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ABSTRACT

We implement gradient estimation techniques for sensi-
tivity analysis of option pricing which can be efficiently
employed in Monte Carlo simulation. Using these tech-
niques we can simultaneously obtain an estimate of the
option value together with the estimates of sensitivities of
the option value to various parameters of the model. After
deriving the gradient estimates we incorporate them in an
iterative stochastic approximation algorithm for pricing an
option with early exercise features. We illustrate the pro-
cedure using an example of an American call option with a
single dividend that is analytically tractable. In particular
we incorporate estimates for the gradient with respect to
the early exercise threshold level.

Keywords: Black-Scholes model, Simulation, Perturba-
tion Analysis, Gradient, Option Pricing.

1. INTRODUCTION

The increasing complexity of the underlying dynamics
in option pricing which violates the assumptions of
simpler analytical models has necessitated the use of
other models. One popular method that practitioners often
result to is the Monte Carlo simulation. Boyle [2] was
among the first to propose using Monte Carlo simulation
to study option pricing. Other researchers who have
employed Monte Carlo simulation for analyzing option
market include Johnson and Shanno [11] and Hull and
White [10]. Boyle et al. [3] give an overview of pricing
using Monte Carlo simulation. Our goal here will be to
employ efficient gradient estimation techniques known
as perturbation analysis (PA) in Monte Carlo simulation.
PA techniques are described in more details in Cao [4],
Ho and Cao [8] and Glasserman [7]. Numerical results
have shown that these estimates are usually superior to the
“brute force” method of finite difference. After obtaining
the PA estimates we incorporate them in a stochastic
approximation algorithm resulting in what is known as
a Robbins-Monro-like algorithm (see Pflug [13] for a
general discussion).

We now briefly provide some basic background infor-
mation on option pricing. Basic references for derivative

pricing include Hull [9], Gibson [6], and Cox and Rubin-
stein [5]. There are two basic types of options: a call and
a put. A call option is the contract right to buy a specified
amount of an asset at a fixed price on or before the given
date. A put option, on the other hand, is identical except
that it is the right to sell the asset at the given price on or
before the given date. If the option purchaser acts upon
this right to buy, he or she is exercising the right, and
the fixed price of the transaction is called the strike price.
The last date on which the option may be exercised is
called the expiration date or the maturity date. The
difference in the legal exercising time of the options
results in many different options, such as the European
option and the American option. An American option
allows the holder to exercise the right at any time before
and including the expiration date, whereas a European
option restricts the right only to expiration date and not
before. The payoff of an option is the non-negative
difference between the strike price and the asset price at
exercise for a put option or in the case of a call option,
the non-negative difference between asset price and strike
price. A call option is said to be in− the−money when
its asset price is above the strike price; otherwise it is said
to be out− of − the−money. A put option, on the other
hand, is in-the-money when the asset price is below the
strike price; otherwise it is out-of-the money.

The following notation will be used throughout the paper:

St= stock price at time t,
S0= initial stock asset,
r= annualized risk-less interest rate (compounded contin-
uously),
σ= volatility of the stock price,
µ= drift or other mean-related parameter of the underlying
stock,
K= strike price of the option contract,
T= expiration date of the option contract,
JT = the net present value return of the option on its
expiration.

We will take the “present time” as time 0. Except for St

and JT which are random variables, we will assume that
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the rest are constants.
In general to value an option using simulation one would:

1. Simulate the stock price dynamics, St, where t ∈ [0, T ];

2. Estimate e−rτE [f(St, 0 ≤ t ≤ τ)],
where τ ∈ [0, T ] is an optimal stopping time and f is a
payoff function of the form:

European call : (ST −K)+,
American call : (Sτ −K)+,

Asian call : (T−1
∫ T

0
Stdt−K)+,

Upper (knockout): (ST −K)+I{St < U,
0 ≤ t ≤ T},
Double barrier (knockout) : (ST −K)+

I{L < St < U, 0 ≤ t ≤ T},
Lookback (strike) : (ST −min{St, 0 ≤ t ≤ T})+.

where I{.} is the indicator function.

2. GRADIENT ESTIMATION TECHNIQUES

The gradient estimation problem involves estimating the
derivative of a deterministic function, in this case JT (θ),
with respect to the parameter θ. We will derive gradient
estimates of the option value with respect to the early
exercise threshold level. The commonly used gradient
estimation techniques are:

1. Likelihood Ratio Method (LRM) (see Rubinstein and
Shapiro [15]),

2. Perturbation Analysis (PA) which includes:

a) Infinitesimal Perturbation Analysis (IPA) (see Ho
and Cao [8]),

b) Smoothed Perturbation Analysis (SPA).

In this paper we will only consider PA techniques.

Infinitesimal Perturbation Analysis
Infinitesimal perturbation analysis (IPA) is simply the sam-
ple path derivative of the performance measure of interest,
JT (θ) in this case. It is defined by

∂JT

∂θ
= lim

ε→0

JT (θ + ε)− JT (θ)
ε

w.p. 1. (1)

For IPA estimator to be an unbiased gradient estimator, we
need

∂E [JT ]
∂θ

= E

[
∂JT

∂θ

]
. (2)

That is to say, unbiasedness reduces to the mathematical
question of an interchange of expectation and limit and
whose validity is checked by the dominated convergence
theorem (see Royden [14]).

Dominated Convergence Theorem.
If limh→0 gh = g w.p.1 and there exist an ε > 0 such that
|gh| ≤ K w.p.1 for every h ∈ [0, ε] with E[K] < ∞ and
K independent of θ, then limh→0 E[gh] = E[g].

If JT (θ) can be shown to be continuous and piecewise dif-
ferentiable on Θ w.p.1, which is usually accomplished by
the help of the generalized mean value theorem, then the
continuity of JT (θ) automatically satisfies unbiasedness
via the dominated convergence theorem.

Smoothed Perturbation Analysis
Suppose JT (θ) is biased, that is to say the interchange
given by Eq. (2) does not hold, generally because the
sample performance function is not “smooth” enough.
IPA technique then fails but an extension of it known
as smoothed perturbation analysis (SPA), composed of
an IPA component and a conditional component, helps
remedy this problem. Using the conditional expectation
operator, SPA provides a “smoothing” function. By
conditioning on an appropriately chosen set of random
variables, we form the conditional Monte Carlo estimator:

gh = E

[
J(θ + h)− J(θ)

h

∣∣∣∣ Z

]
, (3)

and hope to get an interchange of expectation and limit.

3. AN AMERICAN CALL ON A SINGLE
DIVIDENT-PAYING STOCK

Consider an American call option on a stock that distrib-
utes a dividend of amount D at time t1, i.e., there is a single
dividend payable during the lifetime of the contract [0, T ].
We denote by τ1 the time until the ex-dividend point and
by τ2 the time from the ex-dividend point to the expira-
tion date. We assume that after the ex-dividend the stock
price drops by the dividend amount, i.e., St+1

= St−1
−D,

where D is assumed. We know that an American call op-
tion can be exercised at any time before the expiration date
T . However, in this case where the stock pays a dividend,
it is well known that the option should only be exercised−
if at all − right before an ex-dividend date or at the expira-
tion date. We assume that the following policy is adopted.
There is an exercise threshold level s(≥ K) such that if
St−1

> s, the option is exercised. We wish to obtain an op-
timal threshold s in order to maximize the expected option
payoff. The sample performance is given by

JT = e−rT ĴT (4)
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where, ĴT , the undiscounted value of the option payoff is
given by:

ĴT = I{St−1
> s}(St−1

−K)er(T−t1)

+ I{St−1
≤ s}(ST −K)+ (5)

where St−1
= h(Z1; Ŝ0, τ1, µ, σ) + D,

ST = h(Z2; St−1
− D, τ2, µ, σ), Ŝ0 = S0 − De−rτ1 ,

Z1 and Z2 are two random variables with c.d.f. F1 and
F2 and p.d.f. f1 and f2, respectively, and the stock price
changes according to h(Z;S, t, µ, σ). For example, for the
Black-Scholes log-normal distribution h(Z; S, t, r, σ) =
Se(r−σ2/2)t+σ

√
tZ where Z is a standard normal random

variable. We are interested in estimating ∂E[JT ]/∂θ. St is
not almost surely continuous with respect to its parameters,
because there is a jump at the ex-dividend point. Hence the
IPA estimator is biased, and so we result to SPA, with the
estimator given by

(
∂JT

∂θ

)

PA

= e−rT

[(
∂ĴT

∂θ

)

PA

− ĴT
∂

∂θ
(rT )

]
, (6)

where

(
∂ĴT

∂θ

)

PA

=
∂h−1(y∗)

∂θ
f1(h−1(y∗))

∗ (E[ĴT |St−1
= s−]− E[ĴT |St−1

= s+])

+ I{St−1
> s} ∂

∂θ

[
(St−1

−K)er(T−t1)
]

+ I{St−1
≤ s} ∂

∂θ
(ST −K)+ (7)

where, omitting the explicit display of µ and σ for simpli-
fication purposes, we define

E[ĴT |St−1
= s−] = E[(ST −K)+|St−1

= s−]

= E[(h(Z2; s−D, τ2)−K)+], (8)
E[ĴT |St−1

= s+] = (s−K)er(T−t1), (9)

y∗ = (s−D; Ŝ0, τ1). (10)

4. EXAMPLE

We illustrate the estimators with an example where we set
θ to be s, the early exercise threshold level. We assume
that the stock price follows the Black-Scholes log-normal
distribution where f1(x) = f2(x) = e−x2/2/

√
2π. The

inverse is given by h−1(y;S, t, r, σ) = (ln(y/S) − (r −
σ2/2)t)/(σ

√
t), so we have

h−1(y∗) =
1

σ
√

τ1

(
ln

s−D

Ŝ0

− (r − σ2/2)τ1

)
, (11)

and

∂h−1(y∗)
∂s

=
1

(s−D)σ
√

τ1
; (12)

∂

∂s
[(St−1

−K)erτ2 ] = 0; (13)

∂

∂s
(ST −K)+ = 0. (14)

5. STOCHASTIC OPTIMIZATION

We now formulate the problem as an optimization prob-
lem. The generic form of an optimization problem is de-
fined as

min
θ∈Θ

g(θ), (15)

and the general form of a stochastic approximation algo-
rithm is given by (see Kushner and Yin [12])

θn+1 = ΠΘ(θn − an∇̂g(θn)), (16)

where ∇̂g(θn) is an estimate of the gradient from iter-
ation n, ΠΘ is a projection onto the controllable set of
parameters Θ, and an is a positive sequence of step sizes
satisfying

∑∞
1 an = ∞ and

∑∞
1 a2

n < ∞.

Our option pricing problem can be viewed as an optimiza-
tion problem where the option value is the point at which
the expected return, E(JT (θ)), is maximized with respect
to s, the early exercise threshold level. Since this is a max-
imization problem, the stochastic approximation algorithm
given by Eq. (16) takes the positive version of the recur-
sion, i.e.,

θn+1 = ΠΘ(θn + an∇̂g(θn)), (17)

and using Eqs. (6)-(10) we get:

∇̂g(θn) = e−rT ∂h−1(y∗)
∂s

f1(h−1(y∗))

∗ (E[(h(Z2; s−D, τ2)−K)+]
− (s−K)er(T−t1)), (18)
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where the last two terms of Eq. (7) are zero as portrayed
by Eqs. (13) and (14). For the example given in section 4,
Eq. (18) becomes:

∇̂g(θn) =
e−rT

(s−D)σ
√

τ1

√
2π

∗ exp−1
2

[
1

σ
√

τ1

(
ln

s−D

Ŝ0

− (r − σ2

2
)τ1

)]2

∗
(
E[(s−D)e(r−σ2/2)τ2+σ

√
τ2Z2 −K)+]

− (s−K)er(T−t1)
)

. (19)

6. NUMERICAL RESULTS

For the example given above we used the following set-
up. We took Θ to be the set of positive real numbers. In
the stochastic approximation algorithm given by Eq. (17),
we used the harmonic series, where an = a/n and we
took a to be 100 and n the number of simulation iterations
to be 10,000. After the 10,000 iterations, an additional
10,000 independent replications were used to estimate the
expected payoff. Initially the exercise threshold level was
set to be the same as the strike price (50 in this case). We
considered a fixed observation length of 100, but did not
consider any stopping rule since we were more interested
in tracking the improvement of the algorithm, which could
be done easily for this analytically tractable example. We
ran three sets of simulations corresponding to three divi-
dend amounts of 0.5, 1.0 and 1.5. Each set consisted of
10 different initial threshold levels from 50 to 59 consec-
utively. The other parameters were kept constant at the
following values:

K = S0 = 50, r = 0.10,

σ = 0.3, (τ1, τ2) = (60, 30).

The three tables (one for each dividend amount) give the
values of expected option payoff with respect to the early
exercise threshold values for each of the initial threshold
levels. The expectation term in Eq. (19), E[ĴT (θ10,000],
is the only one that need to be simulated, and it in fact
corresponds to the price of a European call option. Thus
we were able to apply the Black-Scholes formula, derived
in Baxter and Rennie [1], in the gradient estimator Eq.
(19) to compare with the performance of the stochastic
algorithm using the simulated gradient. From the Table
1 solutions, we observe a close agreement between the
analytical values of the Black-Scholes formula and the
simulation values. Similar results are portrayed in Table
2 and Table 3. The measure of precision, given by the
standard errors based on 10,000 samples, are shown in
the tables with parentheses (in hundredths). This is an
indication of how computationally efficient PA estimates

are in Monte Carlo simulation. For D = 0.5, we have a
maximum expected payoff value of 3.385 given by an
exercise threshold value of approximately 55. Exercise
threshold values above 55, as seen in Table 1, gave an
expected payoff value close to the optimal. This trend
is not borne in Table 2 and Table 3 with higher dividend
amounts, because a lower cash dividend makes the be-
havior of the American option closer to a European-type
option. Table 3, with the highest dividend amount, clearly
shows this distinction. The expected option payoff values
are seen to drop steadily as the exercise threshold values
increase above the optimal value of approximately 54 with
an expected payoff of 2.915.

Table 1:
D = 0.5, K = S0 = 50, r = 0.10,
σ = 0.3, (τ1, τ2) = (60, 30).

Initial Simulation Black- Optimal
Level Expected Scholes Level
(sn) Payoff ($) Payoff ($) (s∗)
50 3.173 (0.256) 3.099 57.08
51 3.215 (0.204) 3.221 56.45
52 3.285 (0.217) 3.279 56.17
53 3.279 (0.246) 3.266 56.98
54 2.999 (0.213) 3.075 56.25
55 3.385 (0.194) 3.399 55.44
56 3.327 (0.224) 3.325 56.12
57 3.299 (0.331) 3.312 55.80
58 3.278 (0.291) 3.294 55.96
59 3.202 (0.341) 3.162 56.12

Table 2:
D = 1.0, K = S0 = 50, r = 0.10,
σ = 0.3, (τ1, τ2) = (60, 30).

Initial Simulation Black- Optimal
Level Expected Scholes Level
(sn) Payoff ($) Payoff ($) (s∗)
50 2.941 (0.373) 2.918 56.94
51 2.817 (0.279) 3.044 56.19
52 2.985 (0.247) 2.992 56.22
53 3.237 (0.223) 3.249 55.33
54 3.306 (0.208) 3.294 55.05
55 3.159 (0.236) 3.184 55.64
56 3.093 (0.248) 3.105 56.07
57 3.005 (0.277) 3.019 56.11
58 2.897 (0.286) 2.994 57.07
59 2.642 (0.375) 2.699 57.23
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Table 3:
D = 1.5, K = S0 = 50, r = 0.10,
σ = 0.3, (τ1, τ2) = (60, 30).

Initial Simulation Black- Optimal
Level Expected Scholes Level
(sn) Payoff ($) Payoff ($) (s∗)
50 2.798 (0.331) 2.603 55.99
51 2.841 (0.312) 2.883 55.01
52 2.915 (0.210) 3.097 54.11
53 2.891 (0.270) 2.978 54.55
54 2.867 (0.301) 2.814 55.01
55 2.670 (0.322) 2.671 55.14
56 2.505 (0.329) 2.561 55.27
57 2.495 (0.338) 2.510 55.65
58 2.433 (0.355) 2.464 55.72
59 2.374 (0.409) 2.383 55.99

7. CONCLUSION

Although Monte Carlo simulation is useful for pricing
complex options markets, it could be time consuming and
expensive depending on how it is implemented. In this pa-
per, we investigated the use of gradient estimation tech-
niques that were efficiently carried out in Monte Carlo
simulation. Using perturbation analysis techniques we ob-
tained both an estimate of the option value together with
estimates of sensitivities of the option value to various pa-
rameters of the model. These sensitivity estimates were
used in a stochastic approximation algorithm, called a
Robbins-Monro-like algorithm, in order to maximize the
expected return of the option payoff. Due to the generality
of Monte Carlo simulation, these techniques can be applied
to a growing subset of option pricing problems.
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