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ABSTRACT

This paper describes the application of a new texture
characterization dgorithm for the segmentation of
medical ultrasound images. The morphology of these
images poses significant problems for the application of
traditional image processing techniques and their analysis
has been the subject of research for several years. The
basis of the dgorithm is an optimum signa moddling
algorithm (Least Mean Squares-based), which estimates a
st of parameters from smal image regions. The
algorithm has been converted to a structure suitable for
implementation on a Pardlel Virtua Machine (PVM)
consigting of a Network of Workstations (NoW), to
improve processing speed. Tests were initidly carried out
on standard textured images. This paper describes
preliminary results of the gpplication of the algorithm in
texture discrimination and segmentation of medica
ultrasound images. The images examined are primarily
used in the diagnosis of carotid plaques, which are linked
to therisk of stroke.

Keywords—Adaeptive  Filtering, LMS  Algorithm,
Medical Ultrasound, Texture Characterization, Image
Processing, PVM.

1. INTRODUCTION

Traditiond image processing and segmentation
techniques detect region boundaries using edgeg1].
These techniques rely on the assumption that regions of
significance are characterized by abrupt changes in image
intensity. Although this is true in a wide range of
applications, in areas such as medicd imaging and in
ultrasound images in particular[2], this might not be the
case. These images usudly consist of soft tissue and
boundaries are not clearly identified as changes in image
intensity.  Furthermore, they contain noise and
interference. Reducing the effect of noise to make visua
inspection and interpretation easier has been the subject
of research for severd yearq3,4]. However, the
processed images ae dtill hard to segment with
traditional automatic techniques, because the boundaries
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between regions of interest are usualy based on more
complex characteristics than pure intensity changes.
Human observers have an inherent ability to cope with
fuzzy images and to use the regularity in image
microstructure to distinguish changes of dgnificance.
This regularity is often termed as texture and severd
empirica methods have been used to quantify it. Among
these, are the co-occurrence matrix, higher order
statistics, wavelet andyss and parametric techniques
(like autoregressive filters and Markov random fieds).
Although there is no clear indication of a single technique
being superior to others, autoregressive modelling and
wavelets have generdly been reported to produce more
consistent results[3].

Previous work has indicated that the parameters {w } of

optimum signa modelling techniques6,7], extracted
from small image regions have the ability to characterize
texture[4,5] and may therefore be suitable for region
discrimination in images where boundaries are not
associated with changes in image intensity. In this sense,
the edimated parameters ae equivdent to an
autoregressive model, which produces locdly correlated
pixel vaues when applied to the uncorrelated part of the
image signd[1, 3, §].

The work presented in this paper, demonstrates how the
observations made from tests on the behaviour of the
algorithm on both real and artificial imageq5,6,7], were
used to develop a method for the description of texturein
medical ultrasound images. Such images, taken from the
carotid arteries of patients, are used by medicd
practitioners to evduate and monitor the risk of stroke
associated with each patient. The dgorithm requires
considerable amount of computation and has been
implemented on a Pardld Virtual Machine (PVM) built
on top of a Network of Workstations (NoW), using spare
computational capacity from any unused computers[5, 6,
7].

The dgorithm and its implementation will be described
and results on its performance, speed and application will
be presented and discussed.
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2. CONCEPTUAL DESIGN

It is essentid to outline the overall concept on which this
work is based prior to describing the algorithm,
methodology and implementation of the developed
system. The method used is based on the fact that
adjacent pixel vaues are correlated[6,7,8] and hence, a
given pixel vaue can be estimated (predicted) from the
values of neighbouring pixels and a set of parameters,
{wpq}. These are different for each pixel neigbourhood,

because the estimation function in a group of pixds, is
expected to be different from that of another area with
different appearance. If regions of similar appearance
have similar parameter vaues, it is then possible to use
these vaues to characterize the regions and to ascertain
their dmilarity. Likewise, if regions of different
appearance have different parameter values, they can
therefore be digtinguished based on the vaues of the
parameters. Earlier studies on the use of these parameters
to characterize image regions, indicated that the method
described in Section 3 of this paper, does produce
parameter values, which provide both characterization
and discrimination[6,7]. It should be noted that parameter
values provide a more robust measure of similarity than
direct comparison of pixel vaues.

As the morphology of an image changes from one areato
another, by comparing the estimated parameters extracted
from the two image aress, it is possible to identify
whether these are similar or not. Hence, each area is
assigned alabel asfollows:

(&) Areas with smilar parameters are assigned the same
labd.

(b) Areas with different parameters are assigned
different [abdls.

The collection of labels for all image regions constitutes
the output of the method described. Because the
edimated parameters are based on the loca image
microstructure, they may be considered as texture
modelling agents. Thus, the labelled regions can be
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regaded as a texture map of the image under
consideration[3,6,7] ( Fig. 1).

From the above, it is evident that any such process must
consist of three parts (Fig. 1):

() Parameter estimation for each region.

(b) Comparison of the edimated parameters and
labelling of adjacent regions.

(0 Relabelling of non-adjacent regions.

The estimation process is carried out on relaively small
image blocks, operating on localized data, independent
from one region to another. Hence, processing many
regions in padld (simultaneously, rather than
sequentially) on several computing nodes was considered
in order to reduce the computationa time of the
algorithm. This is useful in stuations where the size of
the images (eg. resolution) is large, resulting in a
considerable amount of data to process in a given period
of time (e.g. in rea time implementations). In these cases,
the processing task may be divided into severa identica
problems with different input datg[5, 6, 7].

Similarly, since comparison between the parameter
values of adjacent regions is also locaized, this process
can aso be a good candidate for parallel implementation.
The relabelling process requires knowledge of regions
and parameters over the whole image, but the
computational load required is limited. It is evident, that
the sysem is suitable for implementataon on a
multiprocessor[5,7].

3. PARAMETER ESTIMATION

The prediction parameters for a smal image region can
be expressed as a vector, w ={w,} . The objective is to
find a set of optima parameters, such that when they are
applied to a group of pixels, x; they produce an

edimate, y; = f(x;,w), of the pixel value in the centre

of the group, d; . Although f (] need not be linear, in

this implementation it describes a weighted sum (w
expresses the weights to be applied on x; to produce

d; =X;
Ada;fiveTﬁlter yij + o
Yi WX A
Randomly selected & = dij Y
neigbourhoods (ij)

Fig2. The adaptive process

VOLUME 1- NUMBER 3



Y;j )- This choice has certain advantages, primarily in the

exisence of well behaving agorithms for the estimation
of the optimal w, whose properties are described with
generd mathematical rigor[9,10,13]. The latter is vitd if
the algorithm is to operate essentially unsupervised.

For the estimation of w a range of iterative methods,
known as adaptive dgorithms have  been
considered[10,11,12], because of their computationa
simplicity and stability. The adaptive adgorithm used here
is the modified two-dimensional LM S dgorithm [7, 9, 11,
12,14], which consists of computing the error of the

approximation e =d{® - y{¥ on each iteration k and
using it to modify the weights (parameters) (Fig. 2):

k) — \n, (k=1 k) A(K) y, (K
wiy =wie? +24Wefx) 1. &

In the above algorithm, p and q indicate the horizonta
and vertical displacement from the estimated pixel and

1 =L where
P

PR =) 3 3 Kppuq +ap®? 2
p=—mg=—-m

The only parameters the agorithm requires is the

adaptation rate, A, whose vaue is between 0 and 1 and

controls how fast the agorithm converges and the

forgetting factor, a, which controls the impact of old

iterations on Eq. (2).

The neighbourhood over which the algorithm is applied is
specified as a square block of MxM pixds. The number
of parameters is cortrolled by m which is considerably
lower than M.

To ensure that the estimated parameters are not biased,
the above dgorithm is applied to randomly selected
groups of pixels in each block[4,5]. The agorithm
generally converges in about 1000 iterations, but if faster
convergence is dedirable, an adaptive Gram-Schmidt pre-
processor[7,10,15] may be used at an additiond
processing overhead. Initial tests on images were
encouraging, but were based on predefined square pixe
blocks, which limit the resolution of texture regions to
about the block size The datisticd properties of the
modelling error, ei(ik), are aso estimated during this

process.

4. REGION IDENTIFICATION AND
LABELLING

To determine the similarity or difference among adjacent
image regions, the estimated parameters of eech region
were mmpared. Differences in corresponding weights
between pairs of image regions were mmputed and their
statistical  didtribution  inspected. Because  some
parameters are consigently larger than others, the
distribution is asymmetric which makes the asumption

SYSTEMICS, CYBERNETICS AND INFORMATICS

that they are distributed Normally far from true. For this
reason, the Wilcoxon signed rank test of equdlity of the
medians was used[16]. To perform this test, the
differences in corresponding parameters, irrespective of
sign, must be ranked and the sum of ranks of positive

differences, T*, computed. For a filter of size
= (2m+ 1)(2m+ 1), it can be shown that EfT*= n(n4-1)

and var(T*):w. From these, the following

statistic must be computed.

-1 3
\/vaJTJ')

This can be tested against a @nfidence limit, derived
from a standard Norma probability distribution. If there
is sgnificant difference between the two parameter sets,
then the regions are considered different.

The labelling algorithm consists of asdgning a unique
region identifier to each image region. The parameters of
the alaptation are made known to each neighbour, as
explained in the following section, which will then
perform the test of Eq. (3) for each neighbouring region.
For labels to be useful, if a region is found to be similar
to another region, it will change its labd to the label of
the similar region, only if the labe is a smaller number.
This guarantees that both regions will have the same
labdl.

Findly all labelled regions are gahered for the find
labeling process, which inspects them to eliminate ay
unnecessary ones (due to chaining) and then to identify
whether any non-adjacent regions have similar
parameters using Eq. (3) and perform find re-labelling.

The labelling process produces an ‘image of labels',
which may be used for further image interpretation.

5. IMPLEMENTATION ON A
PARALLEL VIRTUAL MACHINE

A sysem to modd paralel computation has been built
using inexpensive persona computers, connected as a
Network of Workstations (NoW), as wown in fig. 3. This
is based on the widely available Pardld Virtual Machine
(PVM) software [17,18,19]. An alternative solution could
have employed the Message Passing Interface (MPI)[20]
instead of the PVM. Although the MPI solution would
have been more dficient[21], PVM is more gpropriate
when the NoW consists of dissmilar computers and/or
software plaformg5,22], which was the @se here. It
should be noted tha one of the requirements for the later
use of this and similar techniques is to be deployed on
computers, not dedicated to this system, but serving
mainly as desktop computers, whose processing power is
utilised by the multiprocessor when available.

Performance evaluation[5] indicated that for this type of
application, involving short bursts of data over the
network and substantial processng on each of the nodes,
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Fig. 3. A network of Workstations running PVM

an dmost linear increase in execution speed is possible,
even with modest machines and network speed. This is
clearly shown in Fig. 4, where the speedup of processing
is displayed against the number of nodes in a controlled
experiment.

The experiment consisted of noting the time required for
the processing of a given image on a multiprocessor
consigting of the server and one client machine and then
repeating the test by progressively adding client machines
to the multiprocessor. Speedup for a given processor
configuration is the ratio of the time for processing for a
single machine to the time for processing for the
corresponding multiprocessor configuration. The system
was tested with three image sizes on a virtud machine
with 1, 2, 4, 8, and 16 nodes (client machines). Fig. 4
shows five curves, one for each image size (smdl,
S=256x256 pixds, medium, M=512x512 pixels and
large, L=1024x1024 pixels. The ided linear-speedup
curve (1) is aso shown for reference. The fifth curve
corresponds to a smdl image size using a mixed system
configuration (S-mix), which uses a multiprocessor with
a mixture of machines with different processing power, to
investigate how load balancing operates.

It can be observed that the speedup obtained is near-
linear, closely following the ideal curve. For the larger
number of nodes, the distance from the ided curve is
larger due to the higher overheads of darting and
maintaining a larger virtual machine. The distance from
the ided curve is larger for the large image (L). This is

Server

due to the communication cost which is a bottleneck for
larger messages on a modest network.

The implementation of the agorithm, described in the
previous sections of this paper, on the virtuad
multiprocessor was based on the client-server paradigm,
with one server machine initiating and coordinating
activities and each available client machine performing
the computationd part (Fig. 5).

The server has the image data and it initiates the client
processes, one per available machine. It then dispatches
to each client process a small section of the image and the
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Fig.4 Speedup as afunction of the number of nodes

initial parameter values of the agorithm. The server
collects from each client the processed parameter vaues,
sends them to the appropriate clients to compare and label
and dispatches another image section to the client.

The client process, upon receiving an image block,
performs the adaptation process (Section 3) and then
transmits the parameters back to the server. Subsequently,
it waits for the server to transmit another image block, or

Client i

\

Input image

K

Texture map

regions

Distribute

Collect
parameters

Adapt
parameters

Wj Wk W

. Compare
L[abel | and label

Fig5. Pardld Implementation
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Fig6. Mosaic, ided and output texture maps

(when available) parameters from a neighbouring node
for comparison. The latter involves the computation and
processing of the test described in Section 4, and the
initial labeling o the region and informing the server of
the outcome.

When the server receives region-labelling information, it
determines whether regions have similar parameters and
if they do, they are re-labeled. Otherwise, they are
simply stored. When the whole image has been
processed, the server saves the label map as an image for
further processing.

It is important to note the response of the multiprocessor
to exceptions. When a machine is added to the
multiprocessor (see Fig. 3), the server is notified, a dient
process is started remotely and the machine is realy to
receive and process image data. The server processis aso
notified when a client madine is about to become
unavailable because the desktop user requested it. The
server then receives the partia results until that point,
which are subsequently sent to another client to complete.

Fig7. Ultrasound image with detected texture
boundaries
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6. EXPERIMENTAL RESULTS

The dgorithm was initialy tested onartificial images and
sample textures like the Brodatz Set[23], where the true
texture map is known. Once its behaviour was
established, it was tested on rea medica ultrasound
images, used in the diagnosis of the extent of cdcification
in an artery[2]. As with many real images, there is no
objective way to determine a region (texture) map in
these @ses. Correation of observations with human
experts, who marked dfferent fegures of significance in
each image, was used. After the algorithm completed the
labelling process the results were compared with those of
the experts for differences, especially in the boundaries
between regions asfoll ows:

Each image was sparated into small equal-sized blocks.
The number of blocks where the dgorithm missed a
boundary was counted (this indicates the number of
missed features). The number of blocks containing an
extraneous texture region was aso noted (this indicates
‘false’ detections). The number of missed features is
more significant in practice than extraneous textures,
because it is not posshble to recover a missing feature
with additiona processng, whereas further processing o
the extraneous texture regions using clustering and other
classification techniques may be employed to distinguish
those that are medically significant from those that are
dueto image variability and noise.

Test results appear in Table 1. Each image was tested
with two levels of significance 1% and 0.1% for region
identification (Section 4). It must be stressed that this
paper presents early results on a small sample of images.
The dgorithm is currently undergoing rigorous testing on
a large test bank of medica images. Tests concentrated
on determining the dgorithm’ s ability to:

(&) Charecterize texture (i.e. classfy regions with similar
texture in the same cdegory) and

(b) Discriminate texture (i.e. classfy regions with
different texture in different categories)
The tested system had 11x11 coefficients (m=5), block

size 32x32 (M=32). Adaptation was repeated for K=1000
itertionswith 4 =0.1 and a =0.99.

% Missed % False

Image 1% (01% | 1% | 0.1%
1. Brodaz mosaic (512x512)| 2%| 2%| 12%| 16%
2. Carotid #1 (300x200) 5%| 5%| 20%| 2%
3. Carotid#2 (242x188) 8%| 8%| 12%| 2%
4. Carotid #3 (515x407) 5%| 5%| 13%| 0%
5. Carotid #4 (465x505) 12%| 12%| 28%| 6%
6. Carotid #5 (568x462) 3%| 3% 9%| 3%

Tablel. Experimenta results

Figure 6 shows the Brodatz mosaic together with the
output texture map. Figures 7 and 8 show ultrasound
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images together with the arresponding texture maps
produced by the system.

Fig8. Ultrasound image (left) and texture maps for
significance levels of 0.1% (top) and 1% (bottom)

7. COMMENTSAND CONCLUSIONS

Texture Discrimination

As can be seen by the results presented in table 1, the
algorithm was fairly successful in quantifying texture in
the images considered. This is apparent by the low
percentage of missed or misplaced region boundaries,
which indicates close correspondence between the expert
and the system. It should be stres=d at this point that the
only parameters used by the system in the description of
texture were the prediction parameters, whereas human
experts use a variety of cues, often empirica ones, in
their classfication, based on their experience with ather
similar images.

The Brodatz mosaic was a good test set for the
discriminatory power of the dgorithm, which performed
very well on larger texture blocks, but faled to classify
correctly the smaller texture regions in the image. Thisis
primarily attributed to the block size, which controls the
region where alaptation takes place. When two separate
textured regions appear in the same block, pat of the
adaptation is performed based on ore type of texture and
part on another type of texture. As aresult the parameters
will not correspond to either one of the textures, as they
will have vaues between the parameters of each texture.
This is dso a potential problem of the algorithm close to
the boundary between textures, but the dfects there ae
reduced significantly because of the use of overlapping
blocks. The problem may be reduced by selecting small er
block sizes, at the expense of the acuracy of the method,
since the parameters extracted from smaller samples will
be less accurate.
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Texture Characterization

The aility of the dgorithm to characterise texture was
evauated by counting the number of additiond textures it
detected, compared to the ‘actual’ number indicated by
the human experts. As shown in Table 1, for 1%
significance level, severd extraneous textured regions
were detected. This might indicate that the dgorithm is
not very effective in texture characterization, however, as
seen by the images and the @rresponding texture maps
(Figs. 7 and 8), the dgorithm was not imprecise, but
rather too specific. Furthermore, many of these additiona
regions were diminated (merged with existing ones) for
the tests with 0.1% significance level. This effect may be
easily interpreted if the significance level is assumed to
act as a factor of sendtivity to margina texture
differences. Thus, when increased, more ‘detal’ in
texture is observed. The fact that there were no
differences in texture maps between the levels of
significance and fedures marked by a human expert,
suggests that the expert probably marked only what was
rlevant for hisgher purposes, rather than label the whde
image, as the dgorithm did. These alditiona textures and
other medicdly irrelevant features may be reduced using
further processing, such as clustering of similar textures
using non-linear classification methods, or predefined
classes of relevant features to isolate only those features
that are relevant. It is aso possible to use the rank sum
measure given by Eq. (3) as a measure of similarity
between neighbouring regions as an additional measure,
for higher level processing, rather than compare it to a
fixed confidence limit.

Conclusions

A system for characterising texture in medica ultrasound
images has been presented. This was based on a 2-D
LMS adaptive modelling agorithm, whose estimated
parameter vaues over small image regions were used to
characterize locd texture. Parameter vaues of
neighbouring regions were compared using well-
edtablished datistical tests to labd regions with similar
textures. The  dgorithm  requires  substantid
computational power and has been implemented on a
multiprocessor based on a Network of Workstations
running PVM. The dgorithm is also suitable for clusters
consigting of heterogeneous processing nodes and for
modest network speeds, as it employs load baancing and
isfault-tolerant.

Experimental results indicated that the system was
successful in characterizing texture in images and that the
level of significance of the comparison used in the
labelling process, acts as a factor of sensitivity to the
degree of texture similarity.

One of the drawbacks of the algorithm is that if it is
applied to extremely smal image regions, the parameter
values will be over-specidized on the few pixel vaues on
which they were alapted. Using larger regions may lead
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to poor texture locdizaion. However, other adaptive
algorithms that converge much faster can be used instead
of the LMS. A Gram-Schmidt adaptive dgorithm[7] has
been developed for this purpose.

It must be noted that the propased dgorithm does not rely
on the dimensiondity of the data and may therefore be
easily extended to three-dimensional ‘images (volume)
or to spatio-tempord data, such as image segquences
(video). In these @ses the proposed pardlel
implementation is expected to be of even greater vaue.
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