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ABSTRACT 
 
This paper proposes an adaptive queue management scheme 
(adaptive RED) to improve Random Early Detection (RED) on 
restraining non-responsive flows. Due to a lack of flow control 
mechanism, non-responsive flows can starve responsive flows 
for buffer and bandwidth at the gateway. In order to solve the 
disproportionate resource problem, RED framework is modified 
in this way: on detecting when the non-responsive flows starve 
the queue, packet-drop intensity (Max_p in RED) can be 
adaptively adjusted to curb non-responsive flows for resource 
fair-sharing, such as buffer and bandwidth fair-sharing. Based 
on detection of traffic behaviors, intentionally restraining non-
responsive flows is to increase the throughput and decrease the 
drop rate of responsive flows. Our experimental results based on 
adaptive RED shows that the enhancement of responsive traffic 
and the better sharing of buffer and bandwidth can be achieved 
under a variety of traffic scenarios.  
 
Keywords 
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1. INTRODUCTION 
 
Congestion control heterogeneity in the Internet leads to fairness 
problems of resource sharing. Especially, non-responsive flows 
do not back off their transmission rates in response to congestion 
indications of the network (i.e. packet loss) [5]. Consequently, 
non-responsive flows tend to consume unfairly resource—high 
bandwidth and buffer space [6] at congestion points. A large 
number of UDP-based applications generate this kind of flows. 
It is necessary to employ a flow management mechanism for the 
fair utilization of network resource. It may also be helpful to 
satisfy more users’ QOS requirement. 
 
There are two kinds of flow management mechanisms that try to 
achieve the resource fair sharing: scheduling scheme and queue 
management scheme. Scheduling schemes have generally too 
much complexity and low scalability to large number of flows. 
If we plan to provide fair utilization on high-speed edge router, 
queue management scheme could be a better choice. Queue 
management scheme not only has less complexity, but also 
approximates fairness better. Router with a queue management 
scheme maintains a single FIFO shared by all flows [1] and 
employs a dropping algorithm to discard arriving packets when 
congestion builds up. Dropping probability increases with the 
raise of congestion level. By adjusting dropping probability for 
in-queue flows, it can achieve a better fairness for the resource 
utilization between flows. 

One of classic queue management schemes is Random Early 
Detection (RED). The RED utilizes a random dropping 
algorithm [4]. In a RED gateway, incipient congestions are 
detected by estimated average queue size. Average queue size is 
calculated via a low-pass filter. When the average queue size 
exceeds a preset threshold, the gateway drops packets with a 
certain probability that is calculated based on the average queue 
size. In the RED gateway, occasional bursts of packets in the 
queue are allowed and average queue size is kept at low level 
[6]. Although RED decreases loss-bias against responsive traffic 
that exists in the Drop Tail queue, it does not achieve a fair-
share of the buffer and bandwidth between responsive flows and 
non-responsive flows [2]. One possible reason is that given a 
certain time slot the percentage of packets dropped from each 
flow is almost the same. As a result, non-responsive flows may 
consume a larger portion of the bandwidth at congestion points 
because of its lack of flow control mechanism [3]. 
Consequently, non-responsive flows can starve out the 
responsive flows. 
 
In order to solve the disproportionate resource problem, several 
variants of RED have been proposed, such as Flow Random 
Early Drop (FRED) [7], Refined Design of Random Early 
Detection Gateways [6] and Self-Configuring RED Gateway [9]. 
However, FRED maintains extra flow state which increases 
implementation overhead. As for the Refined Design of RED, it 
dynamically adjusts the Wq (queue weight) and Max_p 
(maximum drop probability) with respect to the variance of 
queue size change. However, it divides the area between 
minimal threshold and maximal threshold, called Yellow area 
[4], into several sub-phrases that increases implementation 
overhead as well. In addition, it still does not consider the fair 
sharing of the buffer and bandwidth between responsive flows 
and non-responsive flows. Self-Configuring RED Gateway also 
employs an adaptive parameterization at RED gateway. Without 
considering non-responsive traffic, adaptive parameterization is 
only based on the congestion level indicated by the average 
queue length. It can effectively adapt to traffic scenarios with 
different congestion levels. However, it does not distinguish 
responsive and non-responsive traffic. In some cases of medium 
congestion, responsive traffic may get suffered due to the 
unfriendly behaviors of non-responsive traffic. 
 
If we can distinguish non-responsive flows from responsive 
flows, a resource fair-sharing between them can be properly 
managed. Unfortunately, any methods based on per-flow state 
must increase the implementation overhead. However, we are 
aware of the approaches that try to approximately discern non-
responsive flow and responsive flow according to certain traffic 
features [5]. Such a feature could be an extraordinary high 
congestion or an improper reaction to congestion notification. 
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We then propose to detect flow’s behavior based on the variance 
of instantaneous queue size. Based on the detection, we can 
penalize non-responsive flows and improves responsive flows’ 
throughput via adaptive adjustment of the drop probability.  
 
The rest of the paper is organized as follows. Section 2 presents 
flow behaviors in conjunction with the RED queue and notes 
some flaws of RED algorithm. Section 3, describes our proposed 
queue management scheme “Adaptive RED with restraint on 
non-responsive flows”. In Section 4, we compare our approach 
with other schemes via simulation. Finally, we give discusses 
and conclusions in Section 5.  
 
 

2. BACKGROUND 
 
2.1 RED Scheme Overview 
 
RED (Random Early Detection) is a congestion avoidance 
mechanism employed at gateways. Its basic idea is to use two 
preset thresholds to detect incipient congestion and control the 
average queue size with the threshold [2]. With respect to the 
estimated average queue size, the gateway works in one of three 
working states: red, green and yellow states [6]. When the 
average queue size is less than the Min_th (minimum threshold), 
the gateway works in the green state without packet drop. When 
the length is between the Min_th and Max_th (maximum 
threshold), the state transfers to yellow one in which arriving 
packets are randomly dropped with a probability calculated on 
average queue length. When the length goes beyond the 
maximum threshold, the gateway reaches the red state in which 
every arriving packet is discarded [6].  The goal of RED scheme 
is to detect incipient congestion via average queue size and 
perform random packet dropping before the queue is full. 
Therefore, it can implement congestion avoidance while 
allowing short-term bursty. 
 
Although RED prevents packets from consecutive dropping 
(especially for bursty traffic) and removes higher loss bias 
against bursty traffic [4], it still has some flaws: 
1. RED is unable to refrain non-responsive flows from 
consuming most buffer space at heavy congestion [3]. 
2. Average queue size is not a good estimator of congestion. 
Severe congestion should be related to the amount of flows and 
the degree of burstiness [2].  
3. It is not clear how to select the RED parameters. RED 
requires selecting various parameters in different congestion 
scenarios. That is why recommended values had been changed 
over time [2]. 
 
 
2.2 Flow Behaviors in the RED Queue 
 
Generally speaking, most of TCP flows with congestion control 
are regarded as responsive flows, while UDP flows without 
congestion response are considered non-responsive flows [5]. 
TCP congestion control utilizes an Additive 
Increase/Multiplicative Decrease mechanism to adjust the flow 
rate [8]. This mechanism causes the burstiness of TCP flows. 
Since TCP congestion control is based on end-to-end feedback, 
the control response is relatively sluggish in comparison with 
queue operation. It implies that TCP would keep the sending 
rate for a while after packet dropping. The control latency is 
equal to the TCP timeout, which is usually four times as much 
as RRT (Round Trip Time) [8]. On the other hand, non-

responsive flows have no congestion control mechanism. They 
do not respond to congestion notification and thus send packets 
as many as they want.  
 
At the RED-suite gateways, TCP flows (responsive flow) tend to 
decrease sending rate after average queue size goes beyond the 
minimal threshold. However, RED does not penalize non-
responsive flow, because packet drop ratio of each flow over 
time is almost same. Although UDP flows (non-responsive 
flow) with high bandwidth may suffer more packet dropping, 
they obtain much more throughput than TCP flows do. 
Consequently, non-responsive flows may take up the most 
bandwidth and starve out responsive flows [3]. Since RED uses 
static parameters to deal with dynamic traffic, the effectiveness 
of RED depends on the appropriate parameterization. It is 
known that no single set of RED parameters works well under 
different congestion scenarios, including the case that TCP is 
mixed with UDP. 
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(a) Two 250k UDP flows are mixed with TCP flows 
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(b) Two 100k UDP flows are mixed with TCP flows 

 
Figure 1. TCP loss rate vs. Max_p 

Simulation result in Figure 1 shows that the total loss rate is 
pretty high for the small Max_p. As Max_p increases, loss rate 
decreases since the RED queue is able to send congestion 
notification back to the sources in time to prevent continuous 
buffer overflow. Finally, when Max_p becomes quite large, the 
RED queue causes an increase in packet loss rates over Drop 
Tail queues. As more connections are added, the optimal value 
of Max_p increases. It clearly supports that an adaptive scheme 
for drop probability is required. More extensive and detailed 
discussion can be also found in [9]. The details of the simulation 
are fully described in Section 4. 
 
 

3. ADAPTIVE RED WITH RESTRAINT 
ON NON-RESPONSIVE FLOWS 

 
Though TCP flows are dominant traffic in Internet, more and 
more multimedia applications tend to generate UDP flows, 
mostly belonging to non-responsive flows. It is because those 
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applications mainly concern the delay constraint instead of data 
integrity. It is necessary to deploy a flow management 
mechanism to implement a fair utilization of network resource. 
 
3.1 Basic assumption 
 
Given that packet-processing rate is invariable (service rate: rS ) 
and non-responsive flows have the arrival rate )(tRnon , the 
instant queue size is determined by: 

dtStRtRtQ rrepnon

t

tinst
i

))()(()( −+= ∫   (1) 

, where )(tRrep  is the arrival rate of responsive flows; it is the 

initialization time. 
The average rate of n TCP-friendly flows (responsive flow) can 
be approximately calculated as [10]: 
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2
3
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, where RTT is the round trip time and p is the loss probability 
of flow. It is applicable only when the p is small. According to 
the Eq. (1), given a small time slot T with the size of t∆ , change 
in queue size is mainly determined by the arrival rate of flows: 
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Considering two consecutive slots 
jT and 

1+jT with the same 

size t∆ , the variance of arrival rate r∆  ( =∆r  
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Suppose j
repr is the average arrival rates of responsive flows at 

slot 
jT and RTTt ≈∆ , extending Eq. (2) the variance of 

responsive flows’ arrival rate 
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, where jp and 1+jp are drop probability at 

jT and 
1+jT . 

 
3.2 RED Queue Analysis  
 
The very important feature of RED algorithm is the use of a 
low-pass filter to estimate the average queue size [6]. The low-
pass filter employs the EWMA (exponentially-weighted moving 
average) given by [4]: 

instqaveqave QwQwQ +−= ')1(   

,where qw is the weight factor. aveQ and 'aveQ  are the current 

and previous average queue size respectively. 
 
Figure 2 shows the drop function of RED. Drop rate of RED is 
presented by:  
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Extending Eq. (4), we can have: 
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Figure 2.  Drop function of RED 

  
The tendency of responsive flows can be detected via 

))()(( 1 javejaveaveave QQQQ ττ ∆−∆=∆∆ + . When 
aveQ increases to 

the “yellow state” [2], rrep  should decease accordingly. However, 
if nonr gets inverse tendency at that time, the arrival rate of all 
flows ( r ) increases. It causes responsive flows starved and 
resource unfairly shared. 
 
3.3 Adaptive RED Scheme 
 
Adaptive RED is proposed to detect non-responsive (unfriendly) 
flow behaviors via monitoring the variation of queue length, 
including instant and average queue length. At congestion, 
responsive flows decrease its rate while non-responsive flows 
may keep or increase the rate. Therefore, adaptively adjusting 
packet-drop intensity may restrain non-responsive flows to 
starve responsive flows. We apply this adaptive scheme only if 
the average queue length ranging from Mid_th 
((Min_th+Max_th)/2) to Max_th. In that medium congestion 
area, responsive flows just get essential suffering and take deep 
congestion response.  
 
Based on our assumption and analysis in Section 3.1 and 3.2, 

aveQ∆ indicates the tendency of responsive flows and insQ2∆  
( )()1(2

jinstQjinstQinstQ ττ ∆−+∆=∆ ) reflects the variation of arrival 

rate r∆ . If both of them are positive, nonr∆  must be positive 
too. It implies non-responsive flows take unfriendly response 
against responsive flows and the ratio of non-responsive flows 
and responsive flows gets increased. At that time, unfair 
resource sharing happens and the adjustment of drop density is 
needed. In order to avoid too aggressive of packet dropping, 
drop density needs to be adjusted back once the condition is not 
satisfied ( 0|02 <∆<∆ aveinst QQ ). We then propose our 
algorithm as follows: 
 

Every T (control slot):
While ( Max_th > Qave > Mid_th)

if 
Max_p = Max_p*α

else
Max_p =Min (Max_p0 , Max_p/α)

0&02 >∆>∆ aveinst QQ

Max_p0: Default Max_p
α: the scale factor of Max_p

 
α is the scale factor to extend the Max_p. Max_p0 is the preset 
parameter of drop density. Based on the observation of 

aveQ∆ and 
instQ2∆ , the algorithm detects unfriendly traffic 
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behaviors and modulates the value of Max_p by the factor of α. 
The parametersα  is experimentally chosen according to the 
control slot (T) which determines the control sensitivity. If 
control slot is too small, there is no enough time for responsive 
flows to response and the scheme may become more aggressive 
and cause control oscillation. On the other hand, it may become 
insensitive and cause control sluggishness. In the simulation, we 
chose control time slot as 0.2s (average RTT). This slot size can 
accommodate the short burstiness and avoid the control 
vibration. 
 
 

4. SIMULATION RESULTS 
This section presents the simulation results of Adaptive RED’s 
performance with refraining of non-responsive flows and 
enhancing the responsive flows. The simulations range over 
network configurations and traffic patterns. 
 
4.1 Basic network Configuration  
 
Network simulation topology is shown in Figure 3. There is a 
single congested link from GW1 to GW2 in a dumbbell 
topology. The congested link is 1Mbps; others are 10 Mbps each.  
TCP and UDP flows pass through the congested link. The 
number of TCP flows ranges from 8 to 32, while that of UDP 
flows ranges from 2 to 8. Three active queue management 
schemes: RED, Self-Configure and ARED are applied on the 
bottleneck link.  
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GW2
1Mb 20ms

10Mb 2ms

10Mb 4ms

Figure 3. Topology of the Simulation

10Mb 2ms

RED/ ARED/ SCNode 2
10Mb 6ms

Node 1

10Mb 3ms

10Mb 5ms

10Mb 4ms

10Mb 3ms

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

 
To compare with RED and Self-Config schemes, a popular 
simulation environment of RED-suite gateway is chosen and 
described in Table 1 and Table 2. The physical queue capacity is 
set to 300 packets. Following [4], we set Min_th to 100 packets, 
and set Max_th to be twice as the Min_th. RED is simulated 
with NS’s default value of Wq=0.002 and Max_p=0.1. 
Parameters for Self-Config are referred to [6] in which α=3 and 
β=2. We experimentally select T as 0.2s and α  as 1.5 to 
ARED. In order to create non-responsive behaviors, UDP flows 
for all schemes are chosen as exponential type with a packet size 
of 210 bytes.  
 

Queue Capacity 300 Packets 
Min_th 100 Packets 
Max_th 200 Packets 
αfor ARED 1.5 
T (Control slot)  0.2 s 
Wq and Max_p for RED 0.002 and 0.1 
αβfor Self-Config 3 and 2 

Table 1. Gateway Parameters 
 

TCP window size  15 
UDP packet-size  210 
TCP packet-size  1000 
UDP Type Exponential  
TCP Type FTP traffic 
UDP rate 0.25 Mbps  

Table 2. Flow Parameters 
4.2 Simulation Results  
 

1) The throughput of RED, Self-Config and Adaptive 
RED respectively 
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(a) Pure TCP flows 
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(b) Mixing with 2 UDP flows 
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(c)  Mixing with 4 UDP flows 
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(d) Mixing with 8 UDP flows 

 
Figure 4. TCP Throughput Performance 
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2) TCP Loss Rate of three schemes 
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(a) Pure TCP flows 
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(b) Mixing with 2 UDP flows 
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(c) Mixing with 4 UDP flows 
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(d) Mixing with 8 UDP flows 

 
Figure 5. TCP Loss Rate  

 
3)  Restraint on unfriendly non-responsive traffic by 

ARED. 
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(a) 8 TCP flows mixing with 2 UDP flows 
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(b) 8 TCP flows mixing with 4 UDP flows 

Arrival Rate Ratio of UDP Flows
 (32 TCP with 2 UDP)

0

0.5

1

0.
1

28
.1

56
.1

84
.1

11
2

14
0

16
8

19
6

T ime(s)

A
rr

iv
al

 ra
te

ra
tio

Max_p=
Map_p0
Max_p>
Map_p0

 
(c) 32 TCP flows mixing with 2 UDP flows 
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(d) 32 TCP flows mixing with 4 UDP flows 

 
Figure 6. Arrival Rate Ratio of UDP flows 

 
TCP throughput is shown in Figure 4. Compared with RED and 
Self-Config, ARED scheme has comprehend-sively better 
performance. In case of pure TCP (Figure 4(a)), Self-Config 
scheme shows slightly better. It is because Self-Config adjusts 
drop density only according to the congestion level. To do so 
can help avoid heavy and short congestion caused by a large 
number of TCP flows. When a large number of TCP flows mix 
with big UDP traffic (Figure 4(d)), Self-Config scheme becomes 
the worst one. According to the algorithm, Max_p of Self-
Config may always be kept in a big value, if average queue 
length fluctuates around Max_th [9]. Such adjustment to Max_p 
may be so aggressive that TCP suffers more than UDP, since 
UDP flows always overwhelm TCP flows so that the bandwidth 
released from TCP is taken over by UDP. 
 
Corresponding TCP loss rate is shown in Figure 5. Basically, the 
decease of TCP drop rate indicates the improvement of TCP 
throughput. It implies that ARED helps TCP flows scramble for 
bandwidth from UDP flows. It makes responsive flows be 
enhanced. However, it can be found that a little bit lower 
performance than RED is presented when a large number of 
TCP and UDP flows are mixed (32 TCP flows in Figure 5(d)). 
The reason may be that with severe and continuous congestion, 
ARED has less space to operate so that it may misdetect non-
responsive behaviors. The similar problem would be found in 
the simulations of more UDP flows. However, there is no need 
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to discuss those cases because of very severe congestion and 
intolerable drop ratio (beyond 30%). Those cases should be in 
system problem and cannot be solved just by queue management 
schemes.  
 
Figure 6 shows the effectiveness of ARED. We sampled the 

arrival rate ratio of UDP flows (
r

rnon ) every 0.5s. Most drop 

density adjustments are made when UDP flows occupy more 
than half of the bandwidth. At that time, more UDP packets are 
dropped via increasing Max_p. In addition, ARED adjusts 
Max_p only when the average queue length goes beyond Mid_th. 
Therefore, ARED effectively refrains non-responsive traffic 
behaviors and enhances responsive ones as well. We would not 
list the simulation result of Mixed traffic with 6 and 8 UDP 
flows, because the result does not mean much if UDP flows 
always overwhelm TCP flows.  

 
As a conclusion, ARED keeps responsive flows more adaptively 
than RED and Self-Config do. It also has better throughput 
performance and can adapt to a wide variety of traffic scenarios. 
 
 

5. DISCUSSIONS AND CONCLUSION 
 
We only applied ARED to exponential UDP traffic in our 
simulation because of its simplicity and typical non-responsive 
feature. With regard to the basis of ARED scheme, any 
unfriendly non-responsive traffic can be detected and refrained 
by ARED, such as DDOS attack flows. Though DDOS attack 
may generate TCP flows, the congestion mechanism does not 
work. The attack traffic shows absolutely non-responsive 
behaviors. ARED has great chance to detect and restrain it. We 
can also adaptively adjust parameter of α so that ARED can fit 
well with the different degree of non-responsive behaviors. It is 
expected that α is revised according to the difference between 

r∆  and repr∆ .  
 
This paper has shown how adaptive active queue management 
can be used in conjunction with RED gateway to effectively 
enhance responsive behaviors. Preliminary simulation results 
with a popular environment have shown the efficacy of the 
algorithm. If the interactions among different flows are fully 
understood and control parameters are well optimized, more 
performance improvement can be expected in an extensive 
research. Since the networks are becoming more heterogeneous, 
this scheme should adapt to more extensive traffic. How to 
improve the scalability is our future work. 
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