
 
 Dynamics and Control of a Maglev Vehicle 

 
 

W. Ko, Q. Han, and C. Ham 
University of Central Florida 

Orlando, FL 32816, U.S.A. 
 
 
 
 

ABSTRACT 
 

In this paper, dynamics of a Maglev vehicle was analyzed and 
controls utilizing an optimized damping and an LQR 
algorithms were designed to stabilize the vehicle. The 
dynamics of magnetically levitated and propelled Maglev 
vehicle are complex and inherently unstable. Moreover, 6-DOF 
system dynamics is highly nonlinear and coupled. The 
proposed control schemes provide the dynamic stability and 
controllability, which computer simulations confirmed the 
effectiveness. 
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1. INTRODUCTION 
 
Maglev has been identified as a ground-based technology with 
the potential to be a major component in the launch system for 
the next generation of space transport vehicles. The operational 
principal is that the space vehicle mounted on a carriage is 
accelerated on a track using electric power until it reaches a 
predetermined design speed. When this velocity is reached, the 
vehicle’s main engines are started and the vehicle is released 
from the carriage to continue to orbit under its own power. The 
main advantage is that the initial velocity is obtained using a 
source of energy external to the vehicle, which enables a 
savings of over 20% in onboard fuel [1]. Also by using a 
horizontal take-off versus a vertical take-off, further cost 
advantages can be realized through the reduction of the 
required thrust to weight ratio [2]. The reference system used 
for this paper is the repulsive-force maglev track developed by 
the Lawrence Livermore National Laboratory, Inductrack. The 
unique feature of the Inductrack is the use of a special 
arrangement of magnets called the Halbach array. The 
magnetic orientation provides the magnetic field lines to 
combine and form a concentrated sinusoidal field below the 
array. It also causes the field above the array to cancel out.  
By using rare earth magnets and the Halbach array, the weight 
of the magnets is only about 2% of the levitated weight [3]. A 
moving carriage has special arrays of permanent magnets 
mounted on its inside surface. Relative motion between these 
magnets and the coils in the track induces a current in the track 
coils. These currents interact with the horizontal magnetic field 
from the arrays and cause the carriage to be levitated above the 
track.  The carriage is propelled down the track by pulsed 
currents in the drive coils, synchronized with the position of the 
carriage.  These pulses interact on the vertical magnetic fields 
from the magnets. As showed in Figure 2, the unique structural 
feature of the Inductrack is that there are magnets mounted on 
the carriage to act on the underside of the track as well as the 
top. These are mounted on each side at a 45° angle. These 

enhance the stability of the carriage in both the vertical and 
lateral directions. While this geometric configuration does 
increase the critical speed for levitation, the enhanced stability 
provided is worth the penalty. Even with these additional 
magnet arrays there still are some stability problems during the 
initial levitation phase [4]. 

 
 

2. 6 DOF VEHICLE DYNAMICS 
 
The focus of this analysis is the portion of the acceleration after 
the carriage is levitated and free from the auxiliary guide 
wheels.  This analysis assumes the basic geometry of the LLNL 
carriage as defined in the final report [3].   
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Figure 1. Carriage Axis Arrangement 
 

Equations of Motion 
The coordinate system for the inertial reference frame is 
defined with the x-axis in the horizontal direction of travel, the 
y-axis lateral across the track and the z-axis in the vertical 
direction. The orientation of the three linear velocities u, v and 
w and three rotation velocities p, q and r are shown in Fig. 1.  
Then, the six degree of freedom equations for the motion of a 
rigid body are [6, 7]: 
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where, f0 is force, m is mass, v0 is velocity, w0 is the total 
angular velocity, m0 is moment, Io is the inertial tensor as 
defined at the origin of the carriage-fixed coordinate system, 
and rG is the vector from the inertial frame to the carriage 
center of gravity.  
 
Levitation Force 
For convenience of discussion, the force perpendicular to the 
surface of the array will be referred to as the levitation force. 
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The levitation force produced per circuit by the magnet array is 
given by [5]: 
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where: 
R is the resistance of the circuit. 
w is the transverse width of each array. 
y1 is the distance from the array to the coils. 
ω is the excitation frequency of the circuit and is given by the 
relationship ω=kv. 
v is the array velocity as it passes over the coils (m/s). 
k is given by the relationship k=2π/λ, where λ is the array 
wavelength (0.1m).  
L is the inductance of the circuit, and is given by[3, 5]: 
and B0 is the peak field at the surface of the array and is defined 
as[5]: 
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where d is the thickness in the vertical direction of the Halbach 
array and M is the number of magnet elements per wavelength  
 
Levitation dynamics 
For the vehicle levitated above the track coils, the magnetic 
levitation force F is a function of the distance between the 
magnetic array and levitation coils, d. The force can be 
expanded in a Taylor series in the perturbed small displacement 
variables about the equilibrium- nominal position [8].  
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and F(d0)=mg, m is the mass of the vehicle, and g is the gravity 
acceleration rate of earth. 
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and it follows from the equation of motion 
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where, Lz is the lateral array center to the center of the vehicle 
in the z direction.  

 
Equilibrium condition  
The designed nominal levitation height for this track is 1.5 cm.  
At this height the forces from the three magnet arrays will be in 
equilibrium. Perturbations from the design height will increase 
the force between the array and the track on the surfaces that 
are closer, and reduce the force on the arrays that are farther 
away, resulting in a centering force on the carriage. These 
forces are combined as follows based on the geometry of the 
carriage, and the physical properties for the magnets: 
 
Vertical translation: 
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Lateral translation: 
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Roll: 
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Pitch: 
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Yaw:  
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Above analysis is based on the equilibrium position. Following 
the system static stiffens is analyzed for lateral, roll, pitch, and 
yaw directions [9]. 
 
Lateral 
Consider the vehicle is in a non-equilibrium position with 
displacement ∆y. The offset is +∆y for array 1 and 4, and -∆y 
for array 2 and 5 laterally. The lateral arrays will generate the 
lateral restoration force, from (3) and (9) 
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where, Fbncd_y is a each magnet force when equilibrium position. 
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This means that the lateral restoration force will always 
increase as the lateral displacement increases.  
 
Roll 
The lateral array will generated restore force, the related 
position change is ∆y ≅ Lz sin(φ )=φ Lz. 
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Applying same equation to the left lower magnet, then we get 
total roll moment 
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The roll stiffness is 
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This means that the roll restoring moment also increases as the 
roll displacement increases.  
 
Pitch  
If the levitation array pair is in a non-equilibrium position with 
displacement -∆z for front array 1, 2 and 3, +∆z for array 4, 5 
and 6; and Lx is the distance between center of each levitation 
array and the center of the vehicle in x direction; the pitch angle 
θ ≈ ∆z / Lx. If θ is very small, we can neglect the higher order 
items.  
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Applying to same equation to rear magnet, then we get  
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The pitch stiffness,  
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which is always positive that means the pitch restoration 
moment always increases as the pitch displacement increases. 
 
Yaw 
The yaw restore moment is generated by lateral arrays. 
Supposing the lateral array pairs are in non-equilibrium 
position with displacement of +∆y for front array 1 and 2, and -
∆y for rear array 4 and 5. Lxla is the distance between the 
centers of lateral array to the center of vehicle in x direction. 
The yaw angle is ϕ  ≈  ∆y / Lxla.  
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Applying to same equation to the other pair, then we get     
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The yaw stiffness  
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is always positive, meaning that the yaw restore moment 
always increases as the yaw displacement increases.  
The above analyses and calculations are based on separated 
pitch angle θ = ∆z / Lx, the roll angle φ  = ∆z / Ly, yaw angle 
ϕ  = ∆y / Lxla, and lateral displacement ∆y. These 
displacements are very small in a real system, and coupling can 
be neglected in real situations.  
 
 

3. Optimized Damping Control  
 
For small displacements around the nominal position, the high 
order terms are negligible compared to the principal terms. The 
simplified vehicle dynamics are given by [10]     
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MRB is a positive definite matrix of inertial terms and τRB is the 
vector that represents all external forces applied to the maglev 
carriage. 
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Substituting the passive Halbach array only forces and 
moments into Equation (18) with neglecting the high order 
terms we get equations.  
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∆z is the vehicle displacement from equilibrium position in 
levitation direction, and ∆y is the vehicle displacement laterally 
from equilibrium position. From (19), it is clear that the 
dynamic modeling has no damping terms. The system equation 
with control is given by 
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where u is the control input with are give as 
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Then, control force equations are given as 
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zyd KKKKKK ][ ϕθφ=  is the damping control factors. To 

solve these equations some constraints can be introduced given 
the practical situation to get optimized solutions. To minimize 
the mean square of control forces by (min {∑ }) can be 

solved with Lagrange multiplier optimization method. 
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The solutions are given as. 
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The solutions are given as. 
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4. Optimized LQR Control and Simulation 
 
LQR is a linear optimal control with quadratic performance 
indices. For system 
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where x is a state vector [n × 1], u is the control vector [r × 1], 
A is a constant matrix [n × n], and B is a constant matrix [n × 
r][11] . 
 
The performance index is given by 
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where  is the complex conjugate of the transpose of matrix 
x and the control vector is given by  
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where Q is the weighting matrix on the states [n×n], R is a 
positive scalar and yields a matrix of optimal gains K for the 
state feedback.  
 
The optimization of the cost function gives the optimal control 
signal u.  
 
                     K =R -1B ×P                                                 (27) 
 
where TPP = ,is the unique positive definite solution of the 
algebraic Riccati equation 
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The weighting matrix Q =I and R =1 are presented in this paper 
to demonstrate the effectiveness of the design. 
 
The controller can be designed separately according the LQR 
optimized control theory. Following we will give the design 
one by one. 
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substituting these into Equation (28), we get equation  
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solving it and select the positive values, the results are given as  
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substituting these into (27), we get the optimized control gain 
matrix K, 
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and the optimized control is 
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Similarly, the optimized control can be derived for 
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With same procedure as the optimized damping control to 
minimize the mean square of control forces using (22) and (23).  
 
 

5. SIMULATION 
 
This simulation utilizes the six degrees of freedom model from 
the Simulink® toolbox.  The toolbox model was then modified 
to use the inertial position, inertial velocity and Euler angles 
outputs to determine the position of the carriage magnets based 
on the geometry of the carriage. Limits were then applied to 
these positions based on the geometry of the track.  
 
Simulation Parameters 
The following table summarizes the parameters of the 
Inductrack system considered for simulation purposes [5]: 
 
 
 

 
Description Parameter Value 
Length of Cradle 65 cm 
Cradle Mass (m) 9.3 kg 

Volume of Magnet (1cm x 13cm x 
12cm) 

Wavelength (λ ) 0.1 m 
Total length of  
Halbach Arrays (w) 0.12 m 

Resistance / loop (R ) (1.5 x 10-3)Ω  
Inductance / loop (L) (2.6x 10-6) H 
Theoretical Surface field (B0) 0.9 Tesla 
K (2 x λπ / ) 

 
Analysis of Results 
 
In figure 3 and 4, the 6DOF vehicle dynamics with a small 
disturbance is shown under no control and a steady acceleration 
force. The simulation shows that small disturbance affects 
system dynamics and the oscillation will not be decayed. 
 

     
Fig 3. System Response, levitation height and pitch  
 

     
Fig 4. System Response, travel distance and roll 
 
Figure 5 and 6, it shows the system dynamics under optimized 
damping control, which has the advantage of simple and the 
requirement for implementation. The result shows oscillation is 
decreasing levitation height, pitch, roll and lateral position also. 
 

     
Fig 5. System Response, levitation height and pitch  
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Fig 6. System Response, Lateral position and pitch  
 
Figures 7 and 8 show the system dynamics under the optimized 
LQR control and comparing to the damping control response, 
better result is shown in levitation height, pitch and lateral 
position. 
 

     
Fig 7. System Response, levitation height and pitch  
 

     
Fig 8. System Response, Lateral position and pitch  
 
 

6. CONCLUSIONS 
 
In this study, the dynamic motional characteristics of the LLNL 
Maglev were investigated. The 6 DOF dynamics of the vehicle 
is complex and inherently unstable. In order to compensate the 
dynamic instability, an optimized damping and a LQR controls 
for the vehicle were developed. As showed in the simulation, 
the proposed control schemes provide the operational stability 
of the Maglev. The analysis and simulation results will be used 
as guidance for further theory and experimental research. 
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