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Abstract

A general framework is developed to treat opti-

mal control problems for a generalized Black-

Scholes model, which is used for option pric-

ing. The volatility function is retrieved from a

set of market observations.

The optimal volatility function is found by min-

imizing the cost functional measuring the dis-

crepancy between the model solution (pricing)

and the observed market price, via the uncon-

strained minimization algorithm of the quasi-

Newton limited memory type. The gradient is

computed via the adjoint method. The effec-

tiveness of the method is demonstrated on an

European call option.

Key words: Generalized Black-Scholes

model, adjoint method, volatility function,

gradient, options.

1 Introduction and Problem
Statement

An option is a contract that gives the owner

the right to buy or sell a specified amount

of a particular underlying asset at a fixed

price, called the exercise (strike) price on or

before a specified date, called the maturity

date. Options are generally either American

or European a combination of both. American

options can be exercised at any time up to

expiry date, whereas the European options can

be exercised only at the expiry date.

The present work focuses on the optimal

control problem for data assimilation with the

aim of ascertaining the optimal volatility in the

generalized Black-Scholes equation using a set

of market observation.

Consider the following generalized Black-
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Scholes model:

∂V

∂t
+

1

2
σ2(s)s2∂2V

∂s2
+ (r − q) s

∂V

∂s
− rV = 0,

(1.1)

where (s, t) ∈ IR+× (0, T ), V = V (s, t) is

the value of the option price at asset prices,

σ = σ(s) is the volatility function of under-

lying assets, r is the risk-free interest rate,q

is the constant dividend yield,t is the current

time, andT is the maturity date. When the

volatility σ is a constant function, it becomes

the famous model for the price of options, the

classical Black-Scholes model [1].

Eq. (1.1) is a parabolic partial differential equa-

tion. To make it well-posed, we have to specify

the initial or end condition, the payoff function

at maturity and the boundary conditions at zero

and at infinity. Here, we are concerned on the

valuation of the vanilla European call options

since the put options are almost identical math-

ematically, and no exact solution exists for the

American options. Therefore, the payoff func-

tion at maturity and boundary conditions are

given by:






V (s, T ) = (s − K)+ = Max (0, s − K) , s ∈ IR+

V (0, t) = 0, t ∈ (0, T )

lim
s→∞

V (s, t) = payoff, t ∈ (0, T )

(1.2)

whereK is the exercise or strike price. Eq.

(1.1) is described in an infinite domainIR+×

(0, T ) , which makes it difficult in constructing

numerical solutions. This motivates the con-

sideration of the following model defined on

a truncated domainD = (0, Smax) × (0, T ) ,

where Smax is the suitable chosen positive

number representing the final value of the asset

price. Thus, Eq. (1.1) and boundary conditions

(1.2) become






∂V

∂t
+

1

2
σ2(s)s2∂2V

∂s2
+ (r − q) s

∂V

∂s
− rV = 0

V (s, T ) = (s − K)+, s ∈ [0, Smax]

V (0, t) = 0, t ∈ [0, T ], (s, t) ∈ D

V (Smax, t) = (Smax − K)+, t ∈ (0, T )

(1.3)

The existence and uniqueness of a solution of

the Eq. (1.3) can be found in [2].

The generalized Black-Scholes model given by

Eq. (1.3) consists of five parametersK, T , r, q,

andσ(s). The constant parametersT , K, q and

r are assumed or can be directly observed in

the market, whereas the volatility functionσ(s)

cannot be directly obtained from the market.

Suppose we are given a set ofm̃ñ market ob-

servations values of the option,γij1≤i≤m̃, 1≤j≤ñ,

where γij is the observed market price of

the option with exercise priceKi at the ex-

ercise timeTj, we can estimate the volatil-

ity function σ(s) using the generalized Black-

Scholes model (1.3) and this set of the obser-

vations. We denote bỹV the observational

vector constructed using all the options price
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γij for the maturityTj and the exerciseKi,

i = 1, 2, · · · , m̃, j = 1, 2, . . . , ñ.

The cost function,J (σ) : Vad −→ IR+, where

Vad is the set of admissible parametersσ(s)

which defines the discrepancy between the sim-

ulated values,V (s, t), and the corresponding

observations,̃V, is defined as follows:

J (σ)=
1

2

∫ T

0

∥∥V −Ṽ
∥∥2

dt +
α

2
‖σ−σex‖

2 (1.4)

whereα ≥ 0 is the regularization coefficient

andσex is ana priori estimation ofσ.

We then defined the optimal control problem as

follows:





Find V and σ⋆ such that

J (σ⋆) = inf
σ ∈ Vad

J (σ) .

(1.5)

If J has a minimum (assuming that the set of

all admissible parametersVad is the whole set)

then the optimality condition∇J (σ⋆) = 0

holds. The gradient of the cost functionJ is

obtained by using an adjoint equation (see Le

Dimet and Talagrand [4], Lions [3]).

The key idea is that the adjoint method pro-

vides us with an exact value of the gradient of

the cost function needed for the minimization

procedure. The main difficulty in implement-

ing the adjoint technique is the derivation of

the adjoint equations. Once this exact value of

the gradient of the cost function is obtained via

the adjoint equation, the unconstrained mini-

mization algorithm of the quasi-Newton limited

memory type [5] is used to derive the optimal

volatility function. The inverse model allows us

to determine the optimal scale parameters and

the model sensitivity.

2 Solution Technique

The gradient is the key element in the mini-

mization procedure that requires computing the

gradient of the cost function. It is obtained by

the adjoint model, which we briefly describe in

section 2.3 using the semi-discrete equation for

the sake of completeness.

2.1 Discretization of the Black-
Scholes equation

In the following, we consider the discretiza-

tion of the Black-Scholes partial differential

Eq. (1.3). We apply a uniform grid for the

computational domain[0, Smax] × [0, T ] which

is formed with the space step∆s =
Smax

Ns
and

time step∆T =
T

NT
. Moreover, we use the

notation

V n
i = V (si, tn) , (2.6)

wheresi = i∆s andtn = n∆T ; i = 0, · · · , Ns,

n = 0, · · · , NT , for the numerical approxima-

tion of the solution. The efficiency of numerical

solution can be improved by coordinate trans-

formation or using nonuniform grids [6].
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2.2 Space Discretization

For the space discretization, a combination of

first-order and second-order accurate finite dif-

ferences





∂V

∂s
(si, t) ≈

Vi+1(t) − Vi(t)

∆s

∂2V

∂s2
(si, t) ≈

Vi+1(t) − 2Vi(t) + Vi−1(t)

∆s2

(2.7)

is used for the approximation of the space

derivative in the Black-Scholes partial differen-

tial equation. This lead to the following semi-

discrete equation

∂V

∂t
+

[
1

2
(σi i)

2

]
Vi−1−

[
(σi i)

2 + (r−q) i+r
]
Vi

+

[
1

2
(σi i)

2 + (r − q) i

]
Vi+1 = 0 (2.8)

wherei = 1, 2, · · · , Ns, andσi = σ(si). This

equation can be written as follows

d V

d t
= Aσ V, (2.9)

whereAσ =
[
aσ

ij

]
is a tridiagonal matrix with

nonzero elements defined as follows:





aσ
i,i−1 = −

1

2
(σi i)

2, i = 1, · · · , Ns

aσ
i,i =

(
(σi i)

2 + (r−q) i+r
)
, i = 1, · · · , Ns

aσ
i,i+1 =−

(
1

2
(σi i)

2+(r−q) i

)
, i = 1, · · · , Ns

With this discretization,Aσ has anM-matrix

property. Indeed,aσ
i,j ≤ 0 for i 6= j. This

property guarantees that the space discretiza-

tion doest not cause undesired oscillations into

the numerical solution. (see [6]). The time dis-

cretization of the semi-discrete Eq. (2.9) is dis-

cussed in the section 2.4.

2.3 Adjoint Model

In this section, we derive the adjoint equation

to the semi-discretized equation (2.9).

Using the definition of the directional deriva-

tive (also calledsensitivity in financial theory

context),

V̂ (σ, h) = lim
β→0

V (σ + βh) − V (σ)

α
(2.10)

(whereh is the perturbation onσ) to Eq. (2.9)

gives rise to the tangent linear system,






dV̂

dt
=

[
∂Aσ

∂V

]
.V̂ +

[
∂Aσ

∂σ

]
.h

V̂ (0) = 0,

(2.11)

which is used to find the adjoint model. Simi-

larly, the directional derivative of the cost func-

tion is

Ĵ (σ, h) = lim
α→0

J (σ + βh) − J (σ)

β
= 〈h,∇σJ〉

=

∫ T

0

〈
V − Ṽ, V̂

〉
dt + (2.12)

α 〈σ − σex, h〉

Introducing an adjoint variableP , the scalar

product of P and the tangent linear system

(2.11) is integrated between0 andT to yield

(using integration by parts) the adjoint model,





〈
P (T ) , V̂ (T )

〉
−

〈
P (0) , V̂ (0)

〉

−

∫ T

0

〈
dP

dt
, V̂

〉
dt=

∫ T

0

〈[
∂Aσ

∂σ

]T

P, V̂

〉

dt

+

〈
h,

∫ T

0

[
∂Aσ

∂σ

]T

Pdt

〉

(2.13)
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Eq. (2.13) can be rewritten

−
〈
P (T ) , V̂ (T )

〉
+

∫ T

0

〈
dP

dt
+

[
∂Aσ

∂V

]T

P, V̂

〉

dt

=

〈

h,−

∫ T

0

[
∂Aσ

∂σ

]T

Pdt

〉

If we define,P , the adjoint variable as the so-

lution of the equation





dP

dt
+

[
∂Aσ

∂V

]T

P =
(
V − Ṽ

)

P (T ) = 0

(2.14)

Then, the directional derivative of the cost

function defined in (2.12) can be written as

J̃ (h, σ) = 〈h,∇σJ〉 =

〈

h,−

∫ T

0

[
∂Aσ

∂σ

]T

Pdt

〉

+ α 〈σ − σex, h〉

wherefrom we obtain

∇σJ = α (σ − σex)−

∫ T

0

[
∂Aσ

∂σ

]T

Pdt (2.15)

Thus, to obtain the gradient of the cost function

with respect to the control variable,σ, the

optimality system (2.9, 2.14, 2.15) is solved

simultaneously.

The solution of the minimization problem de-

fined in section 1 may be found by using the

Newton’s method:

σn+1 = σn −
[
∇2

σJ (σn)
]−1

.∇σJ (σn) (2.16)

whereσn is the current estimate.

To solve the minimization problem, the limited-

memory quasi-Newton minimization algorithm

is used [5]. It is based on the BFGS (Broyden-

Fletcher-Goldfarb-Shanno) update formula for

the inverse Hessian
[
∇2

σJ (σn)
]−1

.

2.4 Time Discretization

In the option pricing problems, the stability of

the time discretization scheme is an important

issue because of the nonsmooth of initial data.

The stability of time discretization schemes

for the parabolic partial differential equation is

considered in [7].

For the time discretization of the semi-discrete

Eq. (2.9), we consider the Crank-Nicolson

scheme. The Crank-Nicolson time discretiza-

tion scheme can be interpreted as the average

of the explicit and implicit Euler schemes. The

Scheme

V n+1 − V n

∆T
= Aσ

(
V n+1 + V n

2

)
(2.17)

is second-order accurate and unconditionally

stable.

Eq. (2.17) lead to the matrix solution

(
I +

∆T

2
Aσ

)
V n =

(
I −

∆T

2
Aσ

)
V n+1

(2.18)
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Discrete Version of the Adjoint

The complete discrete adjoint equation associ-

ated to this time scheme discretization with the

boundary conditionP n
0 = 0 and P n

Ns
= 0,

n = 0, · · · , NT is defined by solving backward

the following linear system





(I − Bσ) P n−1 = (I + Bσ)P n −
(
V n − Ṽ

)

P NT +1 = 0, n = NT , · · · , 1

(2.19)

whereBσ =
[
bσ
ij

]
is a tridiagonal matrix with

nonzero elements





bσ
i,i−1 = −∆T

(
1

2
(σi−1 (i−1))2 + (r−q) (i−1)

)
/2

bσ
i,i = ∆T

(
(σi i)

2 + (r − q) i + r
)
/2

bσ
i,i+1 = −∆T

1

2
(σi+1 (i + 1))2/2

i = 1, · · · , Ns − 1

Discrete version of the Gradient

The gradient of the cost function with respect

to the control parameter,σk = σ(sk), k =

1, 2, · · · , Ns; is given by

∇σk
J = ∆t

NT∑

n=1

Ns∑

i=1

[
V n

i−1 + V n+1
i−1 − 2

(
V n

i + V n+1
i

)

+ V n
i+1 + V n+1

i+1

]
σii

2pn
i /2 (2.20)

+ α (σk − (σex)k)

Remark

If we consider the volatity as a function of time

and the asset price,σ = σ(s, t), the prob-

lem of estimating the volatility surfaceσ (s, t)

becomes more complex. However, using a

wavelets analysis, the additional time dimen-

sion can be easily mitigated [8].

The basic idea behind the wavelet analysis is

to decompose a time dependent function into a

number of component, each one of which can

be associated with a particular scale at a partic-

ular time.

In short, a waveletϕ ∈ L2 (IR) is function

whose binary dilations and dyadic tralations

generated a Riesz basis onL2 (IR). Any f ∈

L2 (IR) can be expanded into a wavelet series,

f(t) =
∞∑

j=−∞

∞∑

k=−∞

wjkϕjk(t)

whereϕjk ∈ L2 (IR) denotes the dilated and

translated wavelet, defined by

ϕjk = 2j/2ϕ
(
2jt − k

)

j ∈ Z is the scale of the wavelet, corre-

sponding to a dilation by2j and k ∈ Z is

the position (translation). In the present set-

ting we can use this expansion to represent the

volatility coefficientσ (s, t) in a Wavelets basis.

3 Numerical Experiments

In this section, we present numerical experi-

ments to illustrate the theory presented in the

previous sections. All numerical computations

were executed on a HP PC (AMD, 1,8 GHZ,
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512 MB).

In these numerical experiments, the European

call option problem (1.3) is described by the

parameter valuesSmax = 100, T = 5,

K = 50, Ns = 100, NT = 50, and α =

0.5. The payoff function is given byV NT

i =

(i∆s−K, 0)+, i = 1, 2, · · · , Ns. The present

methodology is applied to two examples.

Example 1

First, we assume that the true volatility parame-

ter,σex(s), is defined asσex(s) = 0.01e−(0.01s).

This exact volatility is used to solve generalized

Black-Scholes equation (1.3) withr = 0.35

andq = 0.3. The solution obtained serves as

the observed market prices̃V. Figure 1 displays

Ṽ.

The unconstrained minimization algorithm

of the quasi-Newton limited memory type

[5] with the convergence criterion either on

the number of iterations or the gradient norm

of the cost function is used to determine the

optimal volatility.

Figure 2 shows the evolution of the (relative)

gradient norm of the cost function. The opti-

mal volatility is recovered in12 iterations.

Figure 3 shows the comparison between the

true volatility (continuous line) and the esti-

mated volatility,σ⋆(s), (dashed line) obtained

by solving (1.5). It can be seen that the agree-
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Figure 1: option valuesṼ for σex(s) =

0.01e−(0.01s)
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Figure 2: Relative gradient norm of the cost

function:
‖∇Jk‖

‖∇J0‖
(the gradient at each iteration

is divided by the gradient at the first iteration)
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ment is excellent. We observed the discrepan-

cies near the maturity time,T = 100. In other

words, the mismatch occures for large values of

the underling asset.
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Figure 3: Volatility estimation: example 1

Example 2

In this example, we assume that the true volatil-

ity function,σex, is given by

σex(s) =
10−2

(
1 + cos

(
π s
45

))

7

The observation is the solution of the general-

ized Black-Scholes model (1.3) using this true

volatility with r = 0.01 andq = 0.

Figure 4 shows the comparison between the

true volatility (solid line) and the optimal one

(dashed line). As in the example 1, using

the true volatility with more structures, we ob-

served that the optimal volatilityσ⋆(s) is well

recovered. Once more the discrepancies occur

at the vicinity of the maturity date.
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Figure 4: Volatility estimation: Example 2

4 Conclusions

A generalized Black-Scholes equation is con-

sidered as a mathematical model for the eval-

uation of the European options. We developed

a scheme based on the adjoint method to cali-

brate the volatility parameter as the function of

the asset price. The resulting ill-posed inverse

problem is regularized by penalizing the cost

functional. The Numerical experiments carried

out support the theoretical result. For the future

work, It is remained to calibrate the volatility

surface as the function of the asset price and

time to maturity; and to extend the study to the

American call/put options.
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