A Formal, Product Structure Driven Design of Optimized End-to-End Demand
Supply Chains

Teemu TYNJALA
Nokia Research Center, Computing Architectures Lab
FIN-00045 Nokia Group, Finland

ABSTRACT

Demand supply planning is a challenging task in today's
business environment. Several alternative supply chains and
evolving product structures present the planners with thousands
of network options. Analysis of possible networks one by one
via spreadsheet programs is too time consuming. In this paper
we propose a Petri Net based method and algorithms that
automatically calculate all demand supply network options,
with associated costs, for arbitrary user-defined product
structures. The effectiveness of the method inside Nokia is
also discussed.

Keywords: Demand Supply Network Modelling, Petri Nets,
Reachability Analysis

1. INTRODUCTION

Today's logistics professional faces an increasing challenge
from constantly changing product structures, and numerous
globally distributed suppliers. Even a simple device may have
hundreds of possible supply network options, and a manual,
spreadsheet-aided analysis becomes too slow. Normally, the
companies have solved the problem by focusing on certain
hand-picked suppliers, but in so doing, they may let a cheaper
option pass by.

Optimization methods have been used for over 50 years to
solve similar problems, but they are mostly designed to find the
optimum quickly, and leave the rest of the options unexplored.
In today's business environment, risk analysis must also be
performed [4], and a logistics professional is interested in
knowing all possible supply networks, irrespective of the cost.

The research was started with the following question: "What is
a suitable formalism that supports automated analysis
(complete state space) and allows the integration of product
structures with their demand supply networks?" In the course
of research, we developed a Petri Net based methodology, and
algorithm that extends the traditional reachability analysis. The
method has been implemented inside Nokia corporation, where
it is in daily production use.

This paper presents the developed DSNnet formalism, and
discusses the method's effectiveness inside Nokia. Section 2
presents the network formalism. Section 3 presents
pseudocode for the reachability analysis algorithm. Section 4
describes the Nokia implementation of the DSNnet method.
Section 5 gives user experiences and performance data of
DSNnet tool in Nokia. Section 6 presents related works, and
Section 7 concludes.

ISSN: 1690-4524

SYSTEMICS, CYBERNETICS AND INFORMATICS

2. DSNnet FORMALISM

The DSNnet formalism is based on extended Petri Nets, where
AND and OR nodes are included in the network description.
This enables the construction of nets where e.g. only one arc is
chosen after a transition fires (XOR logic). The extended Petri
Nets were introduced and developed by Agerwala [1] and Baer
[3], who also proved that such extension to the Petri Net
language does not increase their expressive power. The
following presentation of DSNnet formalism does not give an
exact mapping to the underlying Petri Net structure, but such
developments may be found [6].

The first subsection introduces the net formalism, and the
second describes a case of deriving a DSNnet from a simple
product structure. This example has been taken from [6].

DSNnet Definition

The formal definition of DSNnet is shown in Figure 1. The
DSN net_skeleton defines the type of cost elements that may
be assigned to nodes and arcs, and a DSNnet is a concrete
network instance. The list below describes the elements
DSN net_skeleton.

* NodeTypes describes the types of nodes to be
included in the analysis (e.g. demand nodes,
manufacturing). Node Types always includes the
special AND and OR nodes that enable the modeller
to represent aggregation and choice.

e ArcTypes describes the types of arcs that may be
included in the analysis. Usually these include
transport arcs.

e ParameterPool is the collection of all parameters that
will be taken into account in the computation of
Demand Supply Network total cost, e.g. Inventory
Carrying Cost, Freight cost.

e TypingFunction affixes cost parameters to
NodeTypes and ArcTypes.

Typically, a DSN_net skeleton is company specific. The cost
elements included in the analysis, and parameter values for
inventory carrying cost differ from one industry to another.
The DSN_net skeleton may also evolve during the course of a
company's lifetime. In one sense, a DSN net skeleton is a
metamodel or profile for a DSNnet.

An actual DSNnet instance is based on one DSN net skeleton.

This instance is Petri net-like, with nodes, arcs and a flow
relation. The only difference to a typical Petri net is the

VOLUME 3- NUMBER 1 7

DENnet
DNENnet_akeleton

NodeTypes
ArcT'ypes
FParameter Pool
Typingl wne

Nodes
Arca
Restriction an F

Arcld — Ardlypes

{Nodes, Ares, F, DENnet_akeleton }
{NodeTypea J{AND node, OR_node}, Ardl ypea, ParameterPool, Typing Function }

Types of nodes in the analysis. E.z. demand nodes, manufacturing nodes
Types of arcs in the analysis. E.g. transport arcs, simple connectors
Collection of all parameters used in cost analysis

.'“l"Jfl!E']‘h].'lE‘S " EF‘arﬂm:tnvF‘aai i .-'l?‘-:‘]‘h;l.‘-i‘a " zPanzm:tn'ﬂF‘aa!

Nodeld — NodeT'ypes U {AN D _node, O R_node}

F T Nodes = Areca\d Area = Nodes

Figure 1: DSNnet definition

inclusion of AND and OR nodes to describe aggregation and
choice, respectively. An example of a DSNnet derived from a
product structure is discussed next.

DSNnet Example [6]

Module &

Module B

Meadule C

Figure 2: A simple product structure

Consider a simple product structure given in Figure 2. A
logistics professional may be faced with the following
constraints when deciding on a demand supply network:

* Module A will have only one supplier
* Module B can be sourced from two suppliers, and the
sourcing options are:
0 purchase all components from "Supplier 1
for Module B"
0 buy 60% of the volume from "Supplier 1
for Module B", and 40% of the volume
from "Supplier 2 for Module B".
¢ Module C has two suppliers and the sourcing options

are:
0 buy 100% of the volume from "Supplier 1
for Module C"
0 buy 100% of the volume from "Supplier 2
for Module C"

Faced with these constraints, the DSNnet formalism allows the
construction of a network as depicted in Figure 3. Notice that
for the ease of presentation we do not include the actual

8 SYSTEMICS, CYBERNETICS AND INFORMATICS

parameter mappings in this example, nor the final customer of
Module A.

Supplier for
Module A

v 0% yor ¥

Supplier 1 for Suppliar 2 for Supplier 1 for Supplier 2 for
Module B Module B Module C Module C

Figure 3: DSNnet for the product in Figure 2

!

3. ANALYSIS OF DSNnet’s

DSNnet formalism may be analyzed via reachability analysis, a
central analysis method for Petri Nets. In the present work, the
traditional reachability analysis algorithm was modified to
allow several initial states in the DSNnet.

The algorithm consists of three steps, First, traditional
reachability analysis algorithm is used to compute the possible
DSNnet's for each customer separately. Next, these
reachability graphs are combined to produce full paths for the
Demand Supply Network setup. Finally, the volume dependent
investment costs for each full path are calculated.

The next subsection presents the pseudocode that implements

the analysis algorithm. The cost calculation routine details are
omitted as these are DSN_net_skeleton-specific. However, we
do indicate where they are called during algorithm’s execution.

VOLUME 3- NUMBER 1 ISSN: 1690-4524

Compute DSN_Paths For Multiple Markets(array demand_nodes)

/* Do reachability analysis for each demand node */

For each demand node do (i = 1..number of demand nodes) {
DSN_paths[i]:= Compute_ DSN_Paths(demand_nodes[i]);

}

Total DSN_Result := empty array;

/* Combine the results from previous step */
For all DSN paths do (i := 1..number of demand nodes) {
Total DSN_Result := Concat(Total DSN_Result, DSN_paths[i]);

}

/* Add volume dependent investment costs */

For all paths in Total DSN_Result do (i := 1.. number of paths) {
Total DSN_Result[i] :=AddInvestmentCosts(Total DSN_Result[i]);

}

Return Total DSN_Result;
}

Figure 4: Main Analysis Routine

The Algorithm

The algorithm is divided to three parts: the main routine, the
reachability analysis algorithm for a single demand node, and
the routine for calculating investment costs. The three parts of
the algorithm are shown in, respectively, Figure 4, Figure 5 and
Figure 6.

The first helper function, Concat(arrayl, array2), determines
all the path combinations where the first path is taken from
arrayl and the second from array2. Concat adds the costs from
the component paths to get the cost of the aggregated path.
The result of the function is returned as an array. Cost
calculation routines for nodes and arcs will be highly
dependent on the cost elements we include in each NodeType
and ArcType. The second helper function, AddRows(arrayl,
array2), simply adds all rows from array? to arrayl.

Creating a DSNnet from Product Structure

The above algorithm is integrated to a company's product
database to enable push-button demand supply network
analysis. The following procedure is one way of making the
'conversion' from a product and supplier database to DSNnet
format.

1. The user must specify the factory/suppliers the parent
item will be supplied from

2. The user must select the 'interesting' child items.
Only these components will be included in the
analysis.

3. The user must specify a sourcing matrix for each of
the suppliers supplying the parent item. More
precisely this will force the user to decide who will
supply the 'interesting' child items in each case.

4. Each of the 'interesting' child items now becomes a
parent item and we go back to step 2.

Figure 7 shows what a generalized DSNnet, translated via the
procedure, will look like.

ISSN: 1690-4524

Compute DSN_Paths (start_node, result_array)

if (start node has 0 children) {
add start_node to each path in result_array;
add start_node’s costs to each path in result_array;
Return result_array;

}

else if(start node has 1 child) {
assign start_node’s volume to child arc & node;
add start_node to each path in result_array;
result_from below := Compute DSN_Paths (child, result_array);
add start_node’s costs to each path in result_from_below;
add the arc’s costs to each path in result_from_below;
Return result_from_below;

}

else if (start_node is ANDnode)
{
add start_node to each path in result_array;
1:=0;
forall i: intermediate _result[i] ;= empty array;
for each child of start_node do (i := 1..number of children) {
sub_result[i] := Compute_ DSN_Paths (child[i], empty array);

consolidated_result := empty array;
for each child of start_node do (i := 1..number of children) {
consolidated result := Concat(consolidated_result, sub_result[i]);
}
AND_Result := Concat(result_array, consolidated_result);
Return AND_Result;

}

else if (start_node is ORnode)
{
add start_node to each path in result_array;
1:=0;
forall i: intermediate_result[i] := empty array;
for each child of start_node do (i := 1..number of children) {
sub_result[i] ;= Compute DSN_Paths (child[i], empty array);
}
OR_result := empty array;
for each child of start_node do (i := 1..number of children) {
OR_result := AddRows(OR _result,
Concat(result_array, sub_result[i]));

}
Return OR_Result;

SYSTEMICS, CYBERNETICS AND INFORMATICS

Figure 5: Reachability Analysis Routine for
a Single Demand Node

VOLUME 3- NUMBER 1

AddInvestmentCosts(path)

hash_table := empty hash table;
for each node in path do

if (node exists in hash_table)

add volumes of the nodes and record result in hash_table;
else

insert node into hash_table;

}

for each node in hash_table do

{

determine volume dependent investment costs;
update path cost;

}

Return path;

}

Figure 6: Investment Cost Analysis Routine

Notice that there are several AND and OR nodes in the picture.
This is necessary to allow the user to specify production splits
between several different suppliers.

4. IMPLEMENTATION INSIDE NOKIA

The above methodology was implemented inside Nokia during
2004 as a web-based service. The product information is
stored in an Oracle database, and the reachability analysis is
implemented in Java. The workflow in Figure 8 illustrates

a normal use of the tool.

Suppler for
Top Module

XX]
e s
Supplier for Supplier for Supplier for Supplier for Supplier for
Child Module 1 | | Child Module 1 Child Module 2 Child Module 3 | | ChildModules | @ @ @
[] L] []
[]

Figure 7: A Generic DSNnet Structure

The user will first create a product structure with supplier
alternatives using the web interface. Next, the analysis routine
is invoked. The analysis routine is divided into two parts: the
Java code first generates a DSNnet from product information in
the database, and then the reachability analysis routine is called
on the generated net. Finally, the results are stored in the
database and shown to the user.

The coding of the translation routine from Oracle to Java and
vice versa was the most challenging programming effort. It
took nearly 5 months to complete, whereas the reachability
analysis routine was finished in 2 months.

‘ Tool User ‘ ‘ Web User Interface

‘ Oracle Database

DSMnet analyzer

input product structure()

I
»
I

Build the DSNnet instance
fram fetched information

Run Reachability analysi
on generated DSNnet
instance

I |
I |
| store() I |
I |
I input supplier options() I I 1
[» I |
I I store() I |
I |
1 input market demandsi) I I |
[» I |
I I store() I |
I |
I analyze() I analyze() I analyze{) |
[- - »l
: : Llelch products, supplier, markets())
[[I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

[[[slore results() !
I I b |
I show results() I show results() I |
b e . |
I I I |

Figure 8: Workflow of DSNnet Analysis Tool inside Nokia

10 SYSTEMICS, CYBERNETICS AND INFORMATICS

VOLUME 3- NUMBER 1 ISSN: 1690-4524

5. USER EXPERIENCES AND EXPERIMENTAL
RESULTS [6]

The tool has been received very well inside Nokia. The
productivity of the logistics personnel has increased
dramatically, and the tool is in active use in every business unit
of Nokia. In one year of operation, the logistics managers have
analyzed 170 real life cases, reaching from base station
distribution to Pakistan, to global supply of N70 smart phone.

The performance of the tool is reasonable as the following
chart shows. Before, a logistics professional was able to
analyze 5 network setups per day using a spreadsheet program.
The tool provides a hundredfold increase in productivity, and
assures the good development of logistics practices in Nokia.

The performance is similar in all parts of the world, since the
analysis time dominates any transmission delays. Hence,
whether a Nokia logistics professional is in San Diego or in
Tokyo, the response times are the same.

algorithm, and integrate the tool to an external engine for
dynamic simulation of networks.

REFERENCES

Agerwala, T., Flynn, M., Comments on capabilities,
limitations and “correctness” of Petri nets, Proceedings of
the 1% annual International Symposium on Computer
Architectures (ISCA °73), ACM SIGARCH Computer
Architecture News, Vol. 2, Issue 4, 1973.

April, J., Glover, F., Kelly, J.P., Laguna, M., Practical
Introduction to Simulation Optimization, Proceedings of
the 2003 Winter Simulation Conference, S. Chick, P.J.
Sanchez, D. Ferrin, and D.J. Morrice, eds.

Baer, J.L., Modeling for Parallel Computation: A Case
Study, Proceedings of the 1973 Sagamore Computer

Conference on Parallel Processing.

Norrmann, A., Jansson, U., Ericsson’s proactive supply

of DSN alternatives Analysis time (seconds)
4 5
16 6
64 30
256 71
1024 330

chain risk management approach after a serious sub-
supplier accident. International Journal of Physical
Distribution & Logistics Management, Vol. 34, No. 5,
2004.

[5] Truong, T.H., Azadivar, F., Simulation-Based
Optimization for Supply Chain Configuration Design,
Proceedings of the 2003 Winter Simulation

6. RELATED WORK

Recently, simulation-optimization [2] and genetic algorithms
[5] have been proposed as tools to demand supply network
analysis. The difference between these methods and DSNnet
deals with the state spaces. Reachability analysis analyzes the
whole state space, which is not the case with optimization
algorithms. However, optimization techniques enable the
analysis of larger problems if only the optimal solution is
needed. In the current climate of supply chain risks, complete
state space analysis for demand supply networks seems
prudent.

7. CONCLUSION

We developed a Petri Net based formalism with reachability
analysis that allows logistics professionals to analyze demand
supply networks in a product-driven manner. Reachability
analysis guarantees that we search the complete state space of
possible demand supply networks, and are quick to react to
supply chain risks.

A tool based on the methodology was implemented in Nokia
during 2004. The tool is used currently in all business units
and the feedback has been very positive. The users have
thanked especially the linkage between a product and its
demand supply network.

The tool will be further developed inside Nokia. The future

developments will improve tool useability, reduce the
exponential time complexity of the reachability analysis

ISSN: 1690-4524

[6]

SYSTEMICS, CYBERNETICS AND INFORMATICS

Conference, S. Chick, P.J. Sanchez, D. Ferrin, and D.J.
Morrice, eds.

Tynjdla, T., Supporting Demand Supply Network
Optimization with Petri Nets, Submitted to International
Conference on Application and Theory of Petri Nets
(ICATPN) 2006.

VOLUME 3- NUMBER 1 11

	P582703

