
MAST – A Mobile Agent-based Security Tool 1

Marco Carvalho, Thomas Cowin and Niranjan Suri
Florida Institute for Human and Machine Cognition

40 South Alcaniz. Pensacola, FL 32502, USA

ABSTRACT

One of the chief computer security problems is not the long list
of viruses and other potential vulnerabilities, but the vast
number of systems that continue to be easy prey, as their system
administrators or owners simply aren't able to keep up with all
of the available patches, updates, or needed configuration
changes in order to protect them from those known
vulnerabilities. Even up-to-date systems could become
vulnerable to attacks, due to inappropriate configuration or
combined used of applications and services.

Our mobile agent-based security tool (MAST)1 is designed to
bridge this gap, and provide automated methods to make sure
that all of the systems in a specific domain or network are
secured and up-to-date with all patches and updates. The tool is
also designed to check systems for misconfigurations that make
them vulnerable. Additionally, this user interface is presented in
a domain knowledge model known as a Concept Map that
provides a continuous learning experience for the system
administrator.

Keywords: MAST, Mobile Agents, CmapTools, network
security, host security, automated system updates.

1. INTRODUCTION

The growth and globalization of the Internet have made
computer and network security a paramount challenge. In 1988,
the Internet Worm caused much havoc and effectively
shutdown the Internet. However, the systems that were affected
were mostly at universities and other research centers. Today,
circumstances are very different from 1988. Many businesses
rely on networks of systems connected to the Internet. Network
attacks result in downtime that cost companies significant time
and money due to lost productivity and/or loss of data.
Moreover, critical infrastructural systems are being connected
to the Internet thereby raising the potential for disruption
through network-based attacks. Unfortunately, this same
characteristic attracts attackers who wish to make highly-visible
statements.

Another key difference between 1988 and today is the sheer
number of systems that could come under attack and the ratio of
expert system administrators to the number of systems.
Administrators are often poorly trained and do not have the
tools necessary to properly perform their jobs. Moreover, the

1 The MAST project is sponsored by the National
Science Foundation (NSF) under the Strategic
Technologies for the Internet program, award number
0230927.

workload of administrators prevents them from keeping up with
the latest vulnerabilities and security advisories and updates.
They often do not have the time to monitor each system in their
network for suspicious activity and to make sure that the system
is completely secure.

For example, in a distributed denial-of-service attack, the
attacker first breaks into a number of geographically and
topologically diverse systems to setup launching points for the
attack. After securing access to these hosts, the attacker
launches a coordinated attack on a target host or network. If the
break-ins or attempted break-ins are caught early-on, launching
distributed denial-of-service attacks would be much more
difficult. This is one small example where the security of
individual hosts and networks can be seen to be dependent upon
the security of the Internet as a whole.

In recent work, the authors of [1] have estimated the potential
threats of wide-spread propagation of worms on the Internet
today and how that could effectively give virtually unlimited
power to attackers. The understanding of this threat has
prompted the authors to suggest the implementation of a Cyber
equivalent of the “Center for Disease Control” (CCDC) [1] to
monitor, at a national or global level, the propagation and
evolution of viruses, worms or other potential security threats.

We believe that a broad effort such as the CCDC proposal is
necessary and that it would greatly benefit from a coordinated
effort to provide mechanisms to improve the efficiency and
levels of training of the security officers and systems
administrators of small to medium networks. These types of
networks make up the vast majority of networks deployed. By
efficiency, we mean the capacity of the systems administrators
to quickly interpret the security advisories, understand how they
affect their network and precisely determine what systems or
sub-networks could be vulnerable. By level of training, we refer
to an adequate level of understanding of the conceptual
implications of the announced threat. In the complex and highly
dynamic networks of today, it is critical to understand how the
vulnerabilities and the suggested fixes will interact with the
various systems and applications. It is important to provide
means for a quick understanding of the inner-workings and
exploit mechanisms of the reported threat, so that the threat can
be properly addressed and a fix or patch can be correctly
applied, in accordance with the local characteristics of the
network.

In this paper, we discuss some of the issues that we believe are
important for the improvement of overall network security at a
local level. We also introduce our research in the MAST
project, a mobile agent-based software tool that integrates
advanced monitoring and management capabilities with an
easy-to-browse knowledge model, semi-autonomously updated

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 440

by security advisories and experts from different domains of
expertise.

2. NEW CHALLENGES IN NETWORK SECURITY

There have been repeatedly successful attacks on the systems
that reside on the Internet, often exploiting known
vulnerabilities and causing significant slowdowns as well as
loss of data and productivity. Some of these more prominent
attacks - such as Code Red and Nimda against Microsoft's
Internet Information Server (IIS) and the MS-SQL Slammer
Worm, exploited known weaknesses in these software
subsystems for which patches were readily available well
before the attacks.

As our systems become more capable and interoperable, they
become more complex and more difficult to maintain and
manage. Typical system administrators are charged with
supporting a large user population with a range of differing
requirements. These often involve accessing different central
resources or servers, with various departments often relying
upon different types of software systems, which may entail
different operating system support and specifically tailored
server environments. Faced with this potential array of different
environments, and attempting to keep up with each user’s
needs, general security related tasks are often prioritized down
the list. This is accompanied by a common adage adopted by
the computer cognoscenti - "if it works, don't fix it." This to the
fact that often one software patch may have unintended
consequences, changing the system subtly and causing
something else to stop working, either by affecting a
complementary software subsystem, or by uncovering an old
bug whose patch wasn't included in the more recently applied
update.

While some of this can certainly be addressed through better
software engineering practices at these companies upon whom
we all rely for crucial business applications, it is a problem that
won't ever be totally resolved. Not only is it difficult for the
administrator to find the time to apply the necessary patches,
these patches are treated with some skepticism, often
deservedly so, due to unexpected side effects that can arise due
to special-purpose configurations and peculiarities of each
network.

In addition, the management in most companies generally
under-appreciates the tasks involved in day to day system
administration. A large part of the typical system
administrator's day is spent in a reactionary mode, responding
to various user requests and fighting periodic fires that pop up
and require immediate attention. Very little time is left for
strategic tasks and such preventive maintenance as software
patch and version management. The overriding aim in almost
any enterprise is the bottom line and growing the business and
often tasks ancillary to this goal are sacrificed in its pursuit.
Security comes to the fore only after there has been an incident
and, during the postmortem analysis, efforts are made to
understand how and why it could have happened and then
changes are made to prevent that particular attack from
reoccurring.

The large number of services and applications as well as
heterogeneity of networks plays a big role in the problem. It is
hard to keep up with each particularity and vulnerability of each

platform, OS, and application (and their combinations). Even
just to understand the actual vulnerability and its implications
on the network could take the administrator a long time,
researching information and potential side-effects that could
occur under specific network configurations.

All these issues end up resulting in a large number of systems
and networks that simply fall behind the reported vulnerabilities
and remain, usually for a long time, susceptible to potential
attacks. The problem takes on huge proportions when a fairly
large number of these networks are compromised and used in
coordination to launch massive attacks on other critical systems.

Overall network security thus depends on addressing these
problems at the local level on small to medium networks. We
have identified three main points of paramount importance for
the system administrators to achieve higher levels of effective
security:

a) Timely access to accurate information about new threats and
vulnerabilities for different platforms, systems, and
applications.

b) The capacity to conceptually assimilate the implications of
the reported vulnerability. That is, to classify the severity of the
exploit within the context of his or her network, and the side
effects that the vulnerability (or even the suggested patch for
fixing it) could cause in the system.

c) The capacity to quickly identify which hosts on the network
are susceptible to the vulnerability. In business and corporate
networks for example, the hosts and even servers will often be
modified or reconfigured at some point without direct
knowledge of the systems administrator. It is imperative that
when potential threats arise, the administrator is able to
accurately and efficiently map the network and detect hosts that
could potentially be affected by the reported threat.

In a broader picture, the problem must be solved by providing
to the system administrators the capability to (1) quickly and
effortlessly assess the level of risk posed in their environment
by each new threat or vulnerability, and (2) take steps to either
eliminate or reduce that risk. We propose to do this by
providing software applications that would increase efficiency
and access to system information and security-related
knowledge bases, and provide a toolset to apply patches or
make system level modifications to protect against a given type
of threat.

In this paper, we introduce our project for the design and
implementation of a security tool that serves two purposes: (a)
help system administrators find vulnerabilities and detect
possible attacks on systems and networks and (b) teach students
and novice administrators about security concerns. In the first
use case, administrators will be able to use the tool to check for
known vulnerabilities on their systems, to check whether the
latest security updates and patches have been installed, and to
monitor their systems for different forms of attacks or break-ins.
In the second use case, the tool can be used in a classroom,
laboratory, or in the field to help students and novice
administrators learn about the security domain, the latest known
vulnerabilities, and how to fix them.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 41

3. THE MAST APPROACH

In the MAST approach we advocate the development of an
integrated software tool that would provide both the flexibility
for powerful management of network security as well as
meaningful learning and understanding of security related
issues and their implications.

The tool provides a flexible way to update and navigate
extensive knowledge bases from which associated active
components can be used for simple exploration, monitoring, and
management of remote hosts. The knowledge base is
represented through concept maps. We have chosen to use
software agents for the remote monitoring and management of
hosts.

Concept maps
Concept maps are tools for organizing and representing
knowledge. They have been widely used in the many different
domains since their inception in the 70’s by Novak [2].

Concept maps are basically characterized by a graphical
representation of a set of concepts and their relationships,
providing a strong and concise description of the specific
domain of knowledge. The concepts are hierarchically arranged
and linked to created propositions, which are usually referred to
as semantic units or units of meaning [3]. Figure 1 shows an

example of a concept map. The propositions in a map provide a
meaningful description of the relationship between two
concepts. The concepts, perceived as regularities in events and
objects, or records of events and objects [3] are associated to
each other from top down on the map, where the more general
concepts are on the top of the map and the more specific
concepts located down at the bottom or at the leaves.

Concept maps can be used as powerful tools for elicitation and
representation of an expert’s understanding of a domain and as
effective browsers, providing easy and quick navigation of the
knowledge model by both experts and novices. A very
important characteristic of concept maps, which is highly
applicable to this work, is the notion of cross-links. These links
build propositions across different branches of the concept map,
indicating relationships across different sub-domains of the
map.

More recently, software tools such as CmapTools [4][5] have
been designed to facilitate the online manipulation of maps and
extend their capabilities. CmapTools allows maps to be linked
with each other through common or related concepts. This
creates a multi-layered set of maps, providing an extensive
representation of the domain. Repositories of concept maps
(referred to as knowledge models) can be created and shared
over the Internet.

Fig. 1 – Example of a concept map, extracted from reference [3]

Among many other features, CmapTools creates an
environment that greatly facilitates and enhances the browsing

and construction of concept maps in collaboration with other
users. Synchronous collaboration, Case-Based Reasoning
search of related maps [6] and automatic search of the web for

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 442

concepts and documents related to a map [7][8][9] are some of
the many valuable capabilities added to CMapTools, that allow
a continuous evolution of the maps. By allowing the user to
easily find related maps and other information, the tools offer
an environment where the represented knowledge can be easily
adapted and complemented to incorporate new trends or

concepts. The tools also provide means to insert or link a
variety of resources in the maps. Small icons attached to a
concept represent different resources that can be accessed
directly from the map, as shown in figure 2

Fig. 2 – Exploratory mobile-agent attached to “OpenSSL” concept in CmapTools

Mobile agents
Mobile Agents are programs that, with varying degrees of
autonomy, can move between hosts across a network. It
combines the notions of mobile computation and mobile code.

Mobile computation allows a process to execute on a remote
host with no dependencies on the originating host. That is,
mobile computation extends remote computation (such as what
we find in remote procedure calls) to allow disconnected
operation. Code mobility builds upon the notion of deploying
code to a remote host to enable, on demand, capabilities on that
machine that didn’t exist before. This is a very important
feature for the MAST tools, since code to check for specialized
vulnerabilities can be written and deployed for execution on
every host of the network as needed. This capability associated
with the capacity to maintain state across systems

(characteristic of mobile agents) allows the creation of highly
sophisticated checks and comparisons between hosts.

The use of mobile agents for network monitoring and
management could be seen as analogous to a security guard on
a building. As security guards, specialized mobile agents would
proactively roam through the network, evaluating system
binaries, configurations, and possible vulnerabilities.

Mobile agents can check the system from inside, by directly
accessing files and calling upon local OS resources and, if
necessary, move back to the administrator’s console (or to a
trusted peer host) to perform external probing tests. This
approach allows for the development of highly customized and
complex checks of systems and applications.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 43

MAST allows the association of special-purpose software
agents directly into the knowledge model. Agents can be
automatically launched by the tool, or by the system
administrator, through the administrator’s console. Once the
agents move to the systems, they will operate locally where
they will be able to perform local monitoring and maintenance
tasks. They will be able to check the status of the system, fix
the configuration, and update the system. Other types of
security agents will live on a target system continuously,
periodically monitoring the system for anomalous behavior.

The mobile code capability will be used to dispatch updated
security agents to systems. These updated agents can carry with
them new security checks for the latest vulnerabilities, as well
as knowledge about new updates and configuration changes.
Exploiting mobile code will ensure that the security agents
themselves are always up to date.

MAST relies on a modified version of the NOMADS [10] agent
system. NOMADS is a mobile agent system for Java-based
agents. NOMADS provides two implementations: Oasis and
Spring. Oasis incorporates a custom Java-compatible Virtual
Machine (named Aroma) whereas Spring is a pure Java
implementation. The Aroma VM is a clean-room VM designed
to provide the enhanced capabilities of execution state capture
and resource control [11][12]. Building on top of the
capabilities of Aroma, Oasis provides three capabilities:

• strong mobility where agents can move while
preserving their execution state

• forced mobility where, completely transparent to
them, agents may be moved from one system to
another by an external asynchronous request

• secure execution of untrusted agents while protecting
the host from denial of service and other forms of
attack

The Spring implementation is fully interoperable with Oasis but
does not provide the above features. Spring is well-suited for
lightweight applications or environments that do not support
Aroma (e.g., mobile phones or PocketPC). [13].

The NOMADS Agent system will provide the primary
underlying infrastructure for the MAST project. The security
kernel (explained in the next section) leverages from the Oasis
implementation of the NOMADS system, hardened for security.

All the operations performed in the remote hosts will be
implemented in the form of mobile agents and will be deployed
through the NOMADS infrastructure.

4. THE MAST COMPONENTS

These two main technologies, CmapTools and the NOMADS
Agent system are integrated in MAST through a set of
components that realize the requirements for the system.

There are essentially four main components in MAST:

• An administrator’s console that is the main user-
interface component

• A security kernel that is installed on hosts (and
possibly routers) and handles the execution of the
security agents

• A knowledge model about security built using concept
maps that is constantly updated as needed

• A set of security agents that are part of the knowledge
model that travel to hosts to perform security-related
tasks

The Administrator’s console is the primary graphical interface
that integrates all the remaining components.

The security kernel is the component responsible for remote
execution and control of the security agents deployed in the
platform. Besides providing a low level API to allow the agents
to have access to the system, the security kernel will also be
responsible for providing the necessary encryption and
authentication services between the agents and the management
console. The kernel will be based on the current execution
environments of NOMADS (Oasis and Spring) to combine the
advantages of high portability and extended features offered by
NOMADS. Resource control and policies will regulate how the
security and monitoring agents will execute in the remote hosts
to avoid the compromise of the common activities of the hosts.

The security kernel will be mutually authenticated with the
administrator’s console to create a secure channel for
communication and for the transport of agents. This approach
secures remote hosts against malicious code being pushed to the
security kernels.

Agent mobility is always single-hop, that is, the agent always
moves between the administrative console to the kernels and
back, never between kernels. This approach avoids the problem
that a compromised host could modify the kernel to attack
legitimate agents and spread itself through the network.

At the administrator’s console, the integrity of every agent is
checked upon return. This way, a compromised kernel might
become un-trusted to the administrator but cannot propagate
malicious code to other hosts in the network.

The Knowledge Model will be composed of a set of concept
maps, populated with resources (such as reports, security
advisories, and mobile agents). The agents, depending on the
access level of the user, will be either exploratory agents,
normally used for training or instruction purposes, or actual
monitoring or correction agents that will search for specific
vulnerabilities and apply the appropriate fixes for it.

5. CASE STUDY

We have begun development of the MAST Tool by focusing
first on cryptography and in particular on the SSL [14] and SSH
[15] applications that form the basis for existing efforts to
secure Internet based communications. These may involve web
browser, electronic mail, interactive session, or some other type
of network traffic. These are all potentially vulnerable to
network eavesdropping and are typically utilized when
transferring sensitive data. In the past few years, there have
been a variety of threats or vulnerabilities identified against
some of the commonly used implementations such as OpenSSL
[16] and OpenSSH [15]. These applications are typically

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 444

installed and configured by the system administrator and
involve a moderate learning curve and initial familiarization
period. As new vulnerabilities are discovered and the user
community is apprised of these, there will typically be a time
lag between the time that the vulnerability is identified and the
time that a patch is applied.

The more involved the patching process is, the less chance of it
being applied in a timely manner, as system administrators
often are in a reactionary mode and struggling to balance all of
their competing tasks and user requests. Stretches of
uninterrupted time for careful patch application are typically
few and far between.

With the use of the MAST tool, the vast majority of this effort
would be offloaded: the sysadmin would have the ability to
launch an agent whose task it is to sort through all new
vulnerability/security announcements to see if there are any that
might affect systems on his or her network. Such an agent could
potentially be scheduled as a recurring task so that the results
are ready for the sysadmin upon login, or sent via email or
made available through a web page.

In the event that there are some potential problems identified,
the administrator can probe those potentially affected systems
to see if they are indeed vulnerable. A specific agent would be
dispatched to those identified hosts, where it would query the
host for the specific weakness or package version that contains
the weakness and then, upon return to the MAST Console,
present the information to the sysadmin. An agent capable of
patching the given system may or may not be readily available,
depending upon the level of specificity required in the fix. We
will have agents that are capable of disabling specific ports, or
specific services or server processes (daemons) on most
operating system environments. There will be agents that are
capable of downloading and installing new versions of readily
available precompiled software packages, such as Linux RPM's
or FreeBSD packages. There will also be agents to fit the
situation where there are just two discrete stages: retrieve patch
file and apply patch. In cases where it is more complex, agents
may need to be tailored to fit the sequence of steps required,
and then made available to the users of the MAST system.
Assuming an appropriate agent is readily available, the
sysadmin will be able to specify the system and package he/she
would like upgraded, or patch to be installed, and then dispatch
the agent. Errors or feedback encountered during the installation
of patches or packages would be carried back by the agent to
the MAST console and presented to the sysadmin by the agent.

In our first case study, we have populated our domain model in
the area of cryptography and implemented an agent to check the
current version of OpenSSL. Notice the Spring like icon
underneath the OpenSSL concept in Figure 2. This indicates
that an active agent is available to launch to perform some
function related to OpenSSL. We are in the process of
implementing an agent to update OpenSSL to the latest version
if it is out of date.

6. CHALLENGES AND FUTURE WORK

The MAST tool is partially implemented. The security kernel is
being designed from the current implementations of the
NOMADS Agent System, while the Administrator’s console is

being designed as the integration element between the two main
components CmapTools and NOMADS.

Some of the main challenges that are still being researched by
this group are:

a) One of the most complicated security matters in
mobile agent systems is associated with protecting the
agent against a compromised host. The MAST
approach uses single-hop mobility to avoid the
propagation of malicious code through the network
but it still relies on information provided by the kernel
to monitor and manage the system. As part of our
future work we intend to evaluate possibilities that
could allow the administrator to determine that a
specific kernel could be compromised.

b) Yet another issue that must be addressed is in regards
to ongoing population and evolution of the knowledge
models. The system is designed to allow collaboration
on the development of the knowledge models,
allowing users from different levels of expertise to
add or modify information on the knowledge models.
We feel this is critical to developing a robust
knowledge model of the security domain, and will
strengthen the tool, by continuously stretching the
model to cover previously unanticipated security
problems. It is important to establish access control
mechanisms that would allow verification of
knowledge updates.

c) Resource control is yet another issue. Agents
deployed to a remote host must operate and perform
security checks (or updates) without disrupting
normal work on the machine. The NOMADS agent
system allows for fine-grained control of resource
utilization on an agent basis. This feature will ensure
that the resource utilization of the security agents can
be limited so as to not interfere with the regular
operation of the systems. Under special circumstances
though, such as an ongoing attack, system-wide
policies would override these restrictions and allow
high-priority execution of the contingency agents.

d) Access to routers, switches and firewalls is limited to
the capabilities of code execution on these devices.
The NOMADS agent system is very flexible and
provides different types of execution environments to
run on a variety of platforms, and still maintain
compatibility with the overall agent system [13]. For
devices where the security kernel cannot be installed,
monitoring will potentially be limited only to external
probing and traffic analysis.

7. CONCLUSIONS

The MAST project is in the first year of funding and at this time
we have finished integration of the CmapTools and the
NOMADS mobile agent systems. We have three ongoing
efforts in parallel: a) the final development of the security
kernel and its authentication mechanisms with the
administrator’s console, b) the construction of the knowledge
models and c) the automatic information retrieval engines that
will help in maintaining the knowledge maps and keeping them
current.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 45

Of these efforts, the construction of the knowledge models and
the update engines will probably be the most extensive tasks.
Sets of standard security agents will be made available for free
download and it is expected that customized agents will be
developed and shared between security experts in different
communities. While the MAST tools and access to the public
knowledge models will be open to the general public, we expect
that modifications and extensions on the knowledge base will
have to be moderated by some group of experts using a voting
mechanism. Much like the envisioned “Cyber Center for
Disease Control,” MAST will provide a repository for advanced
security checking agents and a public forum where general
security-related knowledge can be easily browsed, modeled,
and shared amongst peers and interested parties.

The process of eliciting knowledge and constructing the maps
will be crucial to the success of the tools and we will rely on
CmapTools capabilities to facilitate the process for
collaborative construction of these bases of knowledge that will
support the daily work and the training of current and future
network administrators.

More information about this research is available online at
http://mast.ihmc.us and the CmapTools can be freely
downloaded for non-profit use from http://cmap.ihmc.us

8. REFERENCES

[1] Stanifor, S., Paxson, V., Weaver, N. – How to Own the
Internet in Your Spare Time. – Proceedings of the 11th USENIX
Security Symposium. San Fransicso, CA. August 2002.

[2] Novak, D.B. Gowin, Learning How to Learn. Cambridge
University Press (1984)

[3] Novak, J.D., The Theory Underlying Concept Maps and
How to Construct Them. Cornell University.

[4] Cañas, A. J., J. Coffey, T. Reichherzer, N. Suri, R. Carff, G.
Hill. El-Tech: A Performance Support System with Embedded
Training for Electronics Technicians, Proceedings of the
Eleventh Florida Artificial Intelligence Research Symposium,
Sanibel Island, Florida, (May 1997)

 [5] Cañas, A. J., K. M. Ford, J. D. Novak, P. Hayes, T.
Reichherzer, N. Suri., Using Using Concept Maps with
Technology to Enhance Collaborative Learning in Latin
America, accepted for publication, Science Teacher.

[6] Canas, A., Leak, D.B., Maguitman, A., Combining Concept
Mapping with CBR: Towards Experience-Based Support for
Knowledge Modeling. AAAI 2001.

[7] Carvalho, M. Hewett, R. Canas, A. Enhancing Web
Searches from Concept Map-based knowledge Models. SCI –
World Multiconference on Systemics, Cybernetics and
Informatics. July, 2001.

[8] Canas,A.J., Hewett, R., Carvalho,M., Carnot, M.J.,
Knowledge Models for Organizing Search Information. SSGRR
- Advances in Infrastructure for Electronic Business, Science,
and Education on the Internet. Aug, 2001

[9] Canas, A.J., Carvalho, M., Arguedas, M.. Mining the Web to
Suggest Concepts During Concept Mappinp: Preliminary
Results. XIII Simposio Brasileiro de Informatica na Edicuacao,
- Porto Alegre, Brasil (Nov, 2002)

[10] Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T., Hill,
G.A., Jeffers, R., and Mitrovich, T.S. An Overview of the
NOMADS Mobile Agent System. Sixth ECOOP Workshop on
Mobile Object Systems. (http://cui.unige.ch/~ecoopws/ws00)

[11] Suri, N. Bradshaw, J.M., Breedy, M.R., Ford, K.M., Groth,
T., Hill, G.A., and Saavedra, R.: “State Capture and Resource
Control for Java: The Design and Implementation of the Aroma
Virtual Machine.” White Paper. http://nomads.coginst.uwf.edu

[12] Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T., Hill,
G.A., and Jeffers, R. Strong Mobility and Fine-Grained
Resource Control in NOMADS. Proceedings of the 2nd
International Symposium on Agents Systems and Applications
and the 4th International Symposium on Mobile Agents
(ASA/MA 2000). Springer-Verlag.

[13] Suri, N, Carvalho, M., Bradshaw, R., Bradshaw, J.. Small
Mobile Agent Platforms. Autonomous Agents & MultiAgent
Systems, Workshop on Ubiquitous Agents on Embedded,
Wearable and Mobile Decives. July, 2002

[14] Freier, Alan O., Karlton, Philip, Kocher, Paul C. – The SSL
Protocol Version 3.0 Internet Draft. Available from
http://wp.netscape.com/eng/ssl3 Netscape. November 1996.

[15] Ylonen, T. – The SSH Remote Login Protocol. Internet
Draft. (http://www.snailbook.com/docs/protocol-1.5.txt), Nov/1995

[16] The OpenSSL Project. Information and Software
downloads available from http://www.openssl.org

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 446

