

Cluster-based DBMS Management Tool with High-Availability

Jae-Woo Chang, Young-Chang Kim
Dept. of Computer Engineering, Chonbuk National University

Chonju, Chonbuk 561-756, South Korea

ABSTRACT

A management tool which is needed for monitoring and
managing cluster-based DBMSs has been little studied. So, we
design and implement a cluster-based DBMS management tool
with high-availability that monitors the status of nodes in a
cluster system as well as the status of DBMS instances in a
node. The tool enables users to recognize a single virtual
system image and provides them with the status of all the nodes
and resources in the system by using a graphic user interface
(GUI). By using a load balancer, our management tool can
increase the performance of a cluster-based DBMS as well as
can overcome the limitation of the existing parallel DBMSs.

Keywords: Cluster management tool, cluster-based DBMS,
high-availability

1. INTRODUCTION

Cluster systems developed by connecting PCs and workstations
using high-speed network [1] is required to support 24-hours
nonstop service for the Internet. Therefore, there are a wide
range of researches on cluster-based DBMSs that offer a
mechanism to support high performance, high availability, and
high scalability [2,3,4]. They include Oracle 9i Real
Application Server, Informix Extended Parallel Server and
IBM DB2 Universal Database EEE. To manage the cluster-
based DBMS efficiently, a management tool for the cluster-
based DBMS is needed. First, the tool enables users to
recognize a cluster system consisting of multiple nodes as a
single virtual system image. Secondly, by using a graphic user
interface (GUI), the cluster-based DBMS management tool
provides users the status of all the nodes in a system and all the
resources (i.e., CPU, memory, disk) in a node. Thirdly, a load
balance function is needed to make all the nodes perform
effectively by evenly distributing user’s requests. Finally, a
fail-over technique is needed to support high availability when
the node failure is occurred [5,6].
In this paper, we design and implement a cluster-based DBMS
management tool which monitors the status of all the nodes in a
cluster system as well as the status of DBMS instances in a
node. The tool enables users to recognize a single virtual
system image and provides them with the status of all the nodes
and resources in the system by using a graphic user interface
(GUI). In addition, our cluster-based DBMS management tool
with a load balancer can increase the performance of a cluster-
based DBMS as well as can overcome the limitation of the
existing parallel DBMSs.
The rest of this paper is organized as follows. The next section
discusses related work on existing cluster management tools. In
section 3, we design a cluster-based DBMS management tool
and its graphic user interface. In section 4, we describe the
implementation and the performance analysis of our cluster-

based DBMS management tool. Finally, we draw our
conclusions in section 5.

2. RELATED WORK

In this section, we introduce the existing management tools; the
OCMS(Oracle Cluster Management System) [7] which is well
known as a cluster-based DBMS management tool and the
SCMS(SMILE Cluster Management System) [8] which is a
cluster system management tool for Linux Beowulf. OCMS is
included as a part of the Oracle8i Parallel Server product on
Linux and provides cluster membership services, a global view
of clusters, node monitoring, and cluster reconfiguration. It
consists of the watchdog daemon, node monitor, and cluster
manager. First, the watchdog daemon offers services to the
cluster manager and to the node monitor. It makes use of the
standard Linux watchdog timer to monitor selected system
resources for preventing database corruption. Secondly, the
node monitor passes node-level cluster information to the
cluster manager. It maintains a consistent view of the cluster
and informs the status of each local node of the cluster manager.
The node monitors also cooperates with the watchdog daemon
to stop the node with the abnormally heavy load. Finally, the
cluster manager passes instance-level cluster information to the
Oracle instance. It maintains the process-level status of a
cluster system. The cluster manager accepts the registration of
Oracle instances to the cluster system and provides a consistent
view of the Oracle instances. Figure 1 shows the overall
architecture of OCMS.

Figure 1. Overall architecture of OCMS

The SCMS is developed by the Kasetsart university in Tailand
as a cluster system management tool for Beowulf cluster. It
consists of CMA (Control and Monitoring Agent),
SMA(Systems Management Agent), and RMI(Resource
Management Interface). First, the CMA runs on each node and
collects system statistics continuously. The CMA reads system
information through a layer called HAL(Hardware Abstraction
Layer). Secondly, the system statistics are collected by a
centralize resource management server called SMA. The SMA
responses a user query on a system status and sends some

46 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 ISSN: 1690-4524

commands to the CMA. Finally, the RMI is provided as a set of
APIs for system monitoring and logging applications. By using
the RMI, the SCMS provides monitoring softwares,
configuration utilities, and parallel Unix commands. Figure 2
shows the overall architecture of SCMS.

Figure 2. Overall architecture of SCMS

3. DESIGN OF CLUSTER-BASED DBMS
MANAGEMENT TOOL

The cluster-based DBMS consists of multiple server nodes and
uses a shared disk. Each server node is connected with each
other by using high-speed gigabit Ethernet. A master node
performs both roles of a gateway of the cluster system and a
server node. A master node manages all the information
gathered from all the server nodes and makes use of a Linux
virtual server for its scheduling algorithms. First, a user service
request is transmitted to the master node by using virtual IP.
The Master node send it to a server node selected by the
scheduling algorithm of the Linux virtual server. The selected
server node processes the user request and returns a result to
the user. Figure 3 shows the overall architecture of cluster-
based DBMS using high-speed gigabit Ethernet.

Internet

Master node
& Server

Backup node
& Server Server Server

Service request Result

Job distribution
Shared

disk

Client Client

Internet

Master node
& Server

Backup node
& Server Server Server

Service request Result

Job distribution
Shared

disk

Client Client

Figure 3. Overall architecture of Cluster-based DBMS

Cluster-based DBMS Management Tool
The cluster-based DBMS management tool monitors both the
status of system resources and database instance in each node.
It also perceives the error of each node and performs its
recovery procedure to make a cluster-based DBMS run in a
normal situation. To design a good monitoring tool, we first
minimize the objects to be monitored so that we may avoid the
additional load of monitoring itself. Secondly, we change the
frequency of monitoring dynamically so that we may control
the amount of network traffic where a node transmits its status
information to the master node. The cluster-based DBMS
management tool consists of four components; probe, handler,
CM(Cluster Manager), and NM(Node Manager). In addition,
the probe (or handler) can be classified into system, DB, and

LB(Load Balancer) probes (or handler). Figure 4 shows the
components of the cluster-based DBMS management tool.

System
Handler

CM

System
ProbeSysmon

NM

LB
Handler

LB
ProbeLB

DB
Handler

DB
ProbeDB

Backup
CM

Master
& Server 1

Backup
& Server 2

Server 3

Server 4

System
ProbeSysmon

NM
DB

ProbeDB

System
ProbeSysmon

NM
DB

ProbeDB

System
ProbeSysmon

NM
DB

ProbeDB

System
Handler

CM

System
ProbeSysmon

NM

LB
Handler

LB
ProbeLB

DB
Handler

DB
ProbeDB

Backup
CM

Master
& Server 1

Backup
& Server 2

Server 3

Server 4

System
ProbeSysmon

NM
DB

ProbeDB

System
ProbeSysmon

NM
DB

ProbeDB

System
ProbeSysmon

NM
DB

ProbeDB

Figure 4. Components of cluster-based DBMS management
tool

 System Probe & System Handler: The system
probe monitors the status of CPU, memory, disk, and network
of each node. For this, we uses /proc virtual file system to
gather the status information of the main system resources,
such as CPU, memory, and disk, as well as the transmission
and reception status of packets through the network. The
system probe also generates events according to the status of
the system. When the monitoring is performed without errors,
the system probe sends the events and the monitored
information to the system handler. The system handler stores
the events and the monitored information into the service status
table, and it performs a procedure according to the events.
When an error occurred in the network, the system probe
updates the service status table. If the system probe or NM has
a failure, the system handler makes them restart.

 DB Probe & DB Handler: In the DBMS side, the
DB Probe monitors the usage rate of CPU and memory when
DBMS is running and generates events as a status of DBMS.
When the cluster-based DBMS runs without an error, the DB
probe generates ‘DB_ALIVE’ event. The DB Handler
maintains the service status table and performs a procedure
according to the event. In case the cluster-based DBMS has a
failure, the DB probe performs a procedure to recover the
transaction, removes the failed server node from the available
server list, and makes the cluster-based DBMS restart. It also
performs a recovery procedure according to the network error
perceived by CM.

 LB Probe & LB Handler: The LB probe monitors a
load balancer and generates event as a status of load balancer.
For this, we use make use of a Linux virtual server as a load
balancer [9]. That is, we adopt a direct routing technique
among the system structures supported by the Linux virtual
server and use a round robin scheduling algorithm. When the
Linux virtual server runs without an error, the LB probe
generates ‘LB_ALIVE’ event. The LB handler maintains the
service status table and it performs a procedure according to the
event. In case the Linux virtual server has a failure, the LB
probe removes the failed server perceived by CM from the
available server list and makes the Linux virtual server restart.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 47ISSN: 1690-4524

 NM(Node Manager): The NM is a component
which manages a network communication with CM in the
master node. It transmits both the event generated by each
probe and the monitored information to the CM in the master
node. It also perceives the status of CM according to the
response of the CM. If the NM perceives the error of master
node during the communication with the CM, the NM makes a
connection with the backup node and transmits all the
information to it. The NM also generates an event and transmit
it to the CM when it perceives an error of each probe. If the
NM does not receive a response from the CM during a defined
interval, the NM considers that the CM has failed and makes a
connection with a backup node.

 CM(Cluster Manager): The CM running on the
master node manages a service status table that describes the
process status of each service, probe, and NM. The CM also
perceives the status of networks by sending a ping message to
each server node through both the cluster network and the
service network. Based on the status of networks and service
status table, the CM manages all system resources and services.
It also analyzes the events received from the each server node
and transmits them to a handler to perform the appropriate
procedure. If the CM perceives an error of the NM, it makes
the NM restart. If the CM perceives an error of network by
using the ping message, it generates an event and transmits it to
the corresponding service handler to perform its recovery
procedure. Because the CM is running on the master node, the
failure of the master node causes the failure of whole cluster-
based DBMS. To solve the problem, the CM selects a backup
node that plays a role of the master node when the master node
has failed. The backup CM running on a backup node
communicates with the CM of the master node and stores into
its local disk all information which the master CM manages. If
the CM perceives the failure the backup node, it selects one of
the available server node as a backup node.

Recovery procedures for failures
Server nodes consisting of a cluster system can be classified
into a master node, a backup node, and a database server node.
Also the status of nodes can be classified into four types
according to the status of both service and cluster networks.
First, if there is no failure in both networks, the cluster system
run with a normal situation. Secondly, if the service network
fails, a server node can communicate with the other nodes, but
it cannot receive a user request and return the result to the user.
Thirdly, if the cluster network fails, a server node cannot
communicate with the others and so a master node cannot
distribute a user request to a server node. Finally, if both
networks fail, the situation is considered as node failure since a
node cannot work anymore. We can classify the status of node
according to network failures as shown in Table 1.

Table 1. Classification of network failures
Network

Status of node
Cluster
network

Service
network

Normal situation O O
Service network failure O X
Cluster network failure X O

Node failure X X

 Master node failure: In the cluster system, a master
node manages a cluster-based DBMS by distributing a user
request to the each server node. The master node sends a ping

message to each server node in the cluster system and perceive
the failure of a node by analyzing the response of each server
node. When the master node never receives the responses from
all the server nodes, it regards the situation as the cluster
network failure. Meanwhile, when the backup node cannot
communicate with the master node using a ping message, it
regards the situation as the master node failure. To prevent this
situation, a backup node checks a failure of master node by
sending it a ping message periodically and becomes a new
master node when the master node has failed.

 Backup node failure: In the cluster system, the
backup node stores all the information received from the CM
and monitors the master node. When the master node has failed,
the backup node becomes a new master node and selects one of
available server nodes as a backup node. When the backup
node has failed, the cluster-based DBMS management tool
perceives the failure and terminates the backup node. Then the
backup node terminates active DB, Sysmon, NM, and its
backup CM. In this time, the master node performs its recovery
procedure to remove the backup node from available server
nodes and to select a new backup node from them.

 DB server node failure: In the cluster system, the
failure of a server node can cause the failure of the entire
cluster-based DBMS because the cluster-based DBMS uses a
shared disk. Therefore, the cluster-based DBMS management
tool should perform a recovery procedure to preserve data
integrity by preventing the failed server node from accessing
data. First, when the service network has failed, all the server
nodes should stop its transactions and should perform its
recovery procedure since it cannot return the result of a user
request to the user. Secondly, when the cluster network has
failed, all the server node should do the same thing as the
above one because it cannot receive a user request from the
master node as well as cannot communicate with the other
server nodes. Finally, when the node has failed, the cluster-
based DBMS management tool removes the server node from
the available ones of the Linux virtual server and informs the
other server nodes of the failure of the server node itself. In this
time, the failed server node performs its recovery procedure to
recovers its transactions and terminate database. The other
server nodes should recover the data of the failed node.

User interface for our cluster-based DBMS management
tool
We describe a convenient user interface for our cluster-based
DBMS management tool that presents both the status of system
information and the status of DBMS information that are
monitored by a system probe on each server node. The system
information consists of CPU, memory, disk, network, and node
status. To present the status of CPU and memory, we use the
file /proc/meminfo and /proc/stat. We depict the status of
memory by the current usage rate of memory and the
occurrence ratio of memory swapping. The left part of Figure 5
shows a user interface for the CPU and memory status of
system information. In the figure, we show that our cluster
system consists of four server nodes and the first node is the
master node. In the master node, it is shown that the usage rate
of CPU, memory, and swap memory are 25%, 96%, and 6%,
respectively. To present the status of disk, we use the file
/proc/mounts. We depict a current used disk space, an available
disk space, and a total mounted space. The central part of
Figure 5 shows a user interface for the disk status of system
information. In the master node, it is shown that the total

48 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 ISSN: 1690-4524

mounted disk space, available disk space, and current used
space is 4916Mbyte, 2502Mbyte, and 2413Mbyte, respectively.
For the status of the network, we use the file /proc/net/dev. We
depict the network information such as received packet,
received error packet, sending packet, sending error packet.
The right part of Figure 5 shows a user interface for the
network status of the system information. In the master node, it
is shown that the number of received packets, received error
packets, sending packets, and sending error packets are 198, 0,
185, and 0, respectively. Here ACTIVE denotes that the
corresponding service is available while INACTIVE denotes
that the corresponding service is not running on the server node.

Figure 5. User interface for system information

Figure 6. User interface for DBMS information

Figure 6 shows the user interface for DBMS information. We
can recognize multiple DBMS processes and node commit is
running on the master node. The process of PID 959 with
S(Sleep) status makes use of 7% of CPU.

4. IMPLEMENTATION AND PERFORMANCE
ANALYSIS OF CLUSTER-BASED DBMS

MANAGEMENT TOOL

In this section, we implement our cluster management tool
using iBASE/Cluster and do its testing and performance
analysis. Table 2 describes our system implementation
environment. For our implementation, we make use of Redhat
Linux 7.1 operating system and iBASE/Cluseter DBMS [10].

Also, we make use of Linux virtual server as a load balancer
[9].

Table 2. System implementation environment

System 450 Mhz CPU/HDD 30GB/128MB Memory
* 4

OS Redhat Linux 7.1 (Kernel 2.4.5)

Compiler gcc 2.96
make 3.79.1

Database iBASE/Cluster
Loadbalancer linux virtual server 0.81

Testing for our cluster-based DBMS management tool
For the testing, we make use of a cluster system containing four
server nodes each of which iBASE/Cluster is running on. In a
normal situation, the service requests of users are transmitted to
the master node. The Linux virtual server on the master node
distributes a user request to one of the available server node
according to its round-robin algorithm. Figure 7 shows the user
interface of the normal situation where four server nodes
containing the cluster system are active. The first server node
serves as a master node and second server node serves as a
backup node. In the figure, it is shown that the NM, the Sys
(Sysmon) and the iBase (iBASE/Cluster) are in active state and
the Linux virtual server and GLM (global lock manager) of the
cluster-based DBMS is running on the master node. When the
master node failure is occurred, we disconnect the master node
from the cluster network that is used for the communication
with other server nodes. Figure 8 shows the user interface of
our cluster-based DBMS management tool when the master
node has failed. In the figure, the second node functioning as
the backup node plays a role of a new master node. It is shown
in the first node that the NM, the Sysmon, the LB, and the
iBASE/Cluster are not in active state. In addition, the Linux
virtual server and GLM of the cluster-based DBMS is running
on the second node. Meanwhile, when the backup node failure
has occurred, we disconnect the backup node from the cluster
network. The second server node functioning as a backup node
is now in an inactive state and one of other server node is
selected as a backup node.

Figure 7 User interface of the normal situation

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 49ISSN: 1690-4524

Figure 8 User interface when the master node failure has

occurred

Performance analysis
We do the performance analysis of our cluster-based DBMS
management tool using iBASE/Cluster. We cannot compare the
performance of our cluster-based DBMS management tool with
that of OCMS because it is a cluster-based DBMS management
tool for Oracle, but does not support the recovery procedure for
the iBASE/Cluster. Therefore, we estimate both a sensing time
for three types of node failures and a time to perform a
recovery procedure for them. Table 3 shows the sensing time
and the recovering time for three types of node failures.

Table 3. Sensing time and recovering time for three types of
node failures.

 Sensing time Recovering time
Master node failure 0.91 0.78
Backup node failure 0.89 0.51
Database server node

failure 0.81 0.71

First, when the master node failure is occurred, the backup
node becomes aware of the master node failure by using the
result of ping message sent to the master node. We set the limit
of response time for the ping message to 2 second. The time for
sensing the master node failure is 0.91 second and the time for
doing its recovery procedure is 0.78 second. If the backup node
plays a role of the master node, it sets its virtual IP and creates
its thread monitoring the network status of nodes in the cluster
system. Secondly, when the backup node failure is occurred,
the master node becomes aware of the failure and selects one of
available server nodes as a backup node. The time for sensing
the backup node failure is 0.89 second and the time for doing
its recovery procedure is 0.51 second. A new backup node
creates a thread to monitor the master node and receives the
information of the service status table of the master node
periodically. Finally, when the database server node failure is
occurred, the master node perceives the failure and performs its
recovery procedure. The time for sensing the database server
node failure is 0.87 second and the time for doing its recovery
procedure is 0.71 second. If a database server node failure has
occurred, the master node removes the server node from the
available server list in order that a user request is not
transmitted into the sever node anymore.

Table 4 shows the major differences between our cluster
DBMS management soft-ware and OCMS. First, the cluster
manager of OCMS performs its task on each node and
communicate each other through the private network. Assume
that there are N server nodes, the total number of messages for
communication in OCMS is (N-1)*N. However, our cluster
DBMS management software only needs 2N messages. That is
to say, OCMS has more network overhead than our cluster
DBMS management soft-ware. Secondly, OCMS uses a
quorum partition to recognize the failure of other nodes. If the
number of nodes is increased, more nodes attempt to read the
quorum partition, thus resulting in the degradation of recovery
performance. However, our cluster DBMS management
software keeps the history status information of every node to
recognize failures. If a node detects multiple node failures
based on the comparison between a current status and a history
status, we consider it the failure of the detecting node since the
multiple node failures are not assumed to occur at the same
time. Be-cause this scheme is not affected by the number of
nodes, our cluster DBMS manage-ment software is efficient
than OCMS in terms of scalability.

Table 4. Differences between our cluster DBMS management
software and OCMS

 Our cluster
Management Software OCMS

Network
Communication Centralized Distributed

Failure Detection History status
information

Quorum
partition

5. CONCLUSTION

In this paper, we designed and implemented a cluster-based
DBMS management tool managing a cluster-based DBMS
efficiently. Our cluster-based DBMS management tool
monitored the system resources of all the server nodes and
became aware of the failure of nodes. When the failure has
occurred, our cluster-based DBMS management tool performed
its recovery procedure in order to perform a normal service,
regardless of the failure. Our cluster-based DBMS management
tool enables users to recognize a single virtual system image
and can provide them the status of all the nodes and resources
by using a convenient graphic user interface (GUI). Finally, we
performed the testing of our cluster management tool using the
iBASE/Cluster-based DBMS. The testing result shows that our
cluster-based DBMS management tool can supports nonstop
service by performing its recovery procedure even though a
node has failed.

6. REFERENCES

[1] Rajkumar Buyya , High Performance Cluster Computing

Vol 1,2, Prentice Hall PTR, 1999.
[2] High Performance Communication, http://www-

csag.cs.uiuc.edu/projects/communic
ation.html.

[3] C. S. You, “Linux Clustering”, Communication of the
Korea Information Science Society, Vol 18, No 2, pp33~39,
2000.

50 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 ISSN: 1690-4524

[4] J. Y. Choi, S. C. Whang, “Software Tool for Cluster”,
Communication of the Korea Information Science Society,
Vol 18, No 3. pp40~47, 2000.

[5] Gregory, F.Pfister, In Search of Clusters 2nd Edition,
Prentcs-Hall, 1998.

[6] Linux Clustering, http://dpnm.postech.ac.kr/
cluster/index.htm.

[7] Oracle Corporation, "Oracle 8i Administrator's Reference
Release3(8.1.7) for Linux Intel", chapter 7, Oracle Cluster
Management Software, 2000.

[8] Putchong Uthayopas, Jullawadee Maneesilp, Paricha
Ingongnam,"SCMS: An Integrated Cluster Management
Tool for Beowulf Cluster System", Proceedings of the
International Conference on Parallel and Distributed
Proceeding Techniques and Applications 2000 , Las Vegas,
Nevada , USA , 26～28 June 2000.

[9] Linux Virtual Server, http://www.linuxvirtualserver.org.
[10] Hong-Yeon Kim, Ki-Sung Jin, June Kim, and Myung-

Joon Kim, "iBASE/Cluster: Extending the BADA-IV for a
Cluster Environment", Proceeding of the 18th Korea
Information Processing Society Conference, Vol. 9, No. 2,
pp. 1769-1772, Nov. 2002.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 3 - NUMBER 1 51ISSN: 1690-4524

	P408209

