 
upper bound on the objective in (D) as given by the dual master 
problem and Pv is the incumbent (primal) objective value of 

(P).  Set 0 ( )Dv x= = −∞ , where 0x  is the incumbent lower 
bound on the primal objectives as yielded by the primal master 
problem and Dv  is the incumbent (dual) objective value of (D).  
Select initial values for the Lagrangian multipliers u0 (≥0). 
 
Step 2: Dual Subproblem 
(a) Increment the iteration counter k by 1.  Solve (DS(uk)).  Let 
xk be an optimal solution to the Lagrangian relaxation of (P) 
corresponding to uk. 
(b) Let Dv  denote the incumbent lower bound on the primal 
objective function as yielded by Lagrangian relaxation.  If the 
current relaxation yields a lower bound that is higher than the 
incumbent, i.e., if Dv < v(DS(uk)) then update Dv = v(DS(uk)) 
and set ξ to 1.  Otherwise, increment ξ by 1.  Check for 
optimality: If D Pv v≥ , stop; x  is an optimal solution of (P). 
(c) Convergence Test CTP.  If ξ = 4, the algorithm has stalled; 
go to step (4b).  If ξ < 4, set xk+1 = xk and go on to step 3. 
Comment: When ξ = 4, one wants to avoid using the values for 
the complicating variables that have been yielded by the current 
relaxation.  Instead, the primal master problem is solved. 
 
Step 3: Primal Subproblem 

Increment the iteration counter: k = k + 1.  Solve the primal 
subproblem (PS(xk)) with xk as the values for the complicating 
variables.  Let xk and uk be the optimal primal and dual 
solutions, respectively.  The solution of (PS(xk)) yields a 
solution that is feasible in (P).  If the upper bound yielded by the 
current restriction of (P) is lower than Pv , i.e., if Pv > v(PS(xk)) 

then update Pv = (PS(xk)) and the incumbent primal solution 

x = xk and set ξ to 1.  Otherwise, increment ξ by 1.  Check for 

termination: Stop if P Dv v≤  or 0Pv x≤  with xk then being an 

optimal solution for (P).  i.e., x is an optimal solution of (P). 
Convergence Test CTD:  If ξ = 4, go to step (4a) in order to get 
new Lagrangian multipliers.  If ξ <4, then obtain the multipliers 
from the optimal dual solution, i.e., set uk+1= uk and go to step 2. 
 
Step 4: Master System 
(a)  Solve the dual master problem (MAD) to get multipliers uk+1  
and an upper bound on (D), i.e., 0u .  Let ( 0u , uk+1) be an 

optimal solution.  Set ξ = 0.  If 0u > Dv , go to step 2.  Otherwise 
set ξ to 1.   
(b) Solve the primal master problem (MAD) to obtain values for 
the complicating variables xk+1 and a lower bound on the 
objective in (P), i.e., 0x .  Let ( 0x , xk+1) be an optimal solution.  

Set ξ to 0.  Check for termination: Stop if 0x > Pv  with xk, stop 

0x  is an optimal solution of (P).  Otherwise go to step 3. 
 
The significance of the test as to whether ξ  equals 4 or not 
derives from a result demonstrated by Van Roy [1983], namely, 
there cannot be a replication within a series of 4 iterations 
executed solely between steps 2 and 3 of the algorithm.  In other 
words, it is sufficient (for a convergent cross decomposition 
algorithm) that, within a series of four consecutive subproblems, 
there is just one improvement of the incumbent primal or dual 
solution.  If a convergence test fails we can solve either master 
problem,  (DM) or  (PM), in order to restore the convergence.  

 
 

4.  NUMERICAL RESULTS 
 

The purpose of this research is to develop a useful algorithm 
that can solve the addressed capacitated minimum spanning tree 
problem.  The proposed algorithm in the preceding chapter was 
programmed in Mosel language for Xpress-MP and run on an 
IBM Pentium III CPU 1.66GHz supported by Computer 
Systems Support (CSS) at the University of Iowa.  In order to 
compare the performance of the implemented algorithm with 
the performance of another algorithm reported in the literature 
(i.e., the Lagrangian dual algorithm of Volgenant [7]), 
‘CRD40#’ data sets which are a class of 40-node (excluding 
central node) symmetric instances from OR-Library (Beasley 
[1]) have been used.  Note that, in the Lagrangian relaxation 
(LR) algorithm, a subgradient method was used to search for the 
Lagrangian multiplier.  Based upon prior computational 
experience and common usage, a scalar for the step size factor 
in subgradient optimization for Lagrangian dual algorithm is 
determined by starting with an initial value of 2 and reducing it 
by a factor of 1/1.1 whenever the dual subproblem solution has 
failed to increase within 10 iterations.  Four different values for 
maximum degree (2, 3, 5, and 10) were used.  For each 
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parameter value, 10 test problems were solved for CRD40# 
instance (CRD4001 through CRD40010) and 5 test problems 
were solved for CRD80# instance (CRD801 through CRD805). 
 
 

LR Problem 
ID BUB BLB Gap (%) 

crd4001 589 479 18.76 
crd4002 589 486 17.53 
crd4003 601 491 18.24 
crd4004 552 452 18.09 
crd4005 575 480 16.53 
crd4006 617 470 23.82 
crd4007 595 473 20.50 
crd4008 615 465 24.39 
crd4009 581 462 20.48 
crd40010 613 472 23.00 

 
Table 1. 40-node problem (r = 2) 

 
 

XD Problem 
ID BUB BLB Gap (%) 

crd4001 539 498   7.61 
crd4002 570 496 12.98 
crd4003 559 516   7.69 
crd4004 523 512   2.10 
crd4005 543 504   7.18 
crd4006 617 498 19.29 
crd4007 576 497 13.72 
crd4008 597 492 17.59 
crd4009 568 499 12.15 
crd40010 597 498 16.58 

 
Table 2. 40-node problem (r = 2) 

 
 

% BUB-BLB Problem 
ID LR XD 

crd801 31.95 16.25 
crd802 32.76 20.98 
crd803 29.76 20.72 
crd804 35.01 22.23 
crd805 29.08 22.70 

 
Table 3. 80-node problem (r = 2) 

                          
     

% BUB-BLB Problem 
ID LR XD 

crd801 0 0 
crd802 0 0 
crd803 0 0 
crd804 22.97 10.12 
crd805 0 0 

  
Table 4.  80-node problem (r = 3) 

 
 
According to the result, we would say that it is not necessary to 
consider a degree constraint of value greater than r = 2 for the 
CRD40# cases (See Tables 1 and 2).  That is, for the CRD40# 

instances, the unconstrained minimum spanning tree is feasible 
with respect to degree constraints if we consider r > 2. 
It is also interesting that, for the case r = 3, the unconstrained 
minimum spanning tree is optimal for all CRD80# instances 
except for CRD804 (See Table 4).   
For the case of maximum degree 2, the computational results 
from both approaches are not quite satisfactory (See Table 3).  
However, we note that performances of both approaches are 
significantly improved as the maximum degree increases.  Also, 
it is clear that, for both CRD40# and CRD80# problems, the 
cross decomposition algorithm performs exceedingly well in 
terms of the ratio of the best upper bound and the best lower 
bound.  The cross decomposition algorithm compares very 
favorably with the performance of the Lagrangian dual 
algorithm. 

 
 

5.  CONCLUSION 
 

An implementation of cross decomposition algorithm for 
DCMST problem has been described and the corresponding 
computational results have been analyzed.   In order to compare 
the performance of the implemented algorithm with the 
performance of another algorithm reported in the literature 
(namely, the Lagrangian dual algorithms of Volgenant [7]), we 
tested our algorithm on the benchmark problems downloaded 
from OR-Library (Beasley [1]).  The excessive computational 
times are disappointing but the use of algorithms which take 
better advantage of the problem structure, especially that of the 
dual subproblem, provides a large potential for improvement.  
The proposed algorithm was seemed to converge more rapidly 
than the Lagrangian dual algorithm for the DCMST problem for 
the case of maximum degree 2.   
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