
 
ABSTRACT 

This paper describes the application of a new texture 
characterization algorithm for the segmentation of 
medical ultrasound images. The morphology of these 
images poses significant problems for the application of 
traditional image processing techniques and their analysis 
has been the subject of research for several years. The 
basis of the algorithm is an optimum signal modelling 
algorithm (Least Mean Squares-based), which estimates a 
set of parameters from small image regions. The 
algorithm has been converted to a structure suitable for 
implementation on a Parallel Virtual Machine (PVM) 
consisting of a Network of Workstations (NoW), to 
improve processing speed. Tests were initially carried out 
on standard textured images. This paper describes 
preliminary results of the application of the algorithm in 
texture discrimination and segmentation of medical 
ultrasound images. The images examined are primarily 
used in the diagnosis of carotid plaques, which are linked 
to the risk of stroke.   

Keywords—Adaptive Filtering, LMS Algorithm, 
Medical Ultrasound, Texture Characterization, Image 
Processing, PVM. 

1. INTRODUCTION 
Traditional image processing and segmentation 
techniques detect region boundaries using edges[1]. 
These techniques rely on the assumption that regions of 
significance are characterized by abrupt changes in image 
intensity. Although this is true in a wide range of 
applications, in areas such as medical imaging and in 
ultrasound images in particular[2], this might not be the 
case. These images usually consist of soft tissue and 
boundaries are not clearly identified as changes in image 
intensity. Furthermore, they contain noise and 
interference. Reducing the effect of noise to make visual 
inspection and interpretation easier has been the subject 
of research for several years[3,4]. However, the 
processed images are still hard to segment with 
traditional automatic techniques, because the boundaries 

between regions of interest are usually based on more 
complex characteristics than pure intensity changes. 
Human observers have an inherent ability to cope with 
fuzzy images and to use the regularity in image 
microstructure to distinguish changes of significance. 
This regularity is often termed as texture and several 
empirical methods have been used to quantify it. Among 
these, are the co-occurrence matrix, higher order 
statistics, wavelet analysis and parametric techniques 
(like autoregressive filters and Markov random fields). 
Although there is no clear indication of a single technique 
being superior to others, autoregressive modelling and 
wavelets have generally been reported to produce more 
consistent results[3]. 

Previous work has indicated that the parameters { }pqw  of 

optimum signal modelling techniques[6,7], extracted 
from small image regions have the ability to characterize 
texture[4,5] and may therefore be suitable for region 
discrimination in images where boundaries are not 
associated with changes in image intensity. In this sense, 
the estimated parameters are equivalent to an 
autoregressive model, which produces locally correlated 
pixel values when applied to the uncorrelated part of the 
image signal[1, 3, 8].  

The work presented in this paper, demonstrates how the 
observations made from tests on the behaviour of the 
algorithm on both real and artificial images[5,6,7], were 
used to develop a method for the description of texture in 
medical ultrasound images. Such images, taken from the 
carotid arteries of patients, are used by medical 
practitioners to evaluate and monitor the risk of stroke 
associated with each patient. The algorithm requires 
considerable amount of computation and has been 
implemented on a Parallel Virtual Machine (PVM) built 
on top of a Network of Workstations (NoW), using spare 
computational capacity from any unused computers[5, 6, 
7]. 

The algorithm and its implementation will be described 
and results on its performance, speed and application will 
be presented and discussed. 
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2. CONCEPTUAL DESIGN 
It is essential to outline the overall concept on which this 
work is based prior to describing the algorithm, 
methodology and implementation of the developed 
system. The method used is based on the fact that 
adjacent pixel values  are correlated[6,7,8] and hence, a 
given pixel value can be estimated (predicted) from the 
values of neighbouring pixels and a set of parameters, 
{ }pqw . These are different for each pixel neigbourhood, 

because the estimation function in a group of pixels, is 
expected to be different from that of another area with 
different appearance. If regions of similar appearance 
have similar parameter values, it is then possible to use 
these values to characterize the regions and to ascertain 
their similarity. Likewise, if regions of different 
appearance have different parameter values, they can 
therefore be distinguished based on the values of the 
parameters. Earlier studies on the use of these parameters 
to characterize image regions, indicated that the method 
described in Section 3 of this paper, does produce 
parameter values, which provide both characterization 
and discrimination[6,7]. It should be noted that parameter 
values provide a more robust measure of similarity than 
direct comparison of pixel values. 

As the morphology of an image changes from one area to 
another, by comparing the estimated parameters extracted 
from the two image areas, it is possible to identify 
whether these are similar or not. Hence, each area is 
assigned a label as follows: 

(a) Areas with similar parameters are assigned the same 
label. 

(b) Areas with different parameters are assigned 
different labels. 

 The collection of labels for all image regions constitutes 
the output of the method described. Because the 
estimated parameters are based on the local image 
microstructure, they may be considered as texture 
modelling agents. Thus, the labelled regions can be 

regarded as a texture map of the image under 
consideration[3,6,7] ( Fig. 1).   

From the above, it is evident that any such process must 
consist of three parts (Fig. 1):  

(a) Parameter estimation for each region. 

(b) Comparison of the estimated parameters and 
labelling of adjacent regions. 

(c) Relabelling of non-adjacent regions. 

 The estimation process is carried out on relatively small 
image blocks, operating on localized data, independent 
from one region to another. Hence, processing many 
regions in parallel (simultaneously, rather than 
sequentially) on several computing nodes was considered 
in order to reduce the computational time of the 
algorithm. This is useful in situations where the size of 
the images (e.g. resolution) is large, resulting in a 
considerable amount of data to process in a given period 
of time (e.g. in real time implementations). In these cases, 
the processing task may be divided into several identical 
problems with different input data[5, 6, 7].  

Similarly, since comparison between the parameter 
values of adjacent regions is also localized, this process 
can also be a good candidate for parallel implementation. 
The relabelling process requires knowledge of regions 
and parameters over the whole image, but the 
computational load required is limited. It is evident, that 
the system is suitable for implementataion on a 
multiprocessor[5,7]. 

3. PARAMETER ESTIMATION  
The prediction parameters for a small image region can 

be expressed as a vector, { }pqw=w . The objective is to 

find a set of optimal parameters, such that when they are 
applied to a group of pixels, ijx  they produce an 

estimate, ),( wx ijij fy = , of the pixel value in the centre 

of the group, ijd . Although )(⋅f  need not be linear, in 

this implementation it describes a weighted sum ( w  
expresses the weights to be applied on ijx  to produce 
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ijy ). This choice has certain advantages, primarily in the 

existence of well behaving algorithms for the estimation 
of the optimal w , whose properties are described with 
general mathematical rigor[9,10,13]. The latter is vital if 
the algorithm is to operate essentially unsupervised.  

For the estimation of w  a range of iterative methods, 
known as adaptive algorithms have been 
considered[10,11,12], because of their computational 
simplicity and stability. The adaptive algorithm used here 
is the modified two-dimensional LMS algorithm [7, 9, 11, 
12,14], which consists of computing the error of the 

approximation )()()( k
ij

k
ij

k
ij yde −=  on each iteration k and 

using it to modify the weights (parameters) (Fig. 2): 
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The only parameters the algorithm requires is the 
adaptation rate, � , whose value is between 0 and 1 and 
controls how fast the algorithm converges and the 
forgetting factor, a , which controls the impact of old 
iterations on Eq. (2). 

The neighbourhood over which the algorithm is applied is 
specified as a square block of MxM pixels. The number 
of parameters is controlled by m which is considerably 
lower than M.  

To ensure that the estimated parameters are not biased, 
the above algorithm is applied to randomly selected 
groups of pixels in each block[4,5]. The algorithm 
generally converges in about 1000 iterations, but if faster 
convergence is desirable, an adaptive Gram-Schmidt pre-
processor[7,10,15] may be used at an additional 
processing overhead. Initial tests on images were 
encouraging, but were based on predefined square pixel 
blocks, which limit the resolution of texture regions to 
about the block size. The statistical properties of the 

modelling error, )(k

ij
e , are also estimated during this 

process.  

4. REGION IDENTIFICATION AND 
LABELLING 

To determine the similarity or difference among adjacent 
image regions, the estimated parameters of each region 
were compared. Differences in corresponding weights 
between pairs of image regions were computed and their 
statistical distribution inspected. Because some 
parameters are consistently larger than others, the 
distribution is asymmetric which makes the assumption 

that they are distributed Normally far from true. For this 
reason, the Wilcoxon signed rank test of equality of the 
medians was used[16]. To perform this test, the 
differences in corresponding parameters, irrespective of 
sign, must be ranked and the sum of ranks of positive 
differences, +T , computed. For a filter of size 

n=(2m+1)(2m+1), it can be shown that [ ] ( )
4

1
E

−=+ nn
T  

and ( ) ( )( )
24

121
var

++=+ nnn
T . From these, the following 

statistic must be computed.  

( )
( )+

++ −=
T

TT
z

var

E      (3) 

This can be tested against a confidence limit, derived 
from a standard Normal probabil ity distribution. If there 
is significant difference between the two parameter sets, 
then the regions are considered different. 

The labelling algorithm consists of assigning a unique 
region identifier to each image region. The parameters of 
the adaptation are made known to each neighbour, as 
explained in the following section, which will then 
perform the test of Eq. (3) for each neighbouring region. 
For labels to be useful, if a region is found to be similar 
to another region, it will change its label to the label of 
the similar region, only if the label is a smaller number. 
This guarantees that both regions will have the same 
label.  

Finally all labelled regions are gathered for the final 
labell ing process, which inspects them to eliminate any 
unnecessary ones (due to chaining) and then to identify 
whether any non-adjacent regions have similar 
parameters using Eq. (3) and perform final re-labell ing.  

The labelling process produces an ‘ image of labels’ , 
which may be used for further image interpretation. 

5. IMPLEMENTATION ON A 
PARALLEL VIRTUAL MACHINE  

A system to model parallel computation has been built 
using inexpensive personal computers, connected as a 
Network of Workstations (NoW), as shown in fig. 3. This 
is based on the widely available Parallel Virtual Machine 
(PVM) software [17,18,19]. An alternative solution could 
have employed the Message Passing Interface (MPI)[20] 
instead of the PVM. Although the MPI solution would 
have been more efficient[21], PVM is more appropriate 
when the NoW consists of dissimilar computers and/or 
software platforms[5,22], which was the case here. It 
should be noted that one of the requirements for the later 
use of this and similar techniques is to be deployed on 
computers, not dedicated to this system, but serving 
mainly as desktop computers, whose processing power is 
util ised by the multiprocessor when available.  
Performance evaluation[5] indicated that for this type of 
application, involving short bursts of data over the 
network and substantial processing on each of the nodes, 
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an almost linear increase in execution speed is possible, 
even with modest machines and network speed. This is 
clearly shown in Fig. 4, where the speedup of processing 
is displayed against the number of nodes in a controlled 
experiment.  
The experiment consisted of noting the time required for 
the processing of a given image on a multiprocessor 
consisting of the server and one client machine and then 
repeating the test by progressively adding client machines 
to the multiprocessor. Speedup for a given processor 
configuration is the ratio of the time for processing for a 
single machine to the time for processing for the 
corresponding multiprocessor configuration. The system 
was tested with three image sizes on a virtual machine 
with 1, 2, 4, 8, and 16 nodes (client machines). Fig. 4 
shows five curves, one for each image size (small, 
S=256x256 pixels, medium, M=512x512 pixels and 
large, L=1024x1024 pixels. The ideal linear-speedup 
curve (I) is also shown for reference. The fifth curve 
corresponds to a small image size using a mixed system 
configuration (S-mix), which uses a multiprocessor with 
a mixture of machines with different processing power, to 
investigate how load balancing operates. 

It can be observed that the speedup obtained is near-
linear, closely following the ideal curve. For the larger 
number of nodes, the distance from the ideal curve is 
larger due to the higher overheads of starting and 
maintaining a larger virtual machine. The distance from 
the ideal curve is larger for the large image (L). This is 

due to the communication cost which is a bottleneck for 
larger messages on a modest network. 

The implementation of the algorithm, described in the 
previous sections of this paper, on the virtual 
multiprocessor was based on the client-server paradigm, 
with one server machine initiating and coordinating 
activities and each available client machine performing 
the computational part (Fig. 5).  

The server has the image data and it initiates the client 
processes, one per available machine. It then dispatches 
to each client process a small section of the image and the 

initial parameter values of the algorithm. The server 
collects from each client the processed parameter values, 
sends them to the appropriate clients to compare and label 
and dispatches another image section to the client. 

The client process, upon receiving an image block, 
performs the adaptation process (Section 3) and then 
transmits the parameters back to the server. Subsequently, 
it waits for the server to transmit another image block, or 
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(when available) parameters from a neighbouring node 
for comparison. The latter involves the computation and 
processing of the test described in Section 4, and the 
initial labell ing of the region and informing the server of 
the outcome.  

When the server receives region-labell ing information, it 
determines whether regions have similar parameters and 
if they do, they are re-labelled. Otherwise, they are 
simply stored. When the whole image has been 
processed, the server saves the label map as an image for 
further processing. 

It is important to note the response of the multiprocessor 
to exceptions. When a machine is added to the 
multiprocessor (see Fig. 3), the server is notified, a client 
process is started remotely and the machine is ready to 
receive and process image data. The server process is also 
notified when a client machine is about to become 
unavailable because the desktop user requested it. The 
server then receives the partial results until that point, 
which are subsequently sent to another client to complete. 

6. EXPERIMENTAL RESULTS 
The algorithm was initially tested on artificial images and 
sample textures like the Brodatz Set[23], where the true 
texture map is known. Once its behaviour was 
established, it was tested on real medical ultrasound 
images, used in the diagnosis of the extent of calcification 
in an artery[2]. As with many real images, there is no 
objective way to determine a region (texture) map in 
these cases. Correlation of observations with human 
experts, who marked different features of significance in 
each image, was used. After the algorithm completed the 
labell ing process, the results were compared with those of 
the experts for differences, especially in the boundaries 
between regions as follows: 

Each image was separated into small equal-sized blocks. 
The number of blocks where the algorithm missed a 
boundary was counted (this indicates the number of 
missed features). The number of blocks containing an 
extraneous texture region was also noted (this indicates 
‘ false’ detections). The number of missed features is 
more significant in practice than extraneous textures, 
because it is not possible to recover a missing feature 
with additional processing, whereas further processing of 
the extraneous texture regions using clustering and other 
classification techniques may be employed to distinguish 
those that are medically significant from those that are 
due to image variabil ity and noise.  

Test results appear in Table 1. Each image was tested 
with two levels of significance 1% and 0.1% for region 
identification (Section 4). It must be stressed that this 
paper presents early results on a small sample of images. 
The algorithm is currently undergoing rigorous testing on 
a large test bank of medical images. Tests concentrated 
on determining the algorithm’s ability to: 

(a) Characterize texture (i.e. classify regions with similar 
texture in the same category) and 

(b) Discriminate texture (i.e. classify regions with 
different texture in different categories) 

The tested system had 11x11 coefficients (m=5), block 
size 32x32 (M=32). Adaptation was repeated for K=1000 
iterations with 

�
=0.1 and α =0.99. 

 % Missed % False 
Image 1% 0.1% 1% 0.1% 

1. Brodatz mosaic (512x512) 2% 2% 12% 16% 
2. Carotid #1 (300x200) 5% 5% 20% 2% 
3. Carotid #2  (242x188) 8% 8% 12% 2% 
4. Carotid #3 (515x407) 5% 5% 13% 0% 
5. Carotid #4 (465x505) 12% 12% 28% 6% 
6. Carotid #5 (568x462) 3% 3% 9% 3% 

Table 1.  Experimental results 

Figure 6 shows the Brodatz mosaic together with the 
output texture map. Figures 7 and 8 show ultrasound 

 

 

Fig 6.  Mosaic, ideal and output texture maps 
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images together with the corresponding texture maps 
produced by the system.  

7. COMMENTS AND CONCLUSIONS 

Texture Discrimination 

As can be seen by the results presented in table 1, the 
algorithm was fairly successful in quantifying texture in 
the images considered. This is apparent by the low 
percentage of missed or misplaced region boundaries, 
which indicates close correspondence between the expert 
and the system. It should be stressed at this point that the 
only parameters used by the system in the description of 
texture were the prediction parameters, whereas human 
experts use a variety of cues, often empirical ones, in 
their classification, based on their experience with other 
similar images. 

The Brodatz mosaic was a good test set for the 
discriminatory power of the algorithm, which performed 
very well on larger texture blocks, but failed to classify 
correctly the smaller texture regions in the image. This is 
primarily attributed to the block size, which controls the 
region where adaptation takes place. When two separate 
textured regions appear in the same block, part of the 
adaptation is performed based on one type of texture and 
part on another type of texture. As a result the parameters 
wil l not correspond to either one of the textures, as they 
wil l have values between the parameters of each texture. 
This is also a potential problem of the algorithm close to 
the boundary between textures, but the effects there are 
reduced significantly because of the use of overlapping 
blocks. The problem may be reduced by selecting smaller 
block sizes, at the expense of the accuracy of the method, 
since the parameters extracted from smaller samples wil l 
be less accurate.  

Texture Characterization 

The abili ty of the algorithm to characterise texture was 
evaluated by counting the number of additional textures it 
detected, compared to the ‘actual’ number indicated by 
the human experts. As shown in Table 1, for 1% 
significance level, several extraneous textured regions 
were detected. This might indicate that the algorithm is 
not very effective in texture characterization, however, as 
seen by the images and the corresponding texture maps 
(Figs. 7 and 8), the algorithm was not imprecise, but 
rather too specific. Furthermore, many of these additional 
regions were eliminated (merged with existing ones) for 
the tests with 0.1% significance level. This effect may be 
easily interpreted if the significance level is assumed to 
act as a factor of sensitivity to marginal texture 
differences. Thus, when increased, more ‘detail’ in 
texture is observed. The fact that there were no 
differences in texture maps between the levels of 
significance and features marked by a human expert, 
suggests that the expert probably marked only what was 
relevant for his/her purposes, rather than label the whole 
image, as the algorithm did. These additional textures and 
other medically irrelevant features may be reduced using 
further processing, such as clustering of similar textures 
using non-linear classification methods, or predefined 
classes of relevant features to isolate only those features 
that are relevant. It is also possible to use the rank sum 
measure given by Eq. (3) as a measure of similarity 
between neighbouring regions as an additional measure, 
for higher level processing, rather than compare it to a 
fixed confidence limit. 

Conclusions 

A system for characterising texture in medical ultrasound 
images has been presented. This was based on a 2-D 
LMS adaptive modelling algorithm, whose estimated 
parameter values over small image regions were used to 
characterize local texture. Parameter values of 
neighbouring regions were compared using well -
established statistical tests to label regions with similar 
textures. The algorithm requires substantial 
computational power and has been implemented on a 
multiprocessor based on a Network of Workstations 
running PVM. The algorithm is also suitable for clusters 
consisting of heterogeneous processing nodes and for 
modest network speeds, as it employs load balancing and 
is fault-tolerant.  

Experimental results indicated that the system was 
successful in characterizing texture in images and that the 
level of significance of the comparison used in the 
labelling process, acts as a factor of sensitivity to the 
degree of texture similarity.  

One of the drawbacks of the algorithm is that if it is 
applied to extremely small image regions, the parameter 
values will be over-specialized on the few pixel values on 
which they were adapted. Using larger regions may lead 

 

 
Fig 8.  Ultrasound image (left) and texture maps for 

significance levels of 0.1% (top) and 1% (bottom) 
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to poor texture localization. However, other adaptive 
algorithms that converge much faster can be used instead 
of the LMS. A Gram-Schmidt adaptive algorithm[7] has 
been developed for this purpose.   

It must be noted that the proposed algorithm does not rely 
on the dimensionality of the data and may therefore be 
easily extended to three-dimensional ‘ images’ (volume) 
or to spatio-temporal data, such as image sequences 
(video). In these cases the proposed parallel 
implementation is expected to be of even greater value. 
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