
Adaptive Queue Management with Restraint on Non-Responsive Flows

Lan Li and Gyungho Lee
Department of Electrical and Computer Engineering

University of Illinois at Chicago
851 S. Morgan Street Chicago, IL 60607

{lli, ghlee}@ece.uic.edu

ABSTRACT

This paper proposes an adaptive queue management scheme
(adaptive RED) to improve Random Early Detection (RED) on
restraining non-responsive flows. Due to a lack of flow control
mechanism, non-responsive flows can starve responsive flows
for buffer and bandwidth at the gateway. In order to solve the
disproportionate resource problem, RED framework is modified
in this way: on detecting when the non-responsive flows starve
the queue, packet-drop intensity (Max_p in RED) can be
adaptively adjusted to curb non-responsive flows for resource
fair-sharing, such as buffer and bandwidth fair-sharing. Based
on detection of traffic behaviors, intentionally restraining non-
responsive flows is to increase the throughput and decrease the
drop rate of responsive flows. Our experimental results based on
adaptive RED shows that the enhancement of responsive traffic
and the better sharing of buffer and bandwidth can be achieved
under a variety of traffic scenarios.

Keywords
Active queue management, drop probability, non-responsive
flows, adaptive RED.

1. INTRODUCTION

Congestion control heterogeneity in the Internet leads to fairness
problems of resource sharing. Especially, non-responsive flows
do not back off their transmission rates in response to congestion
indications of the network (i.e. packet loss) [5]. Consequently,
non-responsive flows tend to consume unfairly resource—high
bandwidth and buffer space [6] at congestion points. A large
number of UDP-based applications generate this kind of flows.
It is necessary to employ a flow management mechanism for the
fair utilization of network resource. It may also be helpful to
satisfy more users’ QOS requirement.

There are two kinds of flow management mechanisms that try to
achieve the resource fair sharing: scheduling scheme and queue
management scheme. Scheduling schemes have generally too
much complexity and low scalability to large number of flows.
If we plan to provide fair utilization on high-speed edge router,
queue management scheme could be a better choice. Queue
management scheme not only has less complexity, but also
approximates fairness better. Router with a queue management
scheme maintains a single FIFO shared by all flows [1] and
employs a dropping algorithm to discard arriving packets when
congestion builds up. Dropping probability increases with the
raise of congestion level. By adjusting dropping probability for
in-queue flows, it can achieve a better fairness for the resource
utilization between flows.

One of classic queue management schemes is Random Early
Detection (RED). The RED utilizes a random dropping
algorithm [4]. In a RED gateway, incipient congestions are
detected by estimated average queue size. Average queue size is
calculated via a low-pass filter. When the average queue size
exceeds a preset threshold, the gateway drops packets with a
certain probability that is calculated based on the average queue
size. In the RED gateway, occasional bursts of packets in the
queue are allowed and average queue size is kept at low level
[6]. Although RED decreases loss-bias against responsive traffic
that exists in the Drop Tail queue, it does not achieve a fair-
share of the buffer and bandwidth between responsive flows and
non-responsive flows [2]. One possible reason is that given a
certain time slot the percentage of packets dropped from each
flow is almost the same. As a result, non-responsive flows may
consume a larger portion of the bandwidth at congestion points
because of its lack of flow control mechanism [3].
Consequently, non-responsive flows can starve out the
responsive flows.

In order to solve the disproportionate resource problem, several
variants of RED have been proposed, such as Flow Random
Early Drop (FRED) [7], Refined Design of Random Early
Detection Gateways [6] and Self-Configuring RED Gateway [9].
However, FRED maintains extra flow state which increases
implementation overhead. As for the Refined Design of RED, it
dynamically adjusts the Wq (queue weight) and Max_p
(maximum drop probability) with respect to the variance of
queue size change. However, it divides the area between
minimal threshold and maximal threshold, called Yellow area
[4], into several sub-phrases that increases implementation
overhead as well. In addition, it still does not consider the fair
sharing of the buffer and bandwidth between responsive flows
and non-responsive flows. Self-Configuring RED Gateway also
employs an adaptive parameterization at RED gateway. Without
considering non-responsive traffic, adaptive parameterization is
only based on the congestion level indicated by the average
queue length. It can effectively adapt to traffic scenarios with
different congestion levels. However, it does not distinguish
responsive and non-responsive traffic. In some cases of medium
congestion, responsive traffic may get suffered due to the
unfriendly behaviors of non-responsive traffic.

If we can distinguish non-responsive flows from responsive
flows, a resource fair-sharing between them can be properly
managed. Unfortunately, any methods based on per-flow state
must increase the implementation overhead. However, we are
aware of the approaches that try to approximately discern non-
responsive flow and responsive flow according to certain traffic
features [5]. Such a feature could be an extraordinary high
congestion or an improper reaction to congestion notification.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 640

We then propose to detect flow’s behavior based on the variance
of instantaneous queue size. Based on the detection, we can
penalize non-responsive flows and improves responsive flows’
throughput via adaptive adjustment of the drop probability.

The rest of the paper is organized as follows. Section 2 presents
flow behaviors in conjunction with the RED queue and notes
some flaws of RED algorithm. Section 3, describes our proposed
queue management scheme “Adaptive RED with restraint on
non-responsive flows”. In Section 4, we compare our approach
with other schemes via simulation. Finally, we give discusses
and conclusions in Section 5.

2. BACKGROUND

2.1 RED Scheme Overview

RED (Random Early Detection) is a congestion avoidance
mechanism employed at gateways. Its basic idea is to use two
preset thresholds to detect incipient congestion and control the
average queue size with the threshold [2]. With respect to the
estimated average queue size, the gateway works in one of three
working states: red, green and yellow states [6]. When the
average queue size is less than the Min_th (minimum threshold),
the gateway works in the green state without packet drop. When
the length is between the Min_th and Max_th (maximum
threshold), the state transfers to yellow one in which arriving
packets are randomly dropped with a probability calculated on
average queue length. When the length goes beyond the
maximum threshold, the gateway reaches the red state in which
every arriving packet is discarded [6]. The goal of RED scheme
is to detect incipient congestion via average queue size and
perform random packet dropping before the queue is full.
Therefore, it can implement congestion avoidance while
allowing short-term bursty.

Although RED prevents packets from consecutive dropping
(especially for bursty traffic) and removes higher loss bias
against bursty traffic [4], it still has some flaws:
1. RED is unable to refrain non-responsive flows from
consuming most buffer space at heavy congestion [3].
2. Average queue size is not a good estimator of congestion.
Severe congestion should be related to the amount of flows and
the degree of burstiness [2].
3. It is not clear how to select the RED parameters. RED
requires selecting various parameters in different congestion
scenarios. That is why recommended values had been changed
over time [2].

2.2 Flow Behaviors in the RED Queue

Generally speaking, most of TCP flows with congestion control
are regarded as responsive flows, while UDP flows without
congestion response are considered non-responsive flows [5].
TCP congestion control utilizes an Additive
Increase/Multiplicative Decrease mechanism to adjust the flow
rate [8]. This mechanism causes the burstiness of TCP flows.
Since TCP congestion control is based on end-to-end feedback,
the control response is relatively sluggish in comparison with
queue operation. It implies that TCP would keep the sending
rate for a while after packet dropping. The control latency is
equal to the TCP timeout, which is usually four times as much
as RRT (Round Trip Time) [8]. On the other hand, non-

responsive flows have no congestion control mechanism. They
do not respond to congestion notification and thus send packets
as many as they want.

At the RED-suite gateways, TCP flows (responsive flow) tend to
decrease sending rate after average queue size goes beyond the
minimal threshold. However, RED does not penalize non-
responsive flow, because packet drop ratio of each flow over
time is almost same. Although UDP flows (non-responsive
flow) with high bandwidth may suffer more packet dropping,
they obtain much more throughput than TCP flows do.
Consequently, non-responsive flows may take up the most
bandwidth and starve out responsive flows [3]. Since RED uses
static parameters to deal with dynamic traffic, the effectiveness
of RED depends on the appropriate parameterization. It is
known that no single set of RED parameters works well under
different congestion scenarios, including the case that TCP is
mixed with UDP.

Total Loss Rate
 (including 2 CBR UDP flows, 250k each)

0

0.05

0.1

0.15

0.2

0.25

0.031 0.063 0.1 0.125 0.25 0.5 1 Max_p
 L

os
s R

at
e

10
TCPs

20
TCPs

40
TCPs

(a) Two 250k UDP flows are mixed with TCP flows

Total Loss Rate
(including 2 CBR UDP flows, 100k each)

0
0.05

0.1
0.15

0.2
0.25

0.03 0.06 0.1 0.13 0.25 0.5 1 Max_p

Lo
ss

 R
at

e

16
TCPs

32
TCPs

64
TCPs

(b) Two 100k UDP flows are mixed with TCP flows

Figure 1. TCP loss rate vs. Max_p

Simulation result in Figure 1 shows that the total loss rate is
pretty high for the small Max_p. As Max_p increases, loss rate
decreases since the RED queue is able to send congestion
notification back to the sources in time to prevent continuous
buffer overflow. Finally, when Max_p becomes quite large, the
RED queue causes an increase in packet loss rates over Drop
Tail queues. As more connections are added, the optimal value
of Max_p increases. It clearly supports that an adaptive scheme
for drop probability is required. More extensive and detailed
discussion can be also found in [9]. The details of the simulation
are fully described in Section 4.

3. ADAPTIVE RED WITH RESTRAINT
ON NON-RESPONSIVE FLOWS

Though TCP flows are dominant traffic in Internet, more and
more multimedia applications tend to generate UDP flows,
mostly belonging to non-responsive flows. It is because those

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 6 41

applications mainly concern the delay constraint instead of data
integrity. It is necessary to deploy a flow management
mechanism to implement a fair utilization of network resource.

3.1 Basic assumption

Given that packet-processing rate is invariable (service rate: rS)
and non-responsive flows have the arrival rate)(tRnon , the
instant queue size is determined by:

dtStRtRtQ rrepnon

t

tinst
i

))()(()(−+= ∫ (1)

, where)(tRrep is the arrival rate of responsive flows; it is the

initialization time.
The average rate of n TCP-friendly flows (responsive flow) can
be approximately calculated as [10]:

second

packets
2
3
pRTT

nrrep =
 (2)

, where RTT is the round trip time and p is the loss probability
of flow. It is applicable only when the p is small. According to
the Eq. (1), given a small time slot T with the size of t∆ , change
in queue size is mainly determined by the arrival rate of flows:

rrepnon
inst SRR

t
Q

−+≅
∆

∆)()()(τττ

Considering two consecutive slots
jT and

1+jT with the same

size t∆ , the variance of arrival rate r∆ (=∆r
)repnon rr ∆+∆ can be approximated by:

2
1)()(

t

QQ
r jinstjinst

∆

∆−∆
≅∆ + ττ

, where jj T∈τ and 11 ++ ∈ jj Tτ (3)

Suppose j
repr is the average arrival rates of responsive flows at

slot
jT and RTTt ≈∆ , extending Eq. (2) the variance of

responsive flows’ arrival rate

j
rep

j

j
rep r

p
p

r)1(
1
−≅∆

+ (4)
, where jp and 1+jp are drop probability at

jT and
1+jT .

3.2 RED Queue Analysis

The very important feature of RED algorithm is the use of a
low-pass filter to estimate the average queue size [6]. The low-
pass filter employs the EWMA (exponentially-weighted moving
average) given by [4]:

instqaveqave QwQwQ +−= ')1(

,where qw is the weight factor. aveQ and 'aveQ are the current

and previous average queue size respectively.

Figure 2 shows the drop function of RED. Drop rate of RED is
presented by:










≤

<≤
−

−
<

=

ave

ave
ave

ave

red

QthMax

thMaxQthMinpMax
thMinthMax

thMinQ
thMinQ

D

_,1

__,_
__

_
_,0 (5)

Extending Eq. (4), we can have:

j
rep

jave

jave
rep r

thMinQ
thMinQ

r)1
_)(

_)(
(

1
−

−

−
≅∆

+τ
τ (6)

D rop
P robability

1

M ax_ p

0
M in_th M ax_ th

Q ave

Figure 2. Drop function of RED

The tendency of responsive flows can be detected via

))()((1 javejaveaveave QQQQ ττ ∆−∆=∆∆ + . When
aveQ increases to

the “yellow state” [2], rrep should decease accordingly. However,
if nonr gets inverse tendency at that time, the arrival rate of all
flows (r) increases. It causes responsive flows starved and
resource unfairly shared.

3.3 Adaptive RED Scheme

Adaptive RED is proposed to detect non-responsive (unfriendly)
flow behaviors via monitoring the variation of queue length,
including instant and average queue length. At congestion,
responsive flows decrease its rate while non-responsive flows
may keep or increase the rate. Therefore, adaptively adjusting
packet-drop intensity may restrain non-responsive flows to
starve responsive flows. We apply this adaptive scheme only if
the average queue length ranging from Mid_th
((Min_th+Max_th)/2) to Max_th. In that medium congestion
area, responsive flows just get essential suffering and take deep
congestion response.

Based on our assumption and analysis in Section 3.1 and 3.2,

aveQ∆ indicates the tendency of responsive flows and insQ2∆
()()1(2

jinstQjinstQinstQ ττ ∆−+∆=∆) reflects the variation of arrival

rate r∆ . If both of them are positive, nonr∆ must be positive
too. It implies non-responsive flows take unfriendly response
against responsive flows and the ratio of non-responsive flows
and responsive flows gets increased. At that time, unfair
resource sharing happens and the adjustment of drop density is
needed. In order to avoid too aggressive of packet dropping,
drop density needs to be adjusted back once the condition is not
satisfied (0|02 <∆<∆ aveinst QQ). We then propose our
algorithm as follows:

Every T (control slot):
While (Max_th > Qave > Mid_th)

if
Max_p = Max_p*α

else
Max_p =Min (Max_p0 , Max_p/α)

0&02 >∆>∆ aveinst QQ

Max_p0: Default Max_p
α: the scale factor of Max_p

α is the scale factor to extend the Max_p. Max_p0 is the preset
parameter of drop density. Based on the observation of

aveQ∆ and
instQ2∆ , the algorithm detects unfriendly traffic

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 642

behaviors and modulates the value of Max_p by the factor of α.
The parametersα is experimentally chosen according to the
control slot (T) which determines the control sensitivity. If
control slot is too small, there is no enough time for responsive
flows to response and the scheme may become more aggressive
and cause control oscillation. On the other hand, it may become
insensitive and cause control sluggishness. In the simulation, we
chose control time slot as 0.2s (average RTT). This slot size can
accommodate the short burstiness and avoid the control
vibration.

4. SIMULATION RESULTS
This section presents the simulation results of Adaptive RED’s
performance with refraining of non-responsive flows and
enhancing the responsive flows. The simulations range over
network configurations and traffic patterns.

4.1 Basic network Configuration

Network simulation topology is shown in Figure 3. There is a
single congested link from GW1 to GW2 in a dumbbell
topology. The congested link is 1Mbps; others are 10 Mbps each.
TCP and UDP flows pass through the congested link. The
number of TCP flows ranges from 8 to 32, while that of UDP
flows ranges from 2 to 8. Three active queue management
schemes: RED, Self-Configure and ARED are applied on the
bottleneck link.

GW1

GW2
1Mb 20ms

10Mb 2ms

10Mb 4ms

Figure 3. Topology of the Simulation

10Mb 2ms

RED/ ARED/ SCNode 2
10Mb 6ms

Node 1

10Mb 3ms

10Mb 5ms

10Mb 4ms

10Mb 3ms

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

To compare with RED and Self-Config schemes, a popular
simulation environment of RED-suite gateway is chosen and
described in Table 1 and Table 2. The physical queue capacity is
set to 300 packets. Following [4], we set Min_th to 100 packets,
and set Max_th to be twice as the Min_th. RED is simulated
with NS’s default value of Wq=0.002 and Max_p=0.1.
Parameters for Self-Config are referred to [6] in which α=3 and
β=2. We experimentally select T as 0.2s and α as 1.5 to
ARED. In order to create non-responsive behaviors, UDP flows
for all schemes are chosen as exponential type with a packet size
of 210 bytes.

Queue Capacity 300 Packets
Min_th 100 Packets
Max_th 200 Packets
αfor ARED 1.5
T (Control slot) 0.2 s
Wq and Max_p for RED 0.002 and 0.1
αβfor Self-Config 3 and 2

Table 1. Gateway Parameters

TCP window size 15
UDP packet-size 210
TCP packet-size 1000
UDP Type Exponential
TCP Type FTP traffic
UDP rate 0.25 Mbps

Table 2. Flow Parameters
4.2 Simulation Results

1) The throughput of RED, Self-Config and Adaptive
RED respectively

TCP Throughput (Without UDP Traffic)

120000
122000
124000
126000
128000

8 16 32
Number of TCP flows

Th
ou

gh
pu

t(b
its

/s
) Red

ARED

Self-
Config

(a) Pure TCP flows

TCP Throughput
(With 2 UDP flows, 250k each)

80000

85000

90000

95000

100000

8 16 32
Number of TCP flows

T
ho

ug
hp

ut
(b

it
s/

s)
Red

ARED

Self-
Config

(b) Mixing with 2 UDP flows

TCP Throughput
 (With 4 UDP flows, 250k each)

60000
65000
70000
75000
80000

8 16 32
Number of TCP flows

Th
ou

gh
pu

t(b
its

/s
)

Red

ARED

Self-
Config

(c) Mixing with 4 UDP flows

TCP Throughput
(With 8 UDP flows, 250k each)

20000

25000

30000

35000

40000

8 16 32

Number of TCP flows

Th
ou

gh
pu

t(b
its

/s
)

Red

ARED

Self-
Config

(d) Mixing with 8 UDP flows

Figure 4. TCP Throughput Performance

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 6 43

2) TCP Loss Rate of three schemes

TCP Loss Rate (Without UDP Traffic)

0

0.02

0.04

0.06

8 16 32
Number of TCP flows

Lo
ss

 R
at

e
Red

ARED

Self-
Config

(a) Pure TCP flows

TCP Loss Rate
(With 2 UDP flows, 250k each)

0

0.05

0.1

0.15

8 16 32
Number of TCP flows

Lo
ss

 R
at

e

Red

ARED

Self-
Config

(b) Mixing with 2 UDP flows

TCP Loss Rate
 (With 4 UDP flows, 250k each)

0
0.05

0.1
0.15

0.2

8 16 32
Number of TCP flows

Lo
ss

 R
at

e Red

ARED

Self-
Config

(c) Mixing with 4 UDP flows

TCP Loss Rate
(With 8 UDP flows, 250k each)

0

0.1

0.2

0.3

8 16 32
Number of TCP flows

Lo
ss

 R
at

e

Red

ARED

Self-
Config

(d) Mixing with 8 UDP flows

Figure 5. TCP Loss Rate

3) Restraint on unfriendly non-responsive traffic by

ARED.

Arrival Rate Ratio of UDP Flows
(8 TCP with 2 UDP)

0
0.2
0.4
0.6
0.8

1

0.
1

20
.1

40
.1

60
.1

80
.1

10
0

12
0

14
0

16
0

18
0

20
0

Time(s)

A
rr

iv
al

 ra
te

 ra
tio

Max_p=
Map_p0

Max_p>
Map_p0

(a) 8 TCP flows mixing with 2 UDP flows

Arrival Rate Ratio of UDP Flows
 (8 TCP with 4 UDP)

0
0.2
0.4
0.6
0.8

1
1.2

0.
1

22
.1

44
.1

66
.1

88
.1

11
0

13
2

15
4

17
6

19
8

Time(s)

A
rr

iv
al

 ra
te

 ra
tio Max_p=

Map_p0

Max_p>
Map_p0

(b) 8 TCP flows mixing with 4 UDP flows

Arrival Rate Ratio of UDP Flows
 (32 TCP with 2 UDP)

0

0.5

1

0.
1

28
.1

56
.1

84
.1

11
2

14
0

16
8

19
6

T ime(s)

A
rr

iv
al

 ra
te

ra
tio

Max_p=
Map_p0
Max_p>
Map_p0

(c) 32 TCP flows mixing with 2 UDP flows

Arrival Rate Ratio of UDP Flows
(32 TCP with 4 UDP)

0

0.5

1

0.
1

28
.1

56
.1

84
.1

11
2

14
0

16
8

19
6

T ime(s)

A
rr

iv
al

 ra
te

ra

tio

Max_p=
Map_p0

Max_p>
Map_p0

(d) 32 TCP flows mixing with 4 UDP flows

Figure 6. Arrival Rate Ratio of UDP flows

TCP throughput is shown in Figure 4. Compared with RED and
Self-Config, ARED scheme has comprehend-sively better
performance. In case of pure TCP (Figure 4(a)), Self-Config
scheme shows slightly better. It is because Self-Config adjusts
drop density only according to the congestion level. To do so
can help avoid heavy and short congestion caused by a large
number of TCP flows. When a large number of TCP flows mix
with big UDP traffic (Figure 4(d)), Self-Config scheme becomes
the worst one. According to the algorithm, Max_p of Self-
Config may always be kept in a big value, if average queue
length fluctuates around Max_th [9]. Such adjustment to Max_p
may be so aggressive that TCP suffers more than UDP, since
UDP flows always overwhelm TCP flows so that the bandwidth
released from TCP is taken over by UDP.

Corresponding TCP loss rate is shown in Figure 5. Basically, the
decease of TCP drop rate indicates the improvement of TCP
throughput. It implies that ARED helps TCP flows scramble for
bandwidth from UDP flows. It makes responsive flows be
enhanced. However, it can be found that a little bit lower
performance than RED is presented when a large number of
TCP and UDP flows are mixed (32 TCP flows in Figure 5(d)).
The reason may be that with severe and continuous congestion,
ARED has less space to operate so that it may misdetect non-
responsive behaviors. The similar problem would be found in
the simulations of more UDP flows. However, there is no need

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 644

to discuss those cases because of very severe congestion and
intolerable drop ratio (beyond 30%). Those cases should be in
system problem and cannot be solved just by queue management
schemes.

Figure 6 shows the effectiveness of ARED. We sampled the

arrival rate ratio of UDP flows (
r

rnon) every 0.5s. Most drop

density adjustments are made when UDP flows occupy more
than half of the bandwidth. At that time, more UDP packets are
dropped via increasing Max_p. In addition, ARED adjusts
Max_p only when the average queue length goes beyond Mid_th.
Therefore, ARED effectively refrains non-responsive traffic
behaviors and enhances responsive ones as well. We would not
list the simulation result of Mixed traffic with 6 and 8 UDP
flows, because the result does not mean much if UDP flows
always overwhelm TCP flows.

As a conclusion, ARED keeps responsive flows more adaptively
than RED and Self-Config do. It also has better throughput
performance and can adapt to a wide variety of traffic scenarios.

5. DISCUSSIONS AND CONCLUSION

We only applied ARED to exponential UDP traffic in our
simulation because of its simplicity and typical non-responsive
feature. With regard to the basis of ARED scheme, any
unfriendly non-responsive traffic can be detected and refrained
by ARED, such as DDOS attack flows. Though DDOS attack
may generate TCP flows, the congestion mechanism does not
work. The attack traffic shows absolutely non-responsive
behaviors. ARED has great chance to detect and restrain it. We
can also adaptively adjust parameter of α so that ARED can fit
well with the different degree of non-responsive behaviors. It is
expected that α is revised according to the difference between

r∆ and repr∆ .

This paper has shown how adaptive active queue management
can be used in conjunction with RED gateway to effectively
enhance responsive behaviors. Preliminary simulation results
with a popular environment have shown the efficacy of the
algorithm. If the interactions among different flows are fully
understood and control parameters are well optimized, more
performance improvement can be expected in an extensive
research. Since the networks are becoming more heterogeneous,
this scheme should adapt to more extensive traffic. How to
improve the scalability is our future work.

6. REFERENCES

[1] W. Feng, K. G. Shin, D. Kandlur, and D. Saha, “Stochastic

Fair Blue: A Queue Management Algorithm for Enforcing
Fairness”, Proc. IEEE INFOCOM, Anchorage, AK, 2001,
1520-1529.

[2] T. Bonald, M. May and J. Bolot, “Analytic Evaluation of
RED Performance”, Proc. IEEE INFOCOM, Tel Aviv,
Israel, 2000, 1415-1424.

[3] R. Pan, B. Prabhakar, K. Psounis, “CHOKE: A Stateless
Active Queue Management Scheme for Approximating Fair
Bandwidth Allocation”, Proc. IEEE INFOCOM, Tel
Aviv, Israel, 2000, 942-951.

[4] S. Floyd, and V. Jacobson, “Random Early Detection

Gateways for Congestion Avoidance”, IEEE/ACM
Transactions on Networking, 1(4), 1993, 397-413.

[5] S. Floyd, and K. Fall, “Promoting the Use of End-to-end
Congestion Control in the Internet”, IEEE/ACM
Transactions on Networking, 7(4), 1999, 458-472.

[6] H. Wang and K. G. Shin, “Refined Design of Random Early
Detection Gateways”, Proc. IEEE GlobeCom, Rio de
Janeiro, Brazil, 1999, 769-775.

[7] D. Lin and R. Morris, “Dynamics of Random Early
Detection”, Proc. ACM SIGCOMM, Cannes, France,
1997, 127-137.

[8] W. Stevens, TCP/IP illustrated, Volume 1: the protocols
(Reading, MA: Addison-Wesley, 1994)

[9] W. Feng, D. Kandlur, D. Saha, K. Shin, “A Self-configuring
RED Gateway”, Proc. IEEE INFOCOM, New York, NY,
1999, 1320-1328.

[10] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, “Modeling
TCP Throughput: A Simple Model and Its Empirical
Validation”, Proc. ACM SIGCOMM, Vancouver, Canada,
1998, 303-314.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 6 45

