
Implementation of Hierarchical Authorization For A Web Bas ed Digital Library

Andreas GEYER-SCHULZ
Informationsdienste und elektronische M̈arkte, Universität Karlsruhe (TH)

76128 Karlsruhe, Germany

and

Anke THEDE
Informationsdienste und elektronische M̈arkte, Universität Karlsruhe (TH)

76128 Karlsruhe, Germany

ABSTRACT

Access control mechanisms are needed in almost every system
nowadays to control what kind of access each user has to which
resources and when. On the one hand access control systems
need to be flexible to allow the definition of the access rules that
are actually needed. But they must also be easy to administrate to
prevent rules from being in place without the administratorreal-
izing it. This is particularly difficult for systems such as adigital
library that requires fine-grained access rules specifyingaccess
control at a document level. We present the implementation and
architecture of a system that allows definition of access rights
down to the single document and user level. We use hierarchies
on users and roles, hierachies on access rights and hierarchies
on documents and document groups. These hierarchies allow a
maximum of flexibility and still keep the system easy enough to
administrate. Our access control system supports positiveas well
as negative permissions.

Keywords: role-based authorization, digital library, hierarchies

1 INTRODUCTION

Offering personalized access to web applications to a broaduser
community is a crucial element for implementing a variety ofser-
vices, such as electronic commerce applications, telecommunica-
tion services or digital libraries. Personalizing a web site requires
a mechanism to establish who a user is (authentication) and what
this user is allowed to do (authorization). The choice of archi-
tectures and data models for these procedures is very important
because user administration involves a considerable amount of
transaction costs.

Authorization issues are particularly interesting for digital or hy-
brid libraries where access to a large number of documents must
be handled. An authorization scheme that is able to handle a col-
lection of very heterogenous documents as well as differentuser
groups with very specific access rights has to be very flexible.
Yet the system must allow the system administrator a clear and
comprehensible overview of the current set of permissions.An
authorization system is useless if it is not possible to havefull
understanding of and control over the complete set of accessdef-
initions. Such a system could not be considered secure. This
is the reason why most of the authorization systems in use only
allow for very basic definitions of access rules.
In this paper, we present the structure, architecture and imple-
mentation of an authorization system with a three-dimensional
hierarchy that allows for very flexible and fine-grained access
definitions. The system is in use for an institutional hybridli-
brary with many different types of content and user groups but is
applicable to very general types of applications requiringaccess
control. We show how the hierarchies serve to combine utmost

flexibility with the structures for comprehensible and manageable
review functionalities that support system administration. We ex-
plain the transformation of the hierarchies into a canonical form
of authorization information which is needed to establish the con-
crete access rights for given resources and we give an overview
of the data model supporting the fast check of access rights.

Sec. 2 starts with a presentation of other access control mecha-
nisms that were proposed for digital libraries. In sec. 3 we explain
the structure of the system including the hierarchies and propaga-
tion rules. Sec. 4 describes the architecture of our implementation
while sec. 5 presents the most important user interfaces. The last
section concludes our work and proposes directions for further
research.

2 ACCESS CONTROL MECHANISMS

Several general models for organizing access control have been
proposed. Discretionary Access Control (DAC) [12] uses a ma-
trix format to record permissions for each user on each resource.
Depending on the implementation of the matrix as capabilitylist
or access control list permissions can either be easily retrieved by
user or by a given resource. The method is very simple but on
the other hand every single permission has to be specified sepa-
rately thus imposing high transaction cost on system administra-
tion. DAC does not allow for any grouping of similar users or
resources.

Role-based Access Control (RBAC) is a class of models that in-
troduce user roles for facilitating the definition and modification
of permissions [9, 4]. A user role usually corresponds to a po-
sition in an organization’s hierarchy. Permissions are granted to
user roles instead of individual users and users are allowedto play
a certain number of roles corresponding to their position inthe or-
ganization. A permission in RBAC is a combination of a certain
privilege and a resource. Roles may be organized in a hierarchy
corresponding to the hierarchy in an organization. Permissions
propagate up the hierarchy where the most powerful positionis
found on top of the hierarchy. Privileges and resources are not
structured in RBAC, neither does RBAC explicitly model nega-
tive permissions.

RBAC proposes constraints for enforcing separation of duty
where users are not allowed to play conflicting roles at the same
time. Those are typically roles that would aggregate too much
power for one user or which violate data protection laws. Other
proposed extensions to RBAC include the addition of a tempo-
ral dimension to the constraints that allows the possibility of role
activation to be time-dependent for certain users [5].

Our model borrows some ideas from RBAC, mainly the introduc-
tion of user roles and their organization into a hierarchy along
which permissions are propagated. Still, the interpretation of

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 2 51ISSN: 1690-4524

our role hierarchy differs from that of RBAC, as for our applica-
tion we use a hierarchy with a “contains” semantic that organizes
users into supergroups and subgroups. As we show later, thishas
an important implication on the propagation of permissions.

In [2] a model is sketched that organizes documents in a digital
library into a hierarchical structure representing collections and
subcollections of documents. Permissions are inherited along this
structure. The authors also give some examples of permissions
that imply other permissions, but they do not consider a hierar-
chical organization of the privileges as a consequence, as we do.
The notion of collections and subcollections seems a bit less flex-
ible than our very general formulation of a hierarchy induced by
a partial order. We do not make any limitations on the type of
the hierarchy elements although collections of documents are a
very good example. Our hierarchy also allows the modelling of
document parts and their grouping into other categories than the
document itself.

The models most similar to our proposal are probably the ones
proposed in [1, 7, 3, 10]. These authors describe a content-based
access control mechanism. Authorization to users is granted
based on credentials that represent certain user attributes like age,
nationality etc. Credential types can be organized into a hierarchy
with permission propagation. A very similar procedure is applied
to the documents that can be assigned different concepts. Con-
cepts, too, are hierarchically structured. Concepts are content-
related and are extracted from the documents automatically, as
well as the hierarchical structure of the concepts. Permissions
can be granted for documents as well as parts of documents or
links between different documents.

The advantage of this approach is that explicit creation andmain-
tenance of roles is no longer necessary. On the other hand, group-
ings of users that are not specified via any concrete user attribute
are not possible. Neither do the authors make any concrete state-
ment on how users are restricted from changing their attribute
values, thereby altering their access permissions. A similar rea-
soning can be applied to the concepts of documents. It is very
practical to have concepts and their structure generated automat-
ically because it shifts the burden of assigning concepts orcata-
logues to documents or document parts to the classification pro-
cess. On the other hand it is not possible to generate a group of
documents based e.g. on the document structure or any other,
not content-related, characteristic. For example, one might wish
to group documents that are used by a group of researchers for
a special project. The documents can be of very different types,
like session minutes, papers, CVs etc. such that it will be difficult
to find the concepts that identify all these documents as partof
the project. Still, the notion of concepts is similar to the docu-
ment catalogues we use for grouping the elements of our digital
library.

Similar to the papers cited above, we also allow permissionsfor
document parts. Although, as we model this through different
resource types that can be linked through the hierarchy, ourap-
proach is more flexible. It is not per se restricted to certainat-
tributes such as document parts or links but can be applied to
other sort of document-related information such as reviews, rat-
ings, questionnaires, recommendations and many more (cf. Fig. 3
in sec. 3).

In the works cited above, negative permissions are modelledas
well as positive permissions. The conflict resolution strategy fa-
vors permissions directly set for certain users or objects before
those permissions attributed to users or objects via their creden-
tials or concepts. In any other conflict situation, negativepermis-
sions prevail. The conflict resolution strategy in our system does
not distinguish different kinds of permission settings, all permis-
sions are treated in the same way. We let explicit negative permis-

sions always override positive permissions. We believe that this
is the most secure strategy and easiest to overview for the system
administrator who does not have to care about different types of
permissions.

Other, content-based authorization models are proposed in[11]
and [8]. While [11] describes a combination of DAC, manda-
tory access control and RBAC for content-based authorization of
multimedia data, [8] focuses on federated digital libraries and an
authorization method for controlling access at the level ofthe cen-
tral search interface. The authorizations are based on keywords
found in the documents, which is somehow similar to the con-
cepts described above. These authors do not use any hierarchical
organisation of their authorization data.

A theoretical work that defines many of the concepts used in this
work is [6]. A general logical framework is developed that should
be able to accomodate all possible access control models and
serves as a basis for comparison of different models. In fact, the
framework deals with hierarchical relationships in subjects, priv-
ileges and objects that include the relationships that we use for
our system. Nevertheless, the work does not make any conclu-
sion on how useful the hierarchical relationships are for practical
implementations and just serves as the most general model that
is able to describe other existing access control models or imple-
mentations.

3 THREE HIERARCHIES FOR FLEXIBLE ACCESS
CONTROL

The major goal of our access control system is highest flexibility
and generality combined with ease of specification. Flexibility
means that we should be able to grant or deny access permissions
to single documents and even to document parts so that all pos-
sible forms of access restrictions can be represented. The system
should also be as general as possible in order to transfer themeth-
ods to other kinds of applications. The permissions and structures
should not be explicitly tailored to the special requirements of
digital libraries but accomodate other applications and their au-
thorization needs as well.

The simplest canonical access control system is defined as a rela-
tion RS ⊆ S ×P ×O whereS denotes the set of subjects,P the
set of privileges andO the set of objects. The triple〈s, p, o〉 is in-
terpreted as subjects ∈ S may perform privilegep ∈ P on object
o ∈ O [10]. Note that in these systems only positive permissions
are specified explicitly, access denial is inferred by an absence of
the positive permission. In this paper, the canonical access model
is defined as a relationR ⊆ S ×P ×O×G with S, P , O as de-
fined before andG = {+,−}. The quadruple〈s, p, o, +〉 is then
defined as a positive permission as before. However, access de-
nials are treated differently. In this model we distinguishbetween
denials because of a lacking positive right and explicitly defined
denials of the form〈s, p, o,−〉 which always override conflicting
positive permissions. This form of modelling allows expressing
denials as imperatives for the future with the aim of permanently
excluding users and serving as a signal that a user is prohibited to
performp ono.

To facilitate the task of specifying and maintaining accesscon-
trol definitions, we introduce hierarchies on subjects, privileges,
and objects. Each hierarchy is defined as a partial order on its
elements.

For the set of subjectsS, the partial order is defined on the power
setP(S). For elementssi, sj ∈ P(S) si ≺P(S) sj means thatsj

containssi (si ⊆ sj). The names of elements ofP(S) reflect the
semantics of the access control system. The set of names of ele-
ments ofP(S) is denoted bySN . For example, a sets1 ∈ P(S)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 252 ISSN: 1690-4524

may be associated with the name “technical staff”. In general,
for any setX, the notationXN is used for the set of names. The
symbol∗ ∈ XN denotes the supremum of the setX. The re-
lation between elements and their names is expressed by the bi-
jection νX : XN → X. Furthermore, each hierarchy on a set
X comes with two functions, namelysu : X → P(X) and
pr : X → P(X). su(x) computes{y : y ≺X x} the set of all
subsets ofx ∈ X, and correspondinglypr(x) = {y : y ≻X x}
is the set of all supersets ofx ∈ X.

Elements ofS are individual users, such that the elements of
P(S) correspond to user groups. In the context of a university’s
digital library, we prefer user groups over roles since the identi-
fication of roles with organizational positions is overly restrictive
in a university setting. For example, the user group with thename
“all employees” may contain the user group “scientific staff”, and
“scientific staff” may contain “user John”.

For the set of privileges, the partial order≺p is directly defined
on the setP and not on the power set ofP . For pi, pj ∈ P ,
pi ≺P pj means that privilegepj implies privilegepi, that is a
user who is allowed to performpj is also allowed to performpi.
The semantics that this hierarchy represents has been proposed
earlier and proved to make sense for privileges [13, 6]. An ex-
ample would be a “write” permission on a document that implies
the “read” permission on it, because when editing a documentits
data are visible to the user in any case.PN denotes the set of
names for privileges inP .

For the set of objectsO, the hierarchy is defined on the power
setP(O). The semantic ofprO corresponds to the semantic of
prS . For oi, oj ∈ P(O), oi ≺O oj means thatoj containsoi

(oi ⊆ oj). The set of names of elements ofP(O) is ON . In gen-
eral, the set of objects contains all atomic resources that require
access control protection. An atomic resource is one that cannot
be further partioned into smaller, differentiated parts. An example
may be an attribute or a file of a digital library document. A doc-
ument itself may then be represented by the element inP(O) that
contains all the single parts of this document. Elements grouping
several documents into one set are called “categories”. There are
no restrictions on the kind of objects and object groups thatan ap-
plication works with. The interrelations between these elements
may be of different semantic type. For example, one element in
the power set may be a category “digital library publications” that
groups together documents that are related by content as they deal
with the same topic. People of a digital library research group
may then be granted access to all documents contained in this
category. Another category may be called “internal institute doc-
uments”. This category does not imply any similarity in content
of the documents contained but groups documents with similar
access control requirements as only very privileged users may
access those internal documents.

Of course, many different object types may be grouped together
in one access control system. As different and independent appli-
cations use the same access control system each applicationmay
define its own objects and hierarchies which need not be interre-
lated. Besides a digital library a contact management system may
need restriction on data about persons and organizations. There
will probably be no order relations between any two objects of
the different applications but this does not affect the access con-
trol system.

These hierarchies help to reduce the system complexity as ac-
cess definitions propagate along the partial orders. This consid-
erably reduces the amount of access definitions that need to be
created and maintained. Another advantage is the transparency
and ease of use for the end user. If a user inserts a new publica-
tion on digital libraries into the system he will group it into the
corresponding category just for the sake of correct categorization

without having to be aware of the consequences for the docu-
ment’s privileges. Practical experiences have shown that users do
not care much about privilege management of documents. Users
can directly understand and profit from grouping their documents
into categories because this facilitates retrieval and organisation
of document groups. But, on the contrary, as owners of a doc-
ument often have most of the privileges because of their owner
status they are not aware of the consequences of setting privi-
leges on documents unless they are in direct contact with other
users that require certain access permissions. Therefore it seems
very important to us to make the privilege management very easy
and quick to use without requiring extra actions by the users.

Now how exactly do permissions propagate along the hierar-
chies? And how are conflicts between different access defini-
tions resolved? Permissions are granted or revoked by specifying
quadruples of elements ofSN×PN×ON×G, called access spec-
ifications. Each quadruple has then to be translated into thecor-
responding set of canonical access definitions. For this purpose,
we define a translation functionT : SN × PN × ON × G →
P(S × P × O × G) that maps the specifications to canonical
access tuples. The translation function describes the propaga-
tion of access specifications along the hierarchical structures. Let
a = 〈aS, aP , aO, aG〉 be an access specification, then

T (a) =

8

>

<

>

:

suS(ν(aS)) × suP (ν(aP)) × suO(ν(aO)) × +
if aG = +

suS(ν(aS)) × prP (ν(aP)) × suO(ν(aO)) ×−
if aG = −

The definition of the translation function shows that there is a
difference in the sense of propagation for positive and negative
access specifications. In fact, the propagation sense staysthe
same for the hierarchies on the subjects and on the objects but
is reversed for the hierarchy of privileges. This is due to the re-
lationship expressed by the partial order≺P . For pi ≺P pj pj

impliespi. So if privilegepj is granted, thenpi is granted, too.
On the other hand, if privilegepi is denied, then the even stronger
privilegepj should also be denied.

students staff

John

write

read

publications

dl publications

* * *

Figure 1: Example hierarchies of subjects (left), privileges (mid-
dle) and objects (right)

To illustrate this, consider the hierarchies on subjects, per-
missions and objects depicted in Fig. 1, where an ar-
row from a to b means a ≻ b. Consider fur-
ther the access specifications〈staff,write,publications,+〉 and
〈students,read,dl publications,−〉. This situation occurs for ex-
ample if the professor wants to give a seminar on digital libraries
and requires the students to do some literature research. Corre-
sponding publications are hidden from the students to forcethem
to do a search from external sources. In this case, of course,we
expect that the student worker John, who is eligible for the semi-
nar as well, is not granted neither read nor write access to the dl
publications but he may still have the staff read and write access
to the remaining documents. Negative permissions are propa-
gated up the privilege hierarchy but down the other two hierar-
chies. In fact, [6] propose the same propagation rules on groups,
privileges and objects with corresponding hierarchical relation-
ships.

cA : S × P × O → {true, false} is the function for checking
access that returns whether access is granted for a given subject,

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 2 53ISSN: 1690-4524

permission and object. Fora = 〈s, p, o〉, cA(a) is defined as:

cA(a) =

8

>

>

>

<

>

>

>

:

true if ∃〈s′, p′, o′〉 ∈ SN × PN × ON :
〈s, p, o, +〉 ∈ T (〈s′, p′, o′, +〉)
and∄〈ŝ, p̂, ô〉 ∈ SN × PN × ON :
〈s, p, o,−〉 ∈ T (〈ŝ, p̂, ô,−〉)

false otherwise

Note thatx ≺ x holds for a partial order. The function returns
true if the given canonical triple of subject, privilege and ob-
ject can be derived from a positive access specification using the
translation function and if there is no explicit access denial spec-
ification that also translates to the given subject, privilege and
object. This function definition expresses resolution of conflicts
by precedence of explicit access denials over access permissions,
like already mentioned in this section. We believe that the ba-
sic set of access definitions needed for everyday use can be and
mostly is structured such that only positive permissions are de-
fined. This possibility depends on a suitable definition of the
three hierarchies and their elements. Negative permissions are
often very useful for exceptional situations that require an imme-
diate action.

We finish this section by giving some motivating examples of hi-
erarchy structures that are useful for a scientific digital library
possibly combined with other types of applications. Figures 2
and 3 show hierarchies for users and groups, and for privileges
and resources of different types, respectively. The user-group

students staff

full timestudent
workers

scientific
staff

technical
staff

web site
admins

lecturers

course
attendants

Carl

Anke Jens

*

Figure 2: Example hierarchy of groups and users (capital letters)

CRM
course
material

exams

public sources

Doc "exam CRM 2006"

File "source"

*
write

delete read

searchcreate

access library

borrow

*

Figure 3: Example hierarchies of privileges (left) and resources
(right – catalogues, a document and a document part)

hierarchy in Fig. 2 shows possible groups for a university insti-
tute where students are represented as well as institute staff. The
hierarchy shows that the administrators for the web site canbe
people from the scientific staff as well as the technical staff.

Fig. 3 shows a privilege hierarchy on the left and a resource hi-
erarchy on the right. The privilege to write a document in the
digital library is the most powerful privilege as it impliesmany
other privileges. In fact, write implies delete, as someonewho
can change the contents of a document can also erase all its con-
tents which is similar to deletion. If someone can borrow a doc-
ument (hybrid library) he must be able to have its contents dis-
played (read) and consequently to view this document as partof
search results (search). The resource hierarchy contains four doc-
ument catalogues, one document marked “Doc” and one of its
files marked “File”. The structure shown is useful for documents

containing past exams for a given course. Students are giventhe
privilege to read data contained in the catalogue “public” while
they are prohibited download access for “sources”. So the docu-
ment may contain one exam version in PDF for viewing its con-
tents and one version containing the sources that is not disclosed
to the course attendants because explicit negative rights override
positive permissions.

4 SYSTEM ARCHITECTURE AND
IMPLEMENTATION

:authorization connector

:access control module

:ac database

:application :administration

2:reportO+H 1:reportUGP+H

1.1:reportUGP+H2.1:reportO+H

1.1.1:saveUGP+H2.1.1:saveO+H

4:checkAccess(s,p,o)

4.1:checkAccess(s,p,o)

4.1.1:selectTuples(s,-)

4.1.2:selectTuples(s,+)

3:setPermission
 (s,p,o,g)

3.1:setPermission
 (s,p,o,g)

3.1.1:setPermission
 (s’,p,o,g)

Figure 4: System components and architecture

The components of the access control system and their architec-
ture are depicted in Fig. 4. The figure shows an example applica-
tion and the administration as a special application that handles
the management of users, groups and privileges. The authoriza-
tion connector serves to abstract from the concrete authorization
method in use, whenever it needs to be modified or exchanged
against another authorization module the interface between the
authorization connector and the applications remains unchanged.
The access control module is the layer below the authorization
connector and serves as the interface to the access control method
described in this paper. The access control module accessesthe
access control (ac) database containing all relevant data about the
subjects, objects, privileges, their hierarchical structures and the
permission specifications.

Fig. 4 shows the basic actions that are required to make the ac-
cess control operational. For initialization of the data, the admin-
istration and the application have to deliver information about the
subjects, privileges and objects. User, group and privilege man-
agement are done via the administration with restricted access.
The functionsreportUGP+H andsaveUGP+H carry information
about the users, groups and privileges plus the corresponding hi-
erarchical structures. This information is saved in the access con-
trol database. Similarly, each application must provide informa-
tion about its objects or resources that require access control and
their hierarchical structure using the functionreportO+H. Each
resource is described by a resource type and a resource identifier.
Within a resource type, the resource identifier is unique. There is
no restriction on the data type of the resource identifiers, it may be
numbers as well as strings or other data types. Resource types are
coded using integer numbers. The distinction in resource types
and identifiers allows each application to maintain its own set of
unique identifiers for its objects, without interfering with differ-
ent resources from other applications.

As soon as the information about the subjects, privileges and ob-
jects are successfully reported to the access control module per-
missions can be specified. This, too, is done by the administra-

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 254 ISSN: 1690-4524

tion. The definition of permissions by normal users for delegation
purposes is not yet included in our implementation. A permission
is defined by the subjects (user or group), the privilegep, the re-
sourceo and a signg that marks positive permissions and access
denials. In our current implementation, we use redundancy on the
database level to improve the speed of access checks. This means
that, given the new permission specification tuple〈s, p, o, g〉, the
function3.1.1:setPermission(s’,p,o,g) is repeatedly called for ev-
ery s′ ∈ S : s′ ≺S s. Each function call produces a database
entry. As the sense of propagation for the subject hierarchyis the
same for positive and negative permissions no such distinction is
needed here.

Right now we only use redundancy at the subject level, but fur-
ther redundancy can be considered if the system is too slow. On
the other hand, redundant data entries raise the update complex-
ity. Updates have to be made atomic operations e.g. by using
transactions to ensure the data consistency. Therefore we restrict
the redundancy to one of the three hierarchies to keep the update
complexity at a lower level.

Algorithm 1 checkAccess function

Require: subject s, privilege p, object o;
1: setn := select tuples from database with subject s and sign -

(4.1.1 in Fig. 4);
2: setp := select tuples from database with subject s and sign +

(4.1.2 in Fig. 4);
3: if set p is emptythen
4: return false;
5: end if;
6: for each element〈ŝ, p̂, ô,−〉 in set n do
7: if p̂ ≺P p andô ≻O o then
8: return FALSE;
9: end if;

10: end for;
11: for each element〈ŝ, p̂, ô, +〉 in set p do
12: if p̂ ≻P p andô ≻O o then
13: return TRUE;
14: end if;
15: end for;
16: return FALSE;

Finally, applications call thecheckAccess function that returns
true if the corresponding access can be permitted orfalse if it
is denied. In the current implementation with redundancy only
over the subject hierarchy thecheckAccess function has to loop
over all possible privileges and objects that may propagatea per-
mission to the privilege and object requested. The steps taken are
described in Alg. 1.

The component architecture shows that each application takes
care of the resources it needs and for which it wants access control
to be set up. This allows for quick extension of the access control
over new applications and does not impose any restrictions on the
types of resources or privileges in use. There are, however,cases
in which it is useful to grant a permission either on the wholeset
of resources of a special type or not linked to a specific resource at
all. For example, the “create” privilege for a digital library cannot
be linked to any concrete document as it concerns the creation of
new objects. This privilege can only be associated with the type
of resource for which creation is granted. To implement thispos-
sibility the access management creates, for each type of resource
known to it, one special resource of this type without an identifier,
called the “any” resource, which is used for privileges concern-
ing only the type of a resource. The “any” resource is not linked
to the other resources by any hierarchical link. A second spe-
cial resource is created for each resource type, the “all” resource.

This resource is made the supremum of all other resources of the
same type (except the “any” resource). It is used for such cases
in which a privilege has to be granted to all resources of a spe-
cific type. For example, for a digital library administratorit is
useful to always have the permission to read and write all digital
library objects. He is then granted the write privilege on the “all”
resource which, by the hierarchical relationships, is propagated
to every other resource of this type, even newly created ones(the
read-privilege is included, as write normally implies read). The
“all” resource, just like the “any” resource, is an internalelement
of the access management that is not visible to the applications.

5 USER INTERFACE

Figure 5: Tree view of user groups and users

This section should give a very brief overview over the current
user interfaces for permission administration. Fig. 5 shows the hi-
erarchical view of user groups and users. Multiple inheritance is
shown by displaying the same entry beneath each of its predeces-
sors, as it is the case for the user group ’emhiwis’ that is part of
’studenten’ as well as ’emstaff’. Clicking on a group displays the
users contained in that group, like shown for ’emwebadmins’.
The same tree view is used for the other hierarchical structures,
as well. Search functionality allows to search for entries in the
tree and have only those parts displayed that contain the search
term. This is especially useful for comprehensive trees like e.g.
the one of the document catalogues.

Fig. 6 shows the administration view of the current permission
specifications, including derived permissions. The permissions
correspond to the example hierarchies shown in Fig. 1 and the
corresponding permission specifications (see sec. 3). Specifica-
tions are printed in black and have a delete button, propagated
permissions are printed in gray and do not have a delete button.
This view can be printed either without any propagated permis-
sions which is useful for getting an overview over the current
access specifiations. Propagation information can be included
separatedly for every hierarchy, excluding e.g. the propagation
information for the objects would result in not printing thelines
for the literature catalogue ’P.DL digital library publications’, in
the first lines for User group ’staff’ and User ’John’.

One line is shown crossed out. This indicates that there is a pos-
itive permission that is overriden by another negative permission
and is thus not valid. The information is nevertheless useful be-
cause it means that upon deletion of the negative permissionthis
positive permission would become valid. The interface doesat
this stage not directly show how the propagated permissionsare
derived. In our system it can be inferred by the data shown be-
cause the privileges are always shown with their whole hierarchi-
cal path which makes evident which privileges are inherited. A
similar mechanism applies to the catalogues that contain index
letters (like ’P’, ’P.DL’ in Fig. 6). Further enhancements of the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 2 55ISSN: 1690-4524

Figure 6: Permission administration

interface are planned in order to show more clearly how permis-
sions are propagated.

As the list of permission specifications can be long, especially
when including derived permissions, the system allows to restrict
the displayed information to certain subsets of subjects, privileges
and objects and any combination of these. For example, the list
can be restricted to some users or user groups and maybe certain
privileges. This is very useful for understanding why a specific
access is granted or denied.

6 CONCLUSION

In this paper we have presented an access control system that
is used for a hybrid library and other, web-based applications.
The major aim of the proposed system is high flexibility in the
definition of permissions which is accomplished by introducing
hierarchical relationships on the subjects, the privileges and the
objects. Subjects are users or user groups and objects can bedif-
ferent types of resources identified by a combination of resource
type and resource identifier. Subjects and objects are organized
in a hierarchy of supergroups and subgroups by partial orderre-
lationships, whereas the partial order on the privileges expresses
implication of a privilege by another. We have introduced the
propagation rules for positive and negative permissions using a
conflict resolution policy that always lets negative permissions
prevail. Some motivating examples of the application of thehi-
erarchies show how the flexibility can be exploited in practical
situations. We have described the architecture and detailed im-
plementation of the function for checking access together with
redundancy issues on the database level.

The system presented here is implemented on a central server.
Future work includes the possibility of distribution of theaccess
control mechanism. The design of the corresponding database
model is also subject to further research. A higher level of redun-
dancy could be used to ensure good performance of the frequently
used checkAccess function. We are also working on further en-
hancements of the user interface especially to show from where
propagated permissions originate. A very nice feature would be
the automatic calculation or proposition of document catalogues
based on document attributes similar to the system proposedin
[10]. Another very useful property that we did not deal with yet
is the delegation of permissions by single users. Questionsare
which permissions exactly can be delegated by a user and how a
comprehensible user interface can be designed that lets theuser
be aware of all implications of a delegated permission.

Acknowledgement The authors gratefully acknowledge the
funding of the project “Recommendersysteme für Meta-
Bibliothekskataloge” (RecKVK) by the Deutsche Forschungsge-
meinschaft (DFG).

References

[1] N. Adam, V. Atluri, E. Bertino, E. Ferrari, “A content-based
authorization model for digital libraries”,IEEE Trans. on
Knowledge and Data Engineering, Vol. 14, No. 2, 2002,
pp. 296–315.

[2] C. Baru and A. Rajasekar, “A hierarchical access control
scheme for digital libraries”,International Conference on
Digital Libraries , ACM Press, 1998, pp. 275–276.

[3] E. Bertino, E. Ferrari, and A. Perego, “Max: an access con-
trol system for digital libraries and the web”,Computer
Software and Applications Conf., 2002, pp. 945–950.

[4] E. Bertino, “Rbac models – concepts and trends”,Comput-
ers & Security, Vol. 22, No. 6, 2003, pp. 511-514.

[5] E. Bertino, A. Bonatti, and E. Ferrari, “TRBAC: A temporal
role-based access control model”,ACM Transactions on
Information and System Security, Vol. 4, No. 3, 2001,
pp. 191-223.

[6] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca, “A logi-
cal framework for reasoning about access control models”,
ACM Transactions on Information and System Security,
Vol. 6, No. 1, 2003, pp. 71-127.

[7] E. Bertino, E. Ferrari, and A. Perego, “An access control
system for digital libraries and the web: The max prototype
demonstration”,Research and Advanced Technology for
Digital Libraries , Springer-Verlag, Sep 2002, pp. 656–657.

[8] K. Bhoopalam, K. Maly, F. McCown, R. Mukkamala, and
M. Zubair, “A standards-based approach for supporting dy-
namic access policies for a federated digital library”,Digi-
tal Libraries: Implementing Strategies and Sharing Ex-
periences, Springer-Verlag GmbH, 2006, pp. 242–252.

[9] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R.
Chandramouli, “Proposed NIST standard for role-based ac-
cess control”,ACM Transactions on Information and
System Security, Vol. 4, No. 3, 2001, pp. 224 – 274.

[10] E. Ferrari, N.R. Adam, V. Atluri, E. Bertino, and U. Ca-
puozzo, “An authorization system for digital libraries”,The
VLDB Journal – The International Journal on Very
Large Data Bases, Vol. 11, No. 1, 2002, pp. 58–67.

[11] N. Kodali, C. Farkas, and D. Wijesekera, “An authoriza-
tion model for multimedia digital libraries”,Int. Journal
on Digital Libraries , Vol. 4, No. 3, 2004, pp. 139–155.

[12] R.S. Sandhu and P. Samarati, “Access control: principle and
practice”,Communications Magazine, IEEE, Vol. 32, No.
9, 1994, pp. 40–48.

[13] H. Shen and P. Dewan, “Access control for collaborative
environments”,Computer-supported cooperative work,
ACM Press, New York, NY, USA, 1992, pp. 51–85.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 256 ISSN: 1690-4524

	P405248

