
MaDViWorld : a Software Framework
for Applying a Collaborative Virtual World Paradigm to the Internet

Patrik FUHRER
Department of Informatics, University of Fribourg

1700 Fribourg, Switzerland
patrik.fuhrer@unifr.ch

and

Jacques PASQUIER-ROCHA
Department of Informatics, University of Fribourg

1700 Fribourg, Switzerland
jacques.pasquier@unifr.ch

ABSTRACT

MaDViWorld is an object oriented software framework sup-
porting the implementation of fully distributed virtual worlds
on the Internet. While the World Wide Web proposes a
document paradigm with HTTP servers containing docu-
ments consulted by users with the help of browser applica-
tions, MaDViWorld supports a much richer paradigm based
on room servers hosting spaces populated by full-fledged ob-
jects, that avatar applications can activate, move and share
transparently. Nevertheless, the dissemination of virtual
worlds on the Internet suffers from two main weaknesses: (1)
they are typically based on centralized architectures and do
not scale well; and (2) they usually propose a rather closed
software environment with limited extension and program-
ming facilities.

Within this context, the MaDViWorld project main goal is to
provide its users with the appropriate software environment
for creating all kinds of new collaborative objects and for
sharing them transparently with others. The present paper
illustrates this process with several examples from projects
recently accomplished at the DIUF (Department of Infor-
matics of the University of Fribourg, Switzerland) and shows
how MaDViWorld provides the hooks for taking care of some
of the most challenging distributed virtual world problems
such as managing event propagation and securing access to
ressources.

Keywords: Virtual World, Collaborative Work, Mobile
Objects and Distributed Software Framework

1. INTRODUCTION

The Software Engineering Group at the DIUF has devel-
oped an object oriented distributed framework supporting
massively distributed virtual worlds, called MaDViWorld.

The goal of this paper is to illustrate how MaDViWorld tech-
nology can be used on the Internet in order to apply a much
richer collaborative paradigm than the classical document
one proposed by the World Wide Web (WWW). The paper
is organized as follows. Section 2 reviews some of the main
virtual world concepts such as subspaces, avatars and ob-
jects and further explains the paradigm shift between clas-
sical WWW browsing and MaDViWorld usage. Section 3
is more technical and presents a discussion of the adopted
software architecture. Section 4 provides a sample of the
objects that can be created within MaDViWorld. Finally,
Section 5 summarizes the main achievements of this work
and wraps up the paper by describing future possible col-
laborative worlds based on MaDViWorld technology.

2. BASIC VIRTUAL WORLD CONCEPTS

For the further comprehension of this paper, the following
four terms need to be briefly explained:

1. Avatars are the virtual representation of the users.
Concretely, an avatar is a tool that allows a given user
to move through the world, to interact with its inhab-
itants and objects and that lets the other users know
where she is and what she is doing. Among people
working on virtual reality and cyberspace interfaces
(see [7, 30, 31]), the word Avatar is used to describe
the “object” (icon, two or three-dimensional photo,
design, picture or animation) representing the user in
a shared virtual reality. In other words, an avatar is
an instantiation of the user’s body in the computer-
ized medium. In text-based virtual realities, such as

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 234 ISSN: 1690-4524

MUDs1 and MOOs2 (see [4, 28]), avatars consist of a
short description which is displayed to the users whose
avatars “look” at them.

2. In order to distinguish between near and distant ele-
ments, it is essential to divide the world into subspaces
where the users might or might not enter and in which
all interactions take place. Let us call such subspaces
rooms.

3. Rooms are connected by doors, which an avatar can
use for moving from one room to another.

4. Objects populate the rooms. They are not just simple
passive data objects, but full-fledged objects (single or
multi user) avatars can execute and share (e.g. games,
whiteboards). Furthermore, in a distributed world, ob-
jects should be “physically” mobile, i.e. transparently
movable from one room on a given server to another
room hosted on a different machine. In MaDViWorld,
mobility is either performed autonomously by the ob-
ject itself or passively with the help of the avatar trans-
porting it in her bag.

The conceptual model, that emerges from these considera-
tions is illustrated below with the help of a simple typical
scenario.

A Typical Scenario
The starting point is a virtual world composed of two rooms,
R1 and R2, hosted on two different machines. Let us com-
ment, step by step, the scenario illustrated by Figure 1.

• Figure 1a): The virtual world is shared by three avatars:
James, Sylvia and Hans, all present in the same room
R1. There is a battleship game object in this room.

• Figure 1b): Sylvia and Hans both launch the battle-
ship game and start playing it.

• Figure 1c): James also launches the battleship game.
As it is a two players game, he becomes an observer of
the game and can only watch how his two roommates
play.

• Figure 1d): Sylvia and Hans decide to finish their game
in room R2. Sylvia takes the battleship object and
puts it in her bag.

• Figure 1e): Sylvia and Hans move to the empty room
R2. Sylvia puts the game she had in her bag into the
room. Then both Hans and Sylvia reactivate the game
and go on from the point they stopped before. James
is now alone in room R1.

• Figure 1f): The game is finished and Sylvia logged off
the world. James and Hans are still inhabiting the
world, each in a different room.

Although very simple, the preceding story reveals several
interesting points:

1MUD stands for Multi User Dungeon.
2MOO is the acronym for MUD Object-Oriented.

James

R1 R2

Sylvia Hans

James

R1 R2

Sylvia Hans

James

R1 R2

Sylvia
Hans

James

R1 R2

Sylvia Hans

b)

c)

d)

e)

James

BattleShip

R1

Hans

R2

f)

a)

James
Sylvia

BattleShip

R1

Hans

R2

Fig. 1: A typical scenario in MaDViWorld

• MaDViWorld’s powerful remote event mechanism plays
an important role at two levels in this scenario. On the
one hand, thanks to it, the avatars are aware of their
environment. James immediately knows that Sylvia
and Hans left the room. Hans sees when Sylvia puts
the battleship object in room R2 (see Figure 2). On
the other hand, the event mechanism is used to update
the graphical user interface of the objects. This allows
each move to be displayed immediately on each logged
avatar’s board, player or observer.

• The battleship object has “physically” been carried
from room R1 to room R2 by the avatar Sylvia. Note
that R2 is hosted by another machine than R1 and
that the machine hosting R2 had no prior knowledge
of this kind of object.

• The state of the game has not been lost during its
transfer from R1 to R2.

Document versus Virtual World Paradigm
At this stage, it is worth comparing the virtual world paradigm
just presented above with the document one usually applied
when browsing the web:

• Within the document paradigm, documents, often ac-
tive ones able to react to various user actions, are made
available on one or several servers, and client applica-
tions (e.g., web browsers) can be used to interact with
them. Typically, each user copies the documents onto

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 2 35ISSN: 1690-4524

Fig. 2: Hans’ avatar application and battleship object GUI

her local machine and her interactions with them have
no direct repercussions on the other connected users.
In particular, a user never directly modifies the origi-
nal document. The underlying metaphor is the one of
a huge cross-referenced book where each user browses
through the pages totally unaware of other users per-
forming the same task at the same moment. All ac-
tions are asynchronous and, thus, there is no need for
a central server to coordinate user interactions with
the pages of the book or to take care of an event re-
distribution mechanism. The main advantage of this
approach is that it allows a truly distributed archi-
tecture with thousands of http servers interconnected
all over the world. If a crash occurs, only the pages
hosted by the failed or the no longer reachable servers
become momentarily unavailable. The whole system is
extremely robust and, since the connection of new de-
centralized servers is always possible, there is no limit
to its growth.

• Within the virtual world paradigm, multiple users and
active objects interact in the same space and there-
fore have a direct impact on each other. Within such
systems, if a user interacts with an object, the other
connected users can see her and start a dialog with
her. Moreover, it is possible for a user to modify some
properties of the world and all the other users present
in the same subspace must immediately be made aware
of it. It is worth noting that applications of the vir-
tual world paradigm range from simple textual chat
to sophisticated 3D virtual worlds (e.g. [26]) used for
military simulations.

3. IMPLEMENTATION

At the implementation level, systems based on a distributed3

virtual world metaphor are clearly the most complex ones.

3In the context of virtual worlds, “distributed” means that
the architecture must not be limited to a single central server
containing the whole virtual world and guaranteeing its con-

Indeed, the users interact directly with the original objects
of the system and the resulting events must be correctly
synchronized and forwarded in order to maintain the con-
sistency of the world (see [24, 19]). To face these issues
(i.e. supporting scalability when the virtual world grows
very large and allowing for code mobility when objects are
moving) virtual world developers have to choose carefully an
appropriate software architecture. This section presents why
and how MaDViWorld is implemented as an object-oriented
framework. The first subsection discusses our technological
choices. The second subsection gives a global view of the
software architecture, while the three last ones concentrate
on more specific topics: the programming of new objects,
the distributed event model and security.

The interested reader is referred to [11, 13, 14] for a more
detailed presentation of the MaDViWorld software architec-
ture and of its theoretical foundation and to [17, 10, 8, 34]
for a discussion of related systems.

A Distributed Object-Oriented Framework

Why Object-Oriented?
From the key concepts identified in the previous section,
several considerations can be done. First of all, since one
of our main concern is to populate the world with an ever
growing set of active objects, the object-oriented technology
seems to be the natural way to face our implementation
problems.

We further identify three major actors: the rooms, the avatars
and the active objects. In order to keep the consistency of
the world, two roles related to the distributed event model
are associated to these three major actors: event producers
and event consumers. At this stage, the services that these
five components should provide can be roughly sketched.
Object-oriented technology also fits well here, since one can
define a set of interfaces or abstract classes, that can be im-
plemented or specialized in a further stage through an inher-
itance ‘is a’ relation. This set of interfaces defines a common
communication protocol between the different components
of the world. It is briefly sketched by Table 1. For sake
of simplicity, detailed method signatures have been omit-
ted. One can easily see that the three main abstract classes
or interfaces defining the main actors of virtual worlds are:
Avatar, Room and WObject. The two interfaces, EventProducer
and EventConsumer, define roles associated with these actors
and will be further explained in the Distributed Event Model
subsection.

Why a Framework?
A software solution supporting our virtual world metaphor
must take into consideration the two following issues:

• The extensibility of the conceptual model has to be
supported. Several kinds of rooms can coexist in the
same virtual world and different sorts of avatars should
allow the users to discover these rooms. For example,
one can imagine the integration of 2D and/or 3D rooms

sistency with many clients connected to it. It is imperative
that distinct clusters of subspaces might be distributed on
separate servers for scalability purpose.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 236 ISSN: 1690-4524

Avatar
getCurrentRoom(); Returns the current room where the avatar is.

WObject
getContainer(); Returns the container of the object (e.g., a room).
setContainer(); Sets the container of the object (e.g., a room).

Room
addAvatar(); Sets a given avatar into the room.
removeAvatar(); Removes a given avatar from this room.
getAvatars(); Returns a list of the avatars in the current room.
addObject(); Sets a new object into the room.
getObject(); Returns a given object in the room.
getObjects(); Returns a list of the objects in the current room.
removeObject(); Removes a given object from the room.
addDoor(); Adds a door to a given room.
getDoor(); Returns a given door in the room.
getDoors(); Returns a list of doors to other rooms.
removeDoor(); Removes a door from a given room.

EventProducer
register(); Registers an interested event consumer.
unregister(); Unregisters a registered event consumer.

EventConsumer
notify(); Notifies the event consumer of an event.

Event
getSource(); Returns the source of the event.
getSeqNum(); Returns the sequence number of this event.
addAttribute(); Attaches a given attribute to the event.
getAttribute(); Returns a given attribute of the event.
getID(); Returns the ID of the event or the event type.

Table 1: Some important method candidates of the main
interfaces/classes.

and of sophisticated avatar applications supporting lo-
cal topological information. It might also be interest-
ing to distinguish between public rooms and private
rooms, containing sensitive objects and for which the
security has to be reinforced.

• Furthermore, the customization of the world by popu-
lating the rooms with active objects is one of the main
concerns of the project.

In order to satisfy these requirements of high adaptability,
we adopted a layered software framework approach, leading
from abstract to always more concrete classes. Let us briefly
recall that a framework4 is a partially complete system that
is intended to be instantiated. It defines (i) the architecture
for a family of systems and provides the basic building blocks
to create them, and (ii) the places where adaptations for
specific functionalities should be made.

Why Distributed?
In order to respect our initial goal, i.e. creating extensi-
ble virtual worlds, potentially as large as the whole Inter-
net community itself, the choice of a well established and
portable distributed technology was of the utmost impor-
tance.

In a massively distributed world, the subspaces are dis-
tributed on an arbitrarily large amount of machines. The
only requirement is that each machine containing a part of
the world runs a small server application and is connected
to other machines. The most relevant point is, that there is
no central server.

The network distributed aspects and the fact that each part
of the world should be able to run on different hardware
platforms are the two main reasons for implementing our
framework in Java. Other aspects like Java RMI dynamic

4Deeper discussions about frameworks can be found in [5],
[20] and [27].

classloading facilities (see [18]) and the interesting Jini tech-
nology (see [21]) also influenced our choice.

The MaDViWorld object-oriented software framework is pre-
sented in the next subsection. The different places where
adaptations should be made, i.e. the hot spots, are identi-
fied and explained.

Global View
MaDViWorld is a distributed framework and adopts a multi-
layered and multi-tiered architecture. More precisely there
are abstraction layers and orthogonal deployment tiers. This
decomposition allows for an optimal separation of concerns
between the different building blocks. Figure 3 illustrates
the global structure of the framework.

First, let us recall the roles of each abstraction layer, which
altogether embody the fundamental principle called separa-
tion of interface and implementation [6]:

• The upper abstraction layer (core) contains the inter-
face parts of all the main components of the system. It
defines the functionality of each component and pro-
vides clients with guidelines for using them. The spec-
ification of these interfaces could be strengthened by
using Design by Contract [23]. As MaDViWorld is im-
plemented in the Java language which does not di-
rectly support Design by Contract, rigorous specifica-
tion must be provided by a good documentation of
the interface methods. Thus, this first layer defines
clear boundaries between the components and defines
a communication protocol between them.

• The middle layer consists of the default implementa-
tion packages of the framework. It contains the imple-
mentation part of the components and the actual code
for the functionality they provide.

• The lower layer is for the concrete applications, where
all the application specific classes are placed. This
layer may provide specializations of the features pro-
vided by the middle layer.

The main idea behind this decomposition could be summa-
rized with the following idiom: “Program against interfaces,
not classes.” Adopting this technique is a way to achieve in-
formation hiding and encapsulation and results in a low cou-
pling of components. This approach supports changeability
and eases the task of altering a component’s behavior or rep-
resentation. The Bridge [16] pattern, for example, addresses
this principle.

Second, let us give some details about the vertical tiers which
correspond to the three main applications interacting when
using virtual worlds.

• Avatar application: This leftmost tier contains the
classes and packages implementing the avatar. It is a
client application allowing for the connection to rooms,
and for the interaction with objects and other avatars.
They basically play the same role as classical browsers

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 2 37ISSN: 1690-4524

within the World Wide Web and they do not necessar-
ily need to present a sophisticated 3D interface.

• Room Server and Rooms: The second tier is composed
of two parts. The implementation of the room inter-
face supports a single room. The second component
of this layer is dedicated to a room server application.
Room server applications are set up on networked ma-
chines the same way as HTTP servers are for the web.
A room server application allows for creating an ar-
bitrary number of rooms with various properties on
a given machine and for connecting them with others
(including on different room servers) through doors.

• Setup Application and Objects: This tier contains the
packages concerning the objects. A room setup appli-
cation is a user-friendly wizard which allows for the
creation and customization of rooms on distant room
servers, and for the installation of objects into them.

There remain two building blocks that were not discussed
yet: event and util. These are in fact two utility packages.
The first one is dedicated to the remote event mechanism
and the second one contains packages and classes used by all
the components of the framework (such as http file servers,
custom classloaders, etc.).

Framework packages

Default Implementation packages

Specific Implementation packages

room
factory

room
room
setup

wobjectavatar

core

event

util

Avatar
Room

Factory
Room

Room
Setup

Object

Fig. 3: Vertical and horizontal layers of the MaDViWorld

framework

Each of the three main tiers can be deployed separately.
The applications are deployed with the packages directly
concerning themselves, as well as those common to all ap-
plications, i.e. the core layer, as well as the event and util
packages.

Programming Objects
Objects occupy a special place in the distributed virtual
world. At the user level, they aim to resemble as much
as possible objects of the real world in terms of mobility.
At the programmer level, objects are the main hot spot of
the framework, since adding a new type of object is the
most obvious way to customize an existing virtual world.
This subsection explains the extension mechanism and the
software design of the object related classes.

Objects must offer a graphical user interface (GUI) to the
avatar who wants to use them. As the avatar and the ob-
ject generally run on different computers, the GUI of the
object must be executed on the avatar’s host and remotely
interact with the application logic of the object. To achieve
this, a design pattern fostering a clean separation between
presentation and logic is adopted.

Thus, when a developer wants to add a new object NewObj
to the framework she has to separately provide5 the three
following pieces of code:

1. the classes supporting the logic of the object (see Fig-
ure 4). This is done by implementing a class (NewOb-
jImpl), which extends the abstract WObjectImpl frame-
work class;

2. the classes dedicated to the presentation, by extending
WObjectGUIImpl (see Figure 5). This graphical class es-
sentially serves as a graphical container of the JPanel
subclass NewObjPanel. Hence the latter can directly be
designed with any Integrated Development Environ-
ment (IDE).

3. the object’s pure functionality, expressed via the meth-
ods of its NewObj interface. This interface is the cou-
pling point between UI code and functionality code.

One advantage of this architecture, in which UI and func-
tionality are loosely coupled, is that multiple UIs can be
associated with the same object. Associating multiple UIs
with one object lets you tailor different UIs for clients that
have particular UI capabilities, such as Swing or speech.
Clients can then choose the UI that best fits their user in-
terface capabilities. In addition, you may want to associate
different UIs that serve different purposes, such as a main
UI or an administration UI, with an object.

«interface»
WObject

«interface»
java.rmi.Remote

«interface»
NewObj

WObjectImpl

NewObjImpl

Ja
va

 c
la

ss
es

fr
am

ew
o

rk
 c

la
ss

es
im

p
le

m
en

ta
ti

o
n

 c
la

ss
es

Fig. 4: Implementation of the logic part of an object

However this clean separation does not provide a two-way
communication channel between these two parts. The ag-
gregation relationship between the NewObjPanel class and

5For detailed instructions about how to create a new type
of object the reader is invited to consult the MaDViWorld

Object Programmer’s Guide on the project’s web site [12].

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 238 ISSN: 1690-4524

NewObjRemoteEventListener

+initComponents()

NewObjGUIImplNewObjPanel

+initComponents()

WObjectGUIImpl

«interface»
WObjectGUI

+notify()

«interface»
RemoteEventListener

javax.swing.JPanel

«interface»
NewObj

«interface»
java.rmi.Remote

-content

11

-context

1 1

-eventConsumer

1 1

-logic1 1

+getUI()

UIFactoryImpl

+getUI()

«interface»
UIFactory

Ja
va

 c
la

ss
es

fr
am

ew
o

rk
 c

la
ss

es
im

p
le

m
en

ta
ti

o
n

 c
la

ss
es

Fig. 5: Implementation of the presentation part of an ob-
ject

the NewObj class provides a one-way communication chan-
nel (from the UI to the logic), but the logic cannot send
information back to the UI. The distributed event model
presented in the next subsection fills this gap.

Indeed, the UI registers the NewObjRemoteEventListener de-
picted on Figure 5 to the logic part of the object, which
extends RemoteEventProducer (see Figure 7). This allows the
object logic to easily notify the remote event listeners of the
object’s presentations. In this way, an object’s logic part
does not have to care about the presentation’s implementa-
tion details. Furthermore, an arbitrary number of UIs can
be attached to a single logic simultaneously. Thus, one has a
solution which allows a given object to be shared by several
avatars using it at the same time.

The sequence diagram of Figure 6 dwells on the mechanism
that allows the avatar to get a GUI to a remote object, thus
elucidating the role of the UIFactory6. This mechanism was
inspired by one of the first successes of the Jini.org Jini Com-
munity Process, the ServiceUI project [32, 33], led by Bill
Venners of Artima Software. The ServiceUI API enables
multiple user interfaces to be associated with a single Jini
service, allowing the service to be accessed by users with
varying preferences and accessibility requirements on com-
puters and devices with varying user interface capabilities.

The Distributed Event Model
Events play a crucial role in the MaDViWorld framework
because they glue its different components together. In-
deed, events are the only communication channel between
rooms and avatars, rooms and objects and between two ob-
jects. Moreover the previous subsection showed yet another
situation where remote events play a central role, namely,
offering a communication channel from object logic to its
UIs. Schematically, each time the state of one of the world
components changes, a corresponding event is triggered by

6To allow the UIFactory to return a concrete GUI, some re-
sources (e.g., sound files, icons, etc.) may need to be down-
loaded. For sake of simplicity, Figure 6 does not show how
these resources are transferred.

anAvatar anObject

aUIFactory

aGUI

getUIFactory()

getUI()

anOperation()

�����

Fig. 6: An avatar getting a GUI to an object

the altering subject and consumed by the registered listen-
ers, which react appropriately. The management of all these
events is a complex task for several reasons: (i) they are in
reality remote events and several network related problems
can occur; (ii) some of the events have to be fired to only
a subset of all the listeners; (iii) some listeners may not be
interested in every type of event. The distributed event
model of the framework must handle all these situations.

The two last points listed above, lead to the elaboration of
an abstraction for creating unique identifiers. DUID is the
acronym for Distributed Unique ID and is implemented in
the DUID class7. Each room, room server, object or avatar
has an associated DUID that is generated by the framework
and that never changes during its life cycle, so that it can
be identified without ambiguity. The use of such a DUID
was inspired by [15].

It is now time to take a closer look at the framework classes
which aim to solve the mentioned problems (see Figure 7):

• The RemoteEventListener interface defines the single no-
tify() method and extends the java.util.EventListener inter-
face. Any object that wants to receive a notification
of a remote event needs to implement it.

• The RemoteEventProducerImpl class implements two in-
terfaces: (i) RemoteEventProducerRemote is an interface
defining the methods that interested event consumers
can remotely invoke to register their listeners; (ii) Re-
moteEventProducerLocal does not extend java.rmi.Remote
since the methods it defines are not offered to remote
clients. Therefore RemoteEventProducerImpl provides
the methods needed to register, unregister and notify
event listeners used to communicate between different
parts of the system. The register method takes as pa-

7The DUID is the combination of a java.rmi.server.UID (an
identifier that is unique with respect to the host on which it
is generated) and of a java.net.InetAddress (a representation
of the host’s IP address where the object was created which
makes the UID globally unique).

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 2 39ISSN: 1690-4524

rameter the event type the listener is interested in.
There are five possibilities: all events, avatar events,
object events, room events and “events for me”. With
the latter, the listener is only informed of events ad-
dressed explicitly to it (thanks to its DUID), without
paying attention by whom.

• The RemoteEventNotifier helper class notifies in its own
execution thread a given event listener on behalf of a
RemoteEventProducerImpl.

• The RemoteEvent class defines remote events passed
from an event producer to the event notifiers, which
forward them to the interested remote event listeners.
A remote event contains information about the kind
of event that occurred, a reference to the object which
fired the event and arbitrarily many attributes.

The design pattern illustrated by Figure 7 is used through
the whole framework for the collaboration between the three
different parts of MaDViWorld (i.e. avatars, rooms and ob-
jects) and the utility event package. Note that the three
of them are both implementing the RemoteEventProducerRe-
mote interface and are client of its default implementation,
RemoteEventProducerImpl. The operations defined by the in-
terface are just forwarded to the utility class. With this
pattern we have the suited inheritance relation (a WObject
‘is a’ RemoteEventProducer) without duplicating the common
code. A lot of similarities with the Proxy pattern defined in
[16] can be found. This composition based design is more
flexible and better adapted to our class hierarchy than the
straightforward approach consisting of just inheriting of a
common RemoteEventProducerRemote implementation. Any-
way, the main inspiration of this structure comes from the
Observer [16] pattern and its publish-subscribe interaction
kind.

+register()
+unregister()

Avatar- / Room- / WObjectImpl

java.util.EventListener

+notify()

«interface»
RemoteEventListener

«interface»
java.rmi.Remote

«interface»
java.lang.Runnable

RemoteEventProducerImpl

RemoteEventListenerImpl

+getSource()
+getAttribute()
+getID()

RemoteEvent

-myEvent
-myListener

RemoteEventNotifier

«interface»
Avatar / Room / WObject

rep.register()

-rep

1

1

-eventConsumer

1 1

+notifyListeners()
+notifyAllListeners()

«interface»
RemoteEventProducerLocal

+register()
+unregister()

«interface»
RemoteEventProducerRemote

«interface»
java.io.Serializable

1 *

rep.unregister()

java.rmi.server.UnicastRemoteObject

Ja
va

 c
la

ss
es

fr
am

ew
o

rk
 c

la
ss

es
im

p
le

m
en

ta
ti

o
n

 c
la

ss
es

Fig. 7: Pattern used for integrating the event model in the
framework

To sum up the whole event mechanism, the UML sequence
diagram of Figure 8 dwells on all the operations, from the
registration phase to the firing and notification of an event.
First (a), the event consumer registers a RemoteEventListener
to a room, avatar or object whose events it is interested in.
Second (b), due to a state change an event is fired and all

interested listeners are notified, each by a RemoteEventNoti-
fier. The informed listener can then do the appropriate work
with regard to the type of the event. On Figure 8, one can
also see the different methods invoked remotely across the
LAN. This pattern presents some similarities with the Jini
distributed event programming model, which is specified in
[2] and thoroughly explored in [21].

aRemoteEventProducerImpl

*[for each interested
listener aList]

aConsumer
(Room / Avatar / Wobject)

aProducer
(Room / Avatar / Wobject)

aRemoteEventListener

myDUID = new DUID()

register(rel, myDUID)

rel = new RemoteEventListener(this)

notifyAllListeners(anEvent)

aRemoteEventNotifier
new RemoteEventNotifier(this, aList, anEvent)

notify(anEvent)

anOperation()

� � �

Fig. 8: (a) Setup of the event model (b) Notification of an
event

Security
Security, privacy and trust are crucial elements in virtual
world systems. One has to distinguish between two levels of
security concerns: (i) the system level and (ii) the virtual
world level. In order to address system level security con-
cerns (e.g., passing through firewalls, encrypted communica-
tion protocol, downloaded proxy code trust, etc.), facilities
offered by the Java and Jini technology can be used. In the
actual version of the MaDViWorld project, system level secu-
rity is not the first priority, and some further configuration
would be necessary prior to large scale deployment. This
section clarifies how the framework manages security at the
virtual world level, i.e. security sensitive actions inside the
virtual world.

There are several critical actions that objects and avatars
may undertake while visiting the rooms of a virtual world:
access a given room, use an object, remove or copy an object
from a given room, etc. All these interactions concern a
room and another entity (an avatar or an object).

Thus the basic principle of MaDViWorld ’s security model is
that the subspace grants access rights or privileges to avatars
and objects. Rooms achieve this task by using challenge-
response tests. A challenge-response test is a test involving
a set of questions (or “challenges”), that the other entity has
to answer in order to pass the test. If the entity provides
a satisfactory response to the challenges then it is deemed
that the entity has passed the test. The question often relies
on the possession of a secret of some sort. A simple exam-
ple challenge is asking for a password, and the adequate
response is the correct password.

The software structure adopted to realize this mechanism
adopts the Proxy [16] design pattern. Indeed, the RoomAc-
cessor provides a factory for room proxies. For each existing
room there is exactly one corresponding RoomAccessor reg-
istered in a remote lookup registry or service. The RoomAc-
cessor’s checkAnswer() method provides clients of the room it

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 240 ISSN: 1690-4524

represents with an appropriate RoomSecurityProxy depending
on how the challenge is solved.

The RoomAccessor’s getQuestion() method returns an instance
of a Question implementation class. One can see on Figure
9 that the framework offers two default kinds of questions
represented by two8 lightweight classes: (i) EmptyQuestion
is an empty implementation of the Question interface whose
execute() method simple returns null; (ii) PasswordQuestion
represents the simple challenge asking for a password. It
fulfills its task by invoking the getPassword() method of the
solver it receives as parameter.

The framework also contains a Solver class, which contains
one method per challenge supported by the security system.
This class simply provides dummy implementations of each
method, i.e. simply returning null. This class is intended to
be refined and some methods overridden in order to provide
correct solutions to the proposed challenges. Typically the
avatar will need a smart Solver class which either asks the
human user to type a password or provides the solution of
the question autonomously.

+execute()

«interface»
Question

«interface»
java.io.Serializable

+execute()

PasswordQuestion

+execute()

RSAQuestion

+execute()

EmptyQuestion

+getPassword()
+RSAdecrypt()

Solver

«optional»
RefinedSolver

Ja
va

 c
la

ss
es

fr
am

ew
o

rk
 c

la
ss

es
im

p
le

m
en

ta
ti

o
n

 c
la

ss
es

«optional»
NewQuestion

Fig. 9: Challenge-response classes relationships

The sequence diagram of Figure 10 illustrates in greater de-
tail the different steps an avatar has to pass to gain access
to a room. The room accessor sends a Serializable Question to
the avatar. The avatar locally solves the question through
its Solver and receives an answer. The answer is serialized
and sent back to the room accessor, which can check it for
correctness and create a proxy for the room with the cor-
responding access rights. This proxy is actually a remote-
secure proxy for the room. It is returned to the avatar,
which now has a handle for the room.

Note that the communication channel between the avatar
and the room accessor may not be secure and some ma-
licious individual could intercept the answer sent by the
avatar. Thus sending a password in plain text over this
channel clearly represents a security hole. To thwart such
kind of attacks a more sophisticated challenge-response must

8In fact three subclasses are depicted but the RSAQuestion
class is not part of the framework. It will be discussed later.

anAvatar aRoomAccessor

Question

aRoomImplSecurityProxy

aRoomImpl

aSolver

� ���

aLookupAndRegistrationSystem

getRoomAccessorReference()

getQuestion()

checkAnswer(resp)

resp := execute()

getRoomReference(aSolver)

anOperation

anOperation()

getPassword()

Fig. 10: An avatar getting a secure room proxy

be proposed. An asymmetric (public key - private key) cryp-
tographic algorithm like RSA9 could be employed to achieve
this goal.

Enhancing the MaDViWorld framework with such a new au-
thentication process can be done in two simple steps: (i) add
a new method to the Solver which could be named RSAde-
crypt() and (ii) provide a corresponding subclass of Question,
for instance RSAQuestion. The new RSAdecrypt() method
should be able to manage a key ring to successfully pass the
challenges proposed by the different rooms.

Because the security is a difficult topic that may require
some experimentation to get right, the security policy of a
room is centralized in a single subclass of Question. This
allows the framework user to easily try different policies if
the existing proves inadequate. Another benefit of the ex-
plained architecture is that each room manages its security
policy independently allowing for a completely distributed
implementation with no central security authority. At in-
stallation time, the user who creates the room can choose
and parameterize its security policy. Thus we have a simple,
yet flexible and powerful security model.

4. MORE ON OBJECTS

The MaDViWorld framework provides a default implementa-
tion both for a simple avatar application (see Figure 2) and
for the room server application. These two default applica-
tions allow for a given amount of customization from their
users (e.g. by defining the rooms’ access rights and security
policy, by setting them up with one’s own collection of ob-
jects or by connecting them through doors). It would even
be possible for an experienced Java programmer to use the
carefully designed hooks of the framework in order to extend
or even to fully override the default implementation, intro-
ducing for example rooms with 2D or 3D representations.

It is, however, not the main goal of the MaDViWorld project

9The RSA algorithm was first described in 1977 by Ronald
Rivest, Adi Shamir and Leonard Adleman [29]; the letters
RSA are the initials of their surnames. The interested reader
can find a comprehensive discussion of this algorithm in [22].

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 2 41ISSN: 1690-4524

to go into this direction. We truly believe that the actual im-
plementation is sufficient in order to design exciting worlds
at the important condition of disposing of a rich enough va-
riety of objects to populate them. This is the reason why we
concentrated on facilitating as much as possible the process
of programming new types of object with the ultimate goal
of instigating a rich community of object creators. Further-
more, in order to bootstrap this process, we launched a series
of student projects10 with the only requirement of validating
the framework by programming new “useful” objects. The
next subsections briefly present some of them.

Resource Sharing Objects
The objects are executed either on the machine hosting their
containing room or on the one where the avatar application
is running. This allows for resource sharing. Objects need-
ing a lot of computing power and memory are put in a room
hosted by a powerful computer and they are remotely con-
trolled by their thin GUIs launched by avatar clients. A
little example illustrating this feature is the fibonacci num-
ber calculator. Other ones can easily been imagined, for
example from mathematical topics such as fractal calcula-
tion, cryptography or linear programming solvers.

Collaborative Objects
The MaDViWorld framework offers all what is needed in
order to build collaborative objects. Indeed, objects can
easily be shared by several users and events transparently
broadcasted. This allows for the creation of a large vari-
ety of objects supporting collaboration among the virtual
world users. These objects range from simple shared white-
boards to sophisticated collaborative editors and “chat” util-
ities. The whiteboard object is an illustrative example from
the MaDViWorld programming cookbook guide, while proto-
types of a simple collaborative editor and of a powerful chat
object (see Figure 11) have been realized in two separate
projects.

Multi-player games are also part of this category of ob-
jects. Existing examples of multi-user games are the “bat-
tleship” game (see Figure 2), the “tic-tac-toe” game, the
“minesweeper” game11 and even a complex “Metal Panic”
game composed of three complementary inter-communicating
objects : robot factories, customizable fighting robots and
fighting arenas.

It would also be possible to imagine objects which would
sense their environments and adapt their states in order to
anticipate the needs of their users, e.g. a whiteboard which
would adapt its size to the number of avatars present in a
given room.

Inter-Communicating Objects
The remote event mechanism model can also be used in
order to make objects communicate with each other. A pos-
sible application consists in producing so called “social” ob-
jects. For example, one can create a virtual pets community.

10Bachelor or Master level projects realized at the DIUF (see
[12]).

11Essentially a single-user game. It might, however, range
in the collaborative objects category if one considers the
avatars watching how someone else plays.

Fig. 11: A chat object

The avatars owning these pets have to play with them, clean
or feed them in order to keep them healthy. If a member of
the community dies, the other pets living in the same room
are affected by the death of their friend and their “life cap-
ital” decreases. The GUI of such an object is illustrated by
Figure 12.

Other applications of the communication between objects
are the robots, factories and arenas of the “Metal Panic”
game, and MadTunes, an audio player accessing MusicRack
objects containing several music files.

Agent Objects
The MaDViWorld framework also allows for the creation of
so-called mobile software agents (see [9, 3]). At the soft-
ware engineering level (design, programming and especially
debugging), these objects are some of the most difficult to
deal with. Nevertheless, two prototypical agents have suc-
cessfully been developed with the help of the framework fa-
cilities: The first one is an agent called “Explorer” that
draws a sophisticated interactive map12 of a given virtual
world by visiting all its rooms. The second one is an agent
called “Matchmaker” that fixes meeting with other agents
of the same type on behalf of their respective owners (see
Figure 13).

Summary
Our experience within the various projects partially described
in the preceding subsections proved that it is rather simple

12The map appears as a graph, where the vertices express ei-
ther the room server hosts, the rooms, the connected avatars
or the objects in the rooms, while the edges represent either
inclusion (e.g. an object in a room) or connection relation-
ships (e.g. rooms linked by a door).

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 242 ISSN: 1690-4524

Fig. 12: A virtual pet in MaDViWorld

for an average Java programmer using the framework to de-
velop her own objects with the freedom of deciding if her
new object will:

• be stateful or stateless, determining if the internal state
of the object is carried around when the objects moves
or not;

• be single- or multi-user;

• take advantage of the distributed event mechanism in
order to “inter-communicate” with other objects or
not;

• take advantage of their intrinsic mobility in order to
behave as mobile agents or not;

Fig. 13: Screenshot of a “Matchmaker” agent

• be rather specific (for example a given game) or very
generic (e.g. a chat, a witheboard or a collaborative
editor, which could then be installed by default in ev-
ery room).

5. CONCLUSION

Designing an extensible and truly decentralized software plat-
form able to support a virtual community based on the MOO
paradigm represents a very challenging task at the fringe
of today’s software engineering technology. In this paper,
we have drawn from our experience developing MaDViWorld

in order to propose a coherent set of solutions to some of
the main questions one must answer in order to embark on
such a daunting task. Indeed, the actual version of MaD-

ViWorld is a fully functional framework for creating highly
distributed virtual worlds. It has been carefully designed
in order to facilitate its enhancement either by extending
some of its concrete classes or by implementing the well-
documented interfaces of its higher levels.

Although MaDViWorld default avatar and room server ap-
plications remain rather simple (i.e. no immersion into 2D
or 3D spaces), we truly believe that the actual implementa-
tion is sufficient in order to design exciting virtual worlds by
creating a rich enough variety of objects to populate them.
This is the reason why we concentrated on facilitating as
much as possible the process of programming new types of
objects.

Our experience with various projects proved that it is rather
simple to develop new objects and to test them in a MaD-

ViWorld, with the transparent additional advantages of mo-
bility, remote execution and persistence.

The next step would be to integrate the work already done
within a coherent and “interesting” world. Two possible
candidates are sketched below: the first one ranges in the
area of entertainment and the second one deals with e-learning.

Gameworld
This virtual environment consists of a set of rooms full of
active collaborative game objects, ranging from single user
arcade games to sophisticated multi-user ones (card games
for instance). After having paid a fee, the users are allowed
to visit the rooms; to watch other users play; to try out some
demo versions of the games; or even to join a game and to
exchange their impressions about it. Later, if she is inter-
ested, a user can even copy a given game object onto her own
machine by getting the right to clone it. A slightly modi-
fied version of this world would be to replace the cloneable
game objects by active pieces of art that would be unique in
the sense that one could only move them around, not copy
them.

Eduworld
A more ambitious project is to build up a distributed learn-
ing environment on the top of the MaDViWorld framework.
While Figure 14 sketches the conceptual model of such a
world, its key elements are enumerated below.

• Individual professors’ offices are used in order to re-

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 2 43ISSN: 1690-4524

Employee

Entry Hall

Administration service

Auditorium A

Advisor's room

Auditorium B Advisor

Professor 1

Course 1

Professor's Office 1

Exercises 1

Assistants' office 1

Conference Room 1 Assistant 1a

"Turtle graphics" robots

Professor n

Course n

Professor's Office n

Exercises n

Assistant's office n

Conference Room n Assistant n

Pedagogical objects

Assistant 1b

Fig. 14: Distributed learning environment conceptual
model

ceive students for private discussions. We propose to
physically decentralize them on the professors’ private
machines.

• Assistants’ offices are rooms used by the assistants of a
given professor in order to receive individual students
for questioning about their on-going homework. The
functions of these rooms are close to the former ones
and we also propose to decentralize them.

• Conference rooms are associated to a professor’s group
and are used by both the professor and his assistants
in order to have an open discussion with several stu-
dents at once. They can also serve for more classical ex
cathedra courses. These rooms can either be decentral-
ized on a machine associated with a given professor’s
group or put on a larger department’s server.

• Exercises rooms are the most interesting ones, since
they contain the active pedagogical objects associated
with a given course. For instance, programmable draw-
ing robots could be used in order to teach algorithmic
concepts. This idea is analogous to the turtle graph-
ics methodology adopted by Logo [25, 1]. Adapted to
a virtual world environment such a learning strategy
would lead to the following scenario. Each student
clones the ‘exercise of the day’ robot and takes it into
her virtual office, running on her own physical ma-
chine. She then tries to instruct the robot to do a
given drawing. Once she is finished, the student puts
her programmed robot in another room for correction
(the assistants’ office for instance). A reasonable solu-
tion is to put these rooms on the same server as the
conference ones. They will not overload this machine,
since the real work will always take place on the stu-
dents’ individual machines.

• Administrative rooms provide various central services
(registration, accreditation, etc.) and would typically
run on a larger department (or even university) server.

It is our hope that such worlds will be built in the near
future.

6. REFERENCES

[1] H. Abelson and A. A. diSessa. Turtle Geometry: The
Computer as a Medium for Exploring Mathematics.
MIT Press, September 1986.

[2] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo,
and A. Wollrath. The Jini Specification. The Jini
Technology Series. Addison-Wesley, 1st edition, 1999.

[3] J. M. Bradshaw. Software Agents. AAAI Press, 1997.

[4] L. P. Burka. The MUDdex. [online], 1993.
http://www.linnaean.org/∼lpb/muddex/ (accessed

November 26, 2004).

[5] F. Buschmann, R. Meunier, and H. Rohnert.
Pattern-Oriented Software Architecture - A System of
Patterns. John Wiley and Sons, 1996.

[6] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley &
Sons, 1996.

[7] J.-C. H. (ed.). Virtual Worlds: Synthetic Universes,
Digital Life, and Complexity. Perseus Books, Reading,
Massachusetts, USA, 1999.

[8] V. N. et al. The COVEN project: Exploring
applicative, technical, and usage dimensions of
collaborative virtual environments. Presence,
8(2):218–236, 1999.

[9] S. Franklin and A. Graesser. Is it an agent, or just a
program?: A taxonomy for autonomous agents. In
Proceedings of the Third International Workshop on
Agent Theories, Architectures and Languages.
Springer-Verlag, 1996.

[10] E. Frécon and M. Stenius. DIVE: A scalable network
architecture for distributed virtual environments.
Distributed Systems Engineering, 5(3):91–100,
September 1998.

[11] P. Fuhrer. Distributed Virtual Worlds - Abstract Model
and Design of the MaDViWorld Software Framework.
PhD thesis, Department of Informatics, University of
Fribourg, Switzerland, Nr. 1458, September 2004.

[12] P. Fuhrer. MaDViWorld (Massively Distributed Virtual
Worlds). [online], 2004.
http://diuf.unifr.ch/softeng/projects/madviworld/ (accessed

November 26, 2004).

[13] P. Fuhrer, G. K. Mostéfaoui, and J. Pasquier-Rocha.
MaDViWorld : a software framework for massively
distributed virtual worlds. Software - Practice And
Experience, 32(7):645–668, June 2002.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 244 ISSN: 1690-4524

[14] P. Fuhrer and J. Pasquier-Rocha. Massively
distributed virtual worlds: A framework approach. In
E. A. Nicolas Guelfi and G. Reggio, editors, Scientific
Engineering for Distributed Java Applications, volume
2604 of Lecture Notes in Computer Science, pages
111–121. International Workshop, FIDJI 2002
Luxembourg-Kirchberg, Luxembourg, November 2002,
Springer-Verlag, March 2003.

[15] A. Gachet. A Software Framework for Developing
Distributed Cooperative Decision Support Systems.
PhD thesis, Department of Informatics, University of
Fribourg, Switzerland, Nr. 1402, February 2003.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns Elements of Reusable Object-Oriented
Software. Addison-Wesley, Massachusetts, 1995.

[17] C. M. Greenhalgh. Awareness-based communication
management in the massive systems. Distributed
Systems Engineering, 5(3):129–137, September 1998.

[18] W. Grosso. Java RMI. O’Reilly & Associates, Inc.,
2002. Designing and building distributed applications.

[19] R. Kazman. Load balancing, latency management and
separation of concerns in a distributed virtual world.
In A. Y. Zomaya, editor, Parallel Computing:
Paradigms and Applications. International Thomson
Publishing, November 1995.

[20] C. Larman. UML and Patterns. Prentice-Hall PTR,
2002.

[21] S. Li. Professional Jini. Wrox Press Ltd., 2000.

[22] A. J. Menezes, P. C. van Oorschot, and S. A.
Vanstone. Handbook of Applied Cryptography. CRC
Press, October 1996.

[23] B. Meyer. Object-Oriented Software Construction. The
Object-Oriented Series. Prentice-Hall, 2nd edition,
1997.

[24] K. L. Morse, L. Bic, and M. Dillencourt. Interest
management in large-scale virtual environments.
Presence, 9(1):52–68, 2000.

[25] S. A. Papert. Mindstorms: Children, Computers and
Powerful Ideas. Basic Books, 2nd edition, March 1999.

[26] Paradise project web site. [online].
http://www.dsg.stanford.edu/paradise.html (accessed

January 14, 2004).

[27] W. Pree. Design Patterns for Object-Oriented
Software Development. Addison-Wesley, 1995.

[28] E. Reid. Cultural Formations in Text-Based Virtual
Realities. Masters thesis, English Department,
University of Melbourne, January 1994.

[29] R. L. Rivest, A. Shamir, and L. M. Adleman. A
method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM,
21(2):110–126, February 1978. Previously released as
an MIT “Technical Memo” in April 1977, [Retrieved
December 16, 2004, from
http://theory.lcs.mit.edu/∼rivest/rsapaper.pdf].

[30] S. Singhal and M. Zyda. Networked Virtual
Environments: Design and Implementation.
Addison-Wesley, 1999.

[31] J. Smed, T. Kaukoranta, and H. Hakonen. A review
on networking and multiplayer computer games.
Technical Report Technical Report 454, Turku Centre
for Computer Science, April 2002.

[32] B. Venners. How to attach a user interface to a jini
service: An in-depth look at the serviceui project from
the jini community. JavaWorld How-To-Java, October
1999. [Retrieved December 16, 2004, from http://www.

javaworld.com/javaworld/jw-10-1999/jw-10-jiniology.html].

[33] B. Venners. The ServiceUI API Specification (Version
1.1). Artima Software, October 2002. [Retrieved
December 16, 2004, from
http://www.artima.com/jini/serviceui/Spec.html].

[34] R. C. Waters, D. B. Anderson, J. W. Barrus, D. C.
Brogan, M. A. Casey, S. G. McKeown, T. Nitta, I. B.
Sterns, and W. S. Yerazunis. Diamond park and
spline: Social virtual reality with 3D animation,
spoken interaction and runtime extendability.
Presence, 6(4):461–481, August 1997.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 2 45ISSN: 1690-4524

	P431565

